Nonlinear dynamics of chaotic and stochastic systems: tutorial and modern developments
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 2. ed. |
Schriftenreihe: | Springer series in synergetics
Springer complexity |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVI, 446 S. graph. Darst. |
ISBN: | 9783540381648 3540381643 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022933465 | ||
003 | DE-604 | ||
005 | 20081215 | ||
007 | t | ||
008 | 071022s2007 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 980660823 |2 DE-101 | |
020 | |a 9783540381648 |c Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.) |9 978-3-540-38164-8 | ||
020 | |a 3540381643 |c Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.) |9 3-540-38164-3 | ||
035 | |a (OCoLC)180939807 | ||
035 | |a (DE-599)DNB980660823 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-19 | ||
082 | 0 | |a 530.15539 |2 22/ger | |
084 | |a CC 6300 |0 (DE-625)17655: |2 rvk | ||
084 | |a MAT 344f |2 stub | ||
084 | |a 530 |2 sdnb | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 606f |2 stub | ||
245 | 1 | 0 | |a Nonlinear dynamics of chaotic and stochastic systems |b tutorial and modern developments |c Vadim S. Anishchenko ... |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XVI, 446 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer series in synergetics | |
490 | 0 | |a Springer complexity | |
650 | 4 | |a Chaotic behavior in systems | |
650 | 4 | |a Dynamics | |
650 | 4 | |a Nonlinear theories | |
650 | 4 | |a Stochastic systems | |
650 | 0 | 7 | |a Stochastisches System |0 (DE-588)4057635-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaotisches System |0 (DE-588)4316104-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Chaotisches System |0 (DE-588)4316104-2 |D s |
689 | 0 | 1 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Stochastisches System |0 (DE-588)4057635-8 |D s |
689 | 1 | 1 | |a Nichtlineare Dynamik |0 (DE-588)4126141-0 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Aniščenko, Vadim S. |d 1943- |e Sonstige |0 (DE-588)111580080 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2839939&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016138255 |
Datensatz im Suchindex
_version_ | 1805089543274102784 |
---|---|
adam_text |
VADIM S. ANISHCHENKO VLADIMIR ASTAKHOV ALEXANDER NEIMAN TATJANA
VADIVASOVA LUTZ SCHIMANSKY-GEIER NONLINEAR DYNAMICS OF CHAOTIC AND
STOCHASTIC SYSTEMS TUTORIAL AND MODERN DEVELOPMENTS SECOND EDITION WITH
222 FIGURES 4Y SPRI RINEER CONTENTS 1. TUTORIAL 1 1.1 DYNAMICAL SYSTEMS
1 1.1.1 INTRODUCTION 1 1.1.2 THE DYNAMICAL SYSTEM AND ITS MATHEMATICAL
MODEL . . 1 1.1.3 STABILITY - LINEAR APPROACH 8 1.1.4 BIFURCATIONS OF
DYNAMICAL SYSTEMS, CATASTROPHES 17 1.1.5 ATTRACTORS OF DYNAMICAL
SYSTEMS. DETERMINISTIC CHAOS 29 1.1.6 SUMMARY 36 1.2 FLUCTUATIONS IN
DYNAMICAL SYSTEMS 37 1.2.1 INTRODUCTION 37 1.2.2 BASIC CONCEPTS OF
STOCHASTIC DYNAMICS 38 1.2.3 NOISE IN DYNAMICAL SYSTEMS 46 1.2.4 THE
FOKKER-PLANCK EQUATION 55 1.2.5 STOCHASTIC OSCILLATORS 63 1.2.6 THE
ESCAPE PROBLEM 70 1.2.7 SUMMARY 80 1.3 SYNCHRONIZATION OF PERIODIC
SYSTEMS 80 1.3.1 INTRODUCTION 80 1.3.2 RESONANCE IN PERIODICALLY DRIVEN
LINEAR DISSIPATIVE OSCILLATORS 82 1.3.3 SYNCHRONIZATION OF THE VAN DER
POL OSCILLATOR. CLASSICAL THEORY 84 1.3.4 SYNCHRONIZATION IN THE
PRESENCE OF NOISE. EFFECTIVE SYNCHRONIZATION 93 1.3.5 PHASE DESCRIPTION
97 1.3.6 SUMMARY 101 REFERENCES 102 2. DYNAMICAL CHAOS 109 2.1 ROUTES TO
CHAOS 109 2.1.1 INTRODUCTION 109 2.1.2 PERIOD-DOUBLING CASCADE ROUTE.
