The geometry and topology of Coxeter groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, N. J. [u.a.]
Princeton Univ. Press
2008
|
Schriftenreihe: | London Mathematical Society monographs series
32 |
Schlagworte: | |
Online-Zugang: | Publisher description Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XIV, 584 S. graph. Darst. |
ISBN: | 0691131384 9780691131382 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022931345 | ||
003 | DE-604 | ||
005 | 20080603 | ||
007 | t | ||
008 | 071022s2008 xxud||| |||| 00||| eng d | ||
010 | |a 2006052879 | ||
020 | |a 0691131384 |9 0-691-13138-4 | ||
020 | |a 9780691131382 |9 978-0-691-13138-2 | ||
035 | |a (OCoLC)77485786 | ||
035 | |a (DE-599)BVBBV022931345 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-384 |a DE-20 |a DE-19 |a DE-355 |a DE-188 |a DE-11 |a DE-83 | ||
050 | 0 | |a QA183 | |
082 | 0 | |a 512/.2 |2 22 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a 20F55 |2 msc | ||
100 | 1 | |a Davis, Michael |e Verfasser |4 aut | |
245 | 1 | 0 | |a The geometry and topology of Coxeter groups |c Michael W. Davis |
264 | 1 | |a Princeton, N. J. [u.a.] |b Princeton Univ. Press |c 2008 | |
300 | |a XIV, 584 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London Mathematical Society monographs series |v 32 | |
500 | |a Includes bibliographical references and index | ||
650 | 4 | |a Coxeter groups | |
650 | 4 | |a Geometric group theory | |
650 | 0 | 7 | |a Algebraische Topologie |0 (DE-588)4120861-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geometrie |0 (DE-588)4020236-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |D s |
689 | 0 | 1 | |a Geometrie |0 (DE-588)4020236-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Coxeter-Gruppe |0 (DE-588)4261522-7 |D s |
689 | 1 | 1 | |a Algebraische Topologie |0 (DE-588)4120861-4 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a London Mathematical Society monographs series |v 32 |w (DE-604)BV045355493 |9 32 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0726/2006052879-d.html |3 Publisher description | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016136158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016136158 |
Datensatz im Suchindex
_version_ | 1804137163037605888 |
---|---|
adam_text | Contents
Preface
xiü
Chapter
1
INTRODUCTION AND PREVIEW
1
1. ]
Introduction
1
1.2
A Preview of the Right-Angled Case
9
Chapter
2
SOME BASIC NOTIONS IN GEOMETRIC GROUP
THEORY
15
2.1
Cayley Graphs and Word Metrics
1 5
2.2
Cayley 2-Complexes
18
2.3
Background on Aspherical Spaces
21
Chapter
3
COXETER GROUPS
26
3.1
Dihedral Groups
26
3.2
Reflection Systems
30
3.3
Coxeter Systems
37
3.4
The Word Problem
40
3.5
Coxeter Diagrams
42
Chapter
4
MORE COMBINATORIAL THEORY OF COXETER
GROUPS
44
4.1
Special Subgroups in Coxeter Groups
44
4.2
Reflections
46
4.3
The Shortest Element in a Special Coset
47
4.4
Another Characterization of Coxeter Groups
48
4.5
Convex Subsets of
W
49
4.6
The Element of Longest Length
51
4.7
The Letters with Which a Reduced Expression Can End
53
4.8
A Lemma of Tits
55
4.9
Subgroups Generated by Reflections
57
4.
1
0
Normalizers of Special Subgroups
59
VIH
CONTENTS
Chapter
5
THE BASIC CONSTRUCTION
63
5.Ì
The Space If
63
5.2
The Case of a Pre-Coxeter System
66
5.3
Sectors in
U
68
Chapter
б
GEOMETRIC REFLECTION GROUPS
72
6.1
Linear Reflections
73
6.2
Spaces of Constant Curvature
73
6.3
Polytopes with Nonobtuse Dihedral Angles
78
6.4
The Developing Map
81
6.5
Polygon Groups
85
6.6
Finite Linear Groups Generated by Reflections
87
6.7
Examples of Finite Reflection Groups
92
6.8
Geometric SimpHces: The Gram Matrix and the Cosine Matrix
96
6.9
Simplicia!
Coxeter Groups: banner s Theorem
102
6.10
Three-dimensional Hyperbolic Reflection Groups: Andreev s
Theorem
103
6.11
Higher-dimensional Hyperbolic Reflection Groups:
Vinberg
s
Theorem
110
6.12
The Canonical Representation
115
Chapter
7
THE COMPLEX
Σ
123
7.1
The Nerve of a Coxeter System
12 3
7.2
Geometric Realizations
126
7.3
A Cell Structure on
Σ
128
7.4
Examples
132
7.5
Fixed Posets and Fixed Subspaces
1 33
Chapter
8
THE ALGEBRAIC TOPOLOGY OF
U
AND OF
Σ
136
8.1
TheHomoJogyofW
137
8.2
Acyclicity Conditions
140
8.3
Cohomology with Compact Supports
146
8.4
The Case Where X Is a General Space
150
8.5
Cohomology with Group Ring Coefficients
152
8.6
Background on the Ends of a Group
1 57
8.7
The Ends of
W
159
8.8
Splittings of Coxeter Groups
160
8.9
Cohomology of Normalizers of Spherical Special Subgroups
1 63
Chapter
9
THE FUNDAMENTAL GROUP AND THE FUNDAMENTAL
GROUP AT INFINITY
166
9.