FEIGENBAUM UNIVERSALITY 110 XIV CONTENTS 2.1.3 CRISIS AND INTERMITTENCY
118 2.1.4 ROUTE TO CHAOS VIA TWO-DIMENSIONAL TORUS DESTRUCTION 121 2.1.5
ROUTE TO CHAOS VIA A THREE-DIMENSIONAL TORUS. CHAOS ON T 3 . CHAOTIC
NONSTRANGE ATTRACTORS 130 2.1.6 ROUTE TO CHAOS VIA ERGODIC TORUS
DESTRUCTION. STRANGE NONCHAOTIC ATTRACTORS 133 2.1.7 SUMMARY 139 2.2
STATISTICAL PROPERTIES OF DYNAMICAL CHAOS 139 2.2.1 INTRODUCTION 139
2.2.2 DIAGNOSIS OF HYPERBOLICITY IN CHAOTIC SYSTEMS 141 2.2.3 CHAOS IN
THE PRESENCE OF NOISE 143 2.2.4 RELAXATION TO A STATIONARY PROBABILITY
DISTRIBUTION FOR CHAOTIC ATTRACTORS IN THE PRESENCE OF NOISE 144 2.2.5
SPECTRAL-CORRELATION ANALYSIS OF DYNAMICAL CHAOS . 150 2.2.6 PHASE
DIFFUSION IN AN ACTIVE INHOMOGENEOUS MEDIUM DESCRIBED BY THE
GINZBURG-LANDAU EQUATION 155 2.2.7 THE AUTOCORRELATION FUNCTION AND
POWER SPECTRUM OF SPIRAL CHAOS IN PHYSICAL EXPERIMENTS 160 2.2.8 SUMMARY
163 2.3 SYNCHRONIZATION OF CHAOS 164 2.3.1 INTRODUCTION 164 2.3.2
PHASE-FREQUENCY SYNCHRONIZATION OF CHAOS. THE CLASSICAL APPROACH 165
2.3.3 COMPLETE AND PARTIAL SYNCHRONIZATION OF CHAOS 171 2.3.4 PHASE
MULTISTABILITY IN THE REGION OF CHAOS SYNCHRONIZATION 176 2.3.5
BIFURCATION MECHANISMS OF PARTIAL AND COMPLETE CHAOS SYNCHRONIZATION
LOSS 180 2.3.6 SUMMARY 184 2.4 EFFECTS OF SYNCHRONIZATION IN EXTENDED
SELF-SUSTAINED OSCILLATORY SYSTEMS 185 2.4.1 INTRODUCTION 185 2.4.2
CLUSTER SYNCHRONIZATION IN AN INHOMOGENEOUS CHAIN OF QUASIHARMONIC
OSCILLATORS 187 2.4.3 EFFECT OF NOISE ON CLUSTER SYNCHRONIZATION IN A
CHAIN OF QUASIHARMONIC OSCILLATORS 190 2.4.4 CLUSTER SYNCHRONIZATION IN
AN INHOMOGENEOUS SELF-SUSTAINED OSCILLATORY MEDIUM 195 2.4.5 CLUSTER
SYNCHRONIZATION IN INTERACTING INHOMOGENEOUS MEDIA 200 2.4.6 FORCED
SYNCHRONIZATION OF A CHAIN OF CHAOTIC SELF-SUSTAINED OSCILLATORS 203
CONTENTS XV 2.4.7 SYNCHRONIZATION AND MULTISTABILITY IN A RING OF
ANHARMONICAL OSCILLATORS 207 2.4.8 SYNCHRONIZATION AND MULTISTABILITY IN
A RING OF OSCILLATORS WITH PERIOD DOUBLING 217 2.4.9 SUMMARY 224 2.5
SYNCHRONIZATION IN LIVING SYSTEMS 225 2.5.1 INTRODUCTION 225 2.5.2
STOCHASTIC SYNCHRONIZATION OF ELECTRORECEPTORS IN THE PADDLEFISH 225
2.5.3 SYNCHRONIZATION OF CARDIORHYTHM 228 2.5.4 SUMMARY 232 2.6
CONTROLLING CHAOS 233 2.6.1 INTRODUCTION 233 2.6.2 CONTROLLED ANTI-PHASE
SYNCHRONIZATION OF CHAOS IN COUPLED CUBIC MAPS 235 2.6.3 CONTROL AND
SYNCHRONIZATION OF CHAOS IN A SYSTEM OF MUTUALLY COUPLED OSCILLATORS 242
2.6.4 CONTROLLED CHAOS SYNCHRONIZATION BY MEANS OF PERIODIC PARAMETRIC
PERTURBATIONS 248 2.6.5 STABILIZATION OF SPATIO-HOMOGENEOUS MOTIONS BY
PARAMETRIC PERTURBATIONS 251 2.6.6 CONTROLLING CHAOS IN COUPLED MAP
LATTICES 254 2.6.7 SUMMARY 262 2.7 RECONSTRUCTION OF DYNAMICAL SYSTEMS
264 2.7.1 INTRODUCTION 264 2.7.2 RECONSTRUCTION OF ATTRACTORS FROM TIME
SERIES 265 2.7.3 GLOBAL RECONSTRUCTION OF DS 275 2.7.4 RECONSTRUCTION
FROM BIOLOGICAL DATA 281 2.7.5 GLOBAL RECONSTRUCTION IN APPLICATION TO
CONFIDENTIAL COMMUNICATION 286 2.7.6 SUMMARY 291 REFERENCES 292 3.
STOCHASTIC DYNAMICS 307 3.1 STOCHASTIC RESONANCE 307 3.1.1 INTRODUCTION
307 3.1.2 STOCHASTIC RESONANCE: PHYSICAL BACKGROUND 309 3.1.3
CHARACTERISTICS OF STOCHASTIC RESONANCE 311 3.1.4 RESPONSE TO A WEAK
SIGNAL. THEORETICAL APPROACHES . . 313 3.1.5 ARRAY-ENHANCED STOCHASTIC
RESONANCE 320 3.1.6 DOUBLY STOCHASTIC RESONANCE IN SYSTEMS WITH NOISE-
INDUCED PHASE TRANSITION 331 3.1.7 STOCHASTIC RESONANCE FOR SIGNALS WITH
A COMPLEX SPECTRUM 336 XVI CONTENTS 3.1.8 STOCHASTIC RESONANCE IN
CHAOTIC SYSTEMS WITH COEXISTING ATTRACTORS 343 3.1.9 ANALOG SIMULATION
348 3.1.10 SUMMARY 350 3.2 SYNCHRONIZATION OF STOCHASTIC SYSTEMS 351
3.2.1 INTRODUCTION 351 3.2.2 SYNCHRONIZATION AND STOCHASTIC RESONANCE
352 3.2.3 FORCED STOCHASTIC SYNCHRONIZATION OF THE SCHMITT TRIGGER 360
3.2.4 MUTUAL STOCHASTIC SYNCHRONIZATION OF COUPLED BISTABLE SYSTEMS 364
3.2.5 FORCED AND MUTUAL SYNCHRONIZATION OF SWITCHINGS IN CHAOTIC SYSTEMS
367 3.2.6 STOCHASTIC SYNCHRONIZATION OF ENSEMBLES OF STOCHASTIC
RESONATORS 372 3.2.7 STOCHASTIC SYNCHRONIZATION AS NOISE-ENHANCED ORDER