1 The Fundamental Group of
U
166
9.2
What Is
Σ
Simply Connected at Infinity?
1 70
CONTENTS
¡χ
Chapter
1
0
ACTIONS ON MANIFOLDS
176
10.1
Reflection Groups on Manifolds
177
J
0.2
The Tangent Bundle
183
10.3
Background on Contractible Manifolds
185
10.4
Background on Homology Manifolds
191
10.5
Aspherical Manifolds Not Covered by Euclidean Space
195
10.6
When Is
Σ
a Manifold?
197
10.7
Reflection Groups on Homology Manifolds
197
10.8
Generalized Homology Spheres and Polytopes
201
10.9
Virtual
Poincaré
Duality Groups
205
Chapter
11
THE REFLECTION GROUP TRICK
212
1 ]. 1
The First Version of the Trick
212
11.2
Examples of Fundamental Groups of Closed Aspherical
Manifolds
215
11.3
Nonsmoothable Aspherical Manifolds
21
б
11.4
The
Borei
Conjecture and the PD -Group Conjecture
21 7
11.5
The Second Version of the Trick
220
11.6
The Bestvina-Brady Examples
222
11.7
The Equivariant Reflection Group Trick
225
Chapter
1 2
Σ
IS CAliO): THEOREMS OF GROMOV AND
MOUSSONG
230
12.1
A Piecewise Euclidean Cell Structure on
Σ
231
12.2
The Right-Angled Case
233
12.3
The General Case
234
12.4
The Visual Boundary of
Σ
237
12.5
Background on Word Hyperbolic Groups
238
12.6
When Is
Σ
CATC-
1)? 241
12.7
Free Abelian Subgroups of Coxeter Groups
245
12.8
Relative Hyperbolization
247
Chapter
13
RIGIDITY
255
13.1
Definitions, Examples, Counterexamples
255
13.2
Spherical Parabolic Subgroups and Their Fixed Subspaces
260
13.3
Coxeter Groups of Type PM
263
13.4
Strong Rigidity for Groups of Type PM
268
Chapter
14
FREE QUOTIENTS AND SURFACE SUBGROUPS
276
14.1
Largeness
276
14.2
Surface Subgroups
282
X
CONTENTS
Chapter
1 5
ANOTHER LOOK AT (CO)HOMOLOGY
286
1
5.1
Cohomology with Constant Coefficients
286
15.2
Decompositions of Coefficient Systems
288
15.3
The W-Module Structure on (Cojhomology
295
15.4
The Case Where
W
Is finite
303
Chapter
1 6
THE
EULER
CHARACTERISTIC
306
16.1
Background on
Euler
Characteristics
306
16.2
The
Euler
Characteristic Conjecture
310
16.3
The Flag Complex Conjecture
313
Chapter
17
GROWTH SERIES
315
1
7.1
Rationality of the Growth Series
31 5
17.2
Exponential versus Polynomial Growth
322
17.3
Reciprocity
324
17.4
Relationship with the
/г
-Polynomial
325
Chapter
18
BUILDINGS
328
18.1
The Combinatorial Theory of Buildings
328
18.2
The Geometric Realization of a Building
336
18.3
Buildings Are
CAT(O)
338
18.4
Euler-Poincaré
Measure
341
Chapter
19
HECKE-VON NEUMANN ALGEBRAS
344
19.1 Hecke
Algebras
344
19.2 Hecke-Von
Neumann Algebras
349
Chapter
20
WEIGHTED ^-(COJHOMOLOGY
359
20.1
Weighted ¿2-(Co)homology
361
20.2
Weighted
/ЛВеМ
Numbers and
Euler
Characteristics
366
20.3
Concentration of (Co)homology in Dimension
0 368
20.4
Weighted
Poincaré
Duality
370
20.5
A Weighted Version of the Singer Conjecture
374
20.6
Decomposition Theorems
376
20.7
Decoupling Cohomology
389
20.8
^-Cohomology of Buildings
394
Appendix A CELL COMPLEXES
401
A.I Cells and Cell Complexes
401
A.2 Posets and Abstract Simplicial Complexes
406
A.3 Flag Complexes and Barycentric Subdivisions
409
A.4 Joins
412
CONTENTS
χ/
Α.
5
Faces and Cofaces