. 377 3.2.8 SUMMARY 380 3.3 THE BENENCIAL ROLE OF NOISE IN EXCITABLE
SYSTEMS 381 3.3.1 COHERENCE RESONANCE NEAR BIFURCATIONS OF PERIODIC
SOLUTIONS OF A DYNAMICAL SYSTEM 381 3.3.2 COHERENCE RESONANCE IN
EXCITABLE DYNAMICS 383 3.3.3 NOISE-ENHANCED SYNCHRONIZATION OF COUPLED
EXCITABLE SYSTEMS 394 3.3.4 SUMMARY 398 3.4 NOISE-INDUCED TRANSPORT 399
3.4.1 INTRODUCTION 399 3.4.2 FLASHING AND ROCKING RATCHETS 401 3.4.3 THE
ADIABATIC APPROACH 404 3.4.4 THE OVERDAMPED CORRELATION RATCHET 407
3.4.5 PARTICLE SEPARATION BY RATCHETS DRIVEN BY COLORED NOISE 409 3.4.6
TWO-DIMENSIONAL RATCHETS 414 3.4.7 DISCRETE RATCHETS 418 3.4.8
SAWTOOTH-LIKE MEDIA 425 3.4.9 MAKING SPATIAL STRUCTURES USING RATCHETS
428 3.4.10 SUMMARY 433 REFERENCES 434 INDEX 445 |
adam_txt |
VADIM S. ANISHCHENKO VLADIMIR ASTAKHOV ALEXANDER NEIMAN TATJANA
VADIVASOVA LUTZ SCHIMANSKY-GEIER NONLINEAR DYNAMICS OF CHAOTIC AND
STOCHASTIC SYSTEMS TUTORIAL AND MODERN DEVELOPMENTS SECOND EDITION WITH
222 FIGURES 4Y SPRI RINEER CONTENTS 1. TUTORIAL 1 1.1 DYNAMICAL SYSTEMS
1 1.1.1 INTRODUCTION 1 1.1.2 THE DYNAMICAL SYSTEM AND ITS MATHEMATICAL
MODEL . . 1 1.1.3 STABILITY - LINEAR APPROACH 8 1.1.4 BIFURCATIONS OF
DYNAMICAL SYSTEMS, CATASTROPHES 17 1.1.5 ATTRACTORS OF DYNAMICAL
SYSTEMS. DETERMINISTIC CHAOS 29 1.1.6 SUMMARY 36 1.2 FLUCTUATIONS IN
DYNAMICAL SYSTEMS 37 1.2.1 INTRODUCTION 37 1.2.2 BASIC CONCEPTS OF
STOCHASTIC DYNAMICS 38 1.2.3 NOISE IN DYNAMICAL SYSTEMS 46 1.2.4 THE
FOKKER-PLANCK EQUATION 55 1.2.5 STOCHASTIC OSCILLATORS 63 1.2.6 THE
ESCAPE PROBLEM 70 1.2.7 SUMMARY 80 1.3 SYNCHRONIZATION OF PERIODIC
SYSTEMS 80 1.3.1 INTRODUCTION 80 1.3.2 RESONANCE IN PERIODICALLY DRIVEN
LINEAR DISSIPATIVE OSCILLATORS 82 1.3.3 SYNCHRONIZATION OF THE VAN DER
POL OSCILLATOR. CLASSICAL THEORY 84 1.3.4 SYNCHRONIZATION IN THE
PRESENCE OF NOISE. EFFECTIVE SYNCHRONIZATION 93 1.3.5 PHASE DESCRIPTION
97 1.3.6 SUMMARY 101 REFERENCES 102 2. DYNAMICAL CHAOS 109 2.1 ROUTES TO
CHAOS 109 2.1.1 INTRODUCTION 109 2.1.2 PERIOD-DOUBLING CASCADE ROUTE.
FEIGENBAUM UNIVERSALITY 110 XIV CONTENTS 2.1.3 CRISIS AND INTERMITTENCY
118 2.1.4 ROUTE TO CHAOS VIA TWO-DIMENSIONAL TORUS DESTRUCTION 121 2.1.5
ROUTE TO CHAOS VIA A THREE-DIMENSIONAL TORUS. CHAOS ON T 3 . CHAOTIC
NONSTRANGE ATTRACTORS 130 2.1.6 ROUTE TO CHAOS VIA ERGODIC TORUS
DESTRUCTION. STRANGE NONCHAOTIC ATTRACTORS 133 2.1.7 SUMMARY 139 2.2
STATISTICAL PROPERTIES OF DYNAMICAL CHAOS 139 2.2.1 INTRODUCTION 139
2.2.2 DIAGNOSIS OF HYPERBOLICITY IN CHAOTIC SYSTEMS 141 2.2.3 CHAOS IN
THE PRESENCE OF NOISE 143 2.2.4 RELAXATION TO A STATIONARY PROBABILITY
DISTRIBUTION FOR CHAOTIC ATTRACTORS IN THE PRESENCE OF NOISE 144 2.2.5
SPECTRAL-CORRELATION ANALYSIS OF DYNAMICAL CHAOS . 150 2.2.6 PHASE
DIFFUSION IN AN ACTIVE INHOMOGENEOUS MEDIUM DESCRIBED BY THE
GINZBURG-LANDAU EQUATION 155 2.2.7 THE AUTOCORRELATION FUNCTION AND
POWER SPECTRUM OF SPIRAL CHAOS IN PHYSICAL EXPERIMENTS 160 2.2.8 SUMMARY
163 2.3 SYNCHRONIZATION OF CHAOS 164 2.3.1 INTRODUCTION 164 2.3.2
PHASE-FREQUENCY SYNCHRONIZATION OF CHAOS. THE CLASSICAL APPROACH 165
2.3.3 COMPLETE AND PARTIAL SYNCHRONIZATION OF CHAOS 171 2.3.4 PHASE
MULTISTABILITY IN THE REGION OF CHAOS SYNCHRONIZATION 176 2.3.5
BIFURCATION MECHANISMS OF PARTIAL AND COMPLETE CHAOS SYNCHRONIZATION
LOSS 180 2.3.6 SUMMARY 184 2.4 EFFECTS OF SYNCHRONIZATION IN EXTENDED
SELF-SUSTAINED OSCILLATORY SYSTEMS 185 2.4.1 INTRODUCTION 185 2.4.2
CLUSTER SYNCHRONIZATION IN AN INHOMOGENEOUS CHAIN OF QUASIHARMONIC
OSCILLATORS 187 2.4.3 EFFECT OF NOISE ON CLUSTER SYNCHRONIZATION IN A
CHAIN OF QUASIHARMONIC OSCILLATORS 190 2.4.4 CLUSTER SYNCHRONIZATION IN
AN INHOMOGENEOUS SELF-SUSTAINED OSCILLATORY MEDIUM 195 2.4.5 CLUSTER
SYNCHRONIZATION IN INTERACTING INHOMOGENEOUS MEDIA 200 2.4.6 FORCED
SYNCHRONIZATION OF A CHAIN OF CHAOTIC SELF-SUSTAINED OSCILLATORS 203
CONTENTS XV 2.4.7 SYNCHRONIZATION AND MULTISTABILITY IN A RING OF
ANHARMONICAL OSCILLATORS 207 2.4.8 SYNCHRONIZATION AND MULTISTABILITY IN
A RING OF OSCILLATORS WITH PERIOD DOUBLING 217 2.4.9 SUMMARY 224 2.5
SYNCHRONIZATION IN LIVING SYSTEMS 225 2.5.1 INTRODUCTION 225 2.5.2
STOCHASTIC SYNCHRONIZATION OF ELECTRORECEPTORS IN THE PADDLEFISH 225
2.5.3 SYNCHRONIZATION OF CARDIORHYTHM 228 2.5.4 SUMMARY 232 2.6
CONTROLLING CHAOS 233 2.6.1 INTRODUCTION 233 2.6.2 CONTROLLED ANTI-PHASE
SYNCHRONIZATION OF CHAOS IN COUPLED CUBIC MAPS 235 2.6.3 CONTROL AND
SYNCHRONIZATION OF CHAOS IN A SYSTEM OF MUTUALLY COUPLED OSCILLATORS 242
2.6.4 CONTROLLED CHAOS SYNCHRONIZATION BY MEANS OF PERIODIC PARAMETRIC
PERTURBATIONS 248 2.6.5 STABILIZATION OF SPATIO-HOMOGENEOUS MOTIONS BY
PARAMETRIC PERTURBATIONS 251 2.6.6 CONTROLLING CHAOS IN COUPLED MAP
LATTICES 254 2.6.7 SUMMARY 262 2.7 RECONSTRUCTION OF DYNAMICAL SYSTEMS
264 2.7.1 INTRODUCTION 264 2.7.2 RECONSTRUCTION OF ATTRACTORS FROM TIME
SERIES 265 2.7.3 GLOBAL RECONSTRUCTION OF DS 275 2.7.4 RECONSTRUCTION
FROM BIOLOGICAL DATA 281 2.7.5 GLOBAL RECONSTRUCTION IN APPLICATION TO
CONFIDENTIAL COMMUNICATION 286 2.7.6 SUMMARY 291 REFERENCES 292 3.
STOCHASTIC DYNAMICS 307 3.1 STOCHASTIC RESONANCE 307 3.1.1 INTRODUCTION
307 3.1.2 STOCHASTIC RESONANCE: PHYSICAL BACKGROUND 309 3.1.3
CHARACTERISTICS OF STOCHASTIC RESONANCE 311 3.1.4 RESPONSE TO A WEAK
SIGNAL. THEORETICAL APPROACHES . . 313 3.1.5 ARRAY-ENHANCED STOCHASTIC
RESONANCE 320 3.1.6 DOUBLY STOCHASTIC RESONANCE IN SYSTEMS WITH NOISE-
INDUCED PHASE TRANSITION 331 3.1.7 STOCHASTIC RESONANCE FOR SIGNALS WITH
A COMPLEX SPECTRUM 336 XVI CONTENTS 3.1.8 STOCHASTIC RESONANCE IN
CHAOTIC SYSTEMS WITH COEXISTING ATTRACTORS 343 3.1.9 ANALOG SIMULATION
348 3.1.10 SUMMARY 350 3.2 SYNCHRONIZATION OF STOCHASTIC SYSTEMS 351
3.2.1 INTRODUCTION 351 3.2.2 SYNCHRONIZATION AND STOCHASTIC RESONANCE
352 3.2.3 FORCED STOCHASTIC SYNCHRONIZATION OF THE SCHMITT TRIGGER 360
3.2.4 MUTUAL STOCHASTIC SYNCHRONIZATION OF COUPLED BISTABLE SYSTEMS 364
3.2.5 FORCED AND MUTUAL SYNCHRONIZATION OF SWITCHINGS IN CHAOTIC SYSTEMS
367 3.2.6 STOCHASTIC SYNCHRONIZATION OF ENSEMBLES OF STOCHASTIC
RESONATORS 372 3.2.7 STOCHASTIC SYNCHRONIZATION AS NOISE-ENHANCED ORDER
. 377 3.2.8 SUMMARY 380 3.3 THE BENENCIAL ROLE OF NOISE IN EXCITABLE
SYSTEMS 381 3.3.1 COHERENCE RESONANCE NEAR BIFURCATIONS OF PERIODIC
SOLUTIONS OF A DYNAMICAL SYSTEM 381 3.3.2 COHERENCE RESONANCE IN
EXCITABLE DYNAMICS 383 3.3.3 NOISE-ENHANCED SYNCHRONIZATION OF COUPLED
EXCITABLE SYSTEMS 394 3.3.4 SUMMARY 398 3.4 NOISE-INDUCED TRANSPORT 399
3.4.1 INTRODUCTION 399 3.4.2 FLASHING AND ROCKING RATCHETS 401 3.4.3 THE
ADIABATIC APPROACH 404 3.4.4 THE OVERDAMPED CORRELATION RATCHET 407
3.4.5 PARTICLE SEPARATION BY RATCHETS DRIVEN BY COLORED NOISE 409 3.4.6
TWO-DIMENSIONAL RATCHETS 414 3.4.7 DISCRETE RATCHETS 418 3.4.8
SAWTOOTH-LIKE MEDIA 425 3.4.9 MAKING SPATIAL STRUCTURES USING RATCHETS
428 3.4.10 SUMMARY 433 REFERENCES 434 INDEX 445 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)111580080 |
building | Verbundindex |
bvnumber | BV022933465 |
classification_rvk | CC 6300 |
classification_tum | MAT 344f MAT 606f |
ctrlnum | (OCoLC)180939807 (DE-599)DNB980660823 |
dewey-full | 530.15539 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.15539 |
dewey-search | 530.15539 |
dewey-sort | 3530.15539 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik Philosophie |
discipline_str_mv | Physik Mathematik Philosophie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022933465</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081215</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071022s2007 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980660823</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540381648</subfield><subfield code="c">Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.)</subfield><subfield code="9">978-3-540-38164-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540381643</subfield><subfield code="c">Pp. : EUR 85.55 (freier Pr.), sfr 135.50 (freier Pr.)</subfield><subfield code="9">3-540-38164-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180939807</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB980660823</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.15539</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CC 6300</subfield><subfield code="0">(DE-625)17655:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 344f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 606f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear dynamics of chaotic and stochastic systems</subfield><subfield code="b">tutorial and modern developments</subfield><subfield code="c">Vadim S. Anishchenko ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 446 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer series in synergetics</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chaotic behavior in systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonlinear theories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches System</subfield><subfield code="0">(DE-588)4057635-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Chaotisches System</subfield><subfield code="0">(DE-588)4316104-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastisches System</subfield><subfield code="0">(DE-588)4057635-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Dynamik</subfield><subfield code="0">(DE-588)4126141-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aniščenko, Vadim S.</subfield><subfield code="d">1943-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)111580080</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2839939&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016138255</subfield></datafield></record></collection> |
id | DE-604.BV022933465 |
illustrated | Illustrated |
index_date | 2024-07-02T18:55:20Z |
indexdate | 2024-07-20T09:25:35Z |
institution | BVB |
isbn | 9783540381648 3540381643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016138255 |
oclc_num | 180939807 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
owner_facet | DE-91G DE-BY-TUM DE-19 DE-BY-UBM |
physical | XVI, 446 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Springer series in synergetics Springer complexity |
spelling | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments Vadim S. Anishchenko ... 2. ed. Berlin [u.a.] Springer 2007 XVI, 446 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in synergetics Springer complexity Chaotic behavior in systems Dynamics Nonlinear theories Stochastic systems Stochastisches System (DE-588)4057635-8 gnd rswk-swf Nichtlineare Dynamik (DE-588)4126141-0 gnd rswk-swf Chaotisches System (DE-588)4316104-2 gnd rswk-swf Chaotisches System (DE-588)4316104-2 s Nichtlineare Dynamik (DE-588)4126141-0 s DE-604 Stochastisches System (DE-588)4057635-8 s Aniščenko, Vadim S. 1943- Sonstige (DE-588)111580080 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2839939&prov=M&dok_var=1&dok_ext=htm Inhaltstext GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments Chaotic behavior in systems Dynamics Nonlinear theories Stochastic systems Stochastisches System (DE-588)4057635-8 gnd Nichtlineare Dynamik (DE-588)4126141-0 gnd Chaotisches System (DE-588)4316104-2 gnd |
subject_GND | (DE-588)4057635-8 (DE-588)4126141-0 (DE-588)4316104-2 |
title | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments |
title_auth | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments |
title_exact_search | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments |
title_exact_search_txtP | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments |
title_full | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments Vadim S. Anishchenko ... |
title_fullStr | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments Vadim S. Anishchenko ... |
title_full_unstemmed | Nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments Vadim S. Anishchenko ... |
title_short | Nonlinear dynamics of chaotic and stochastic systems |
title_sort | nonlinear dynamics of chaotic and stochastic systems tutorial and modern developments |
title_sub | tutorial and modern developments |
topic | Chaotic behavior in systems Dynamics Nonlinear theories Stochastic systems Stochastisches System (DE-588)4057635-8 gnd Nichtlineare Dynamik (DE-588)4126141-0 gnd Chaotisches System (DE-588)4316104-2 gnd |
topic_facet | Chaotic behavior in systems Dynamics Nonlinear theories Stochastic systems Stochastisches System Nichtlineare Dynamik Chaotisches System |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2839939&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016138255&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT aniscenkovadims nonlineardynamicsofchaoticandstochasticsystemstutorialandmoderndevelopments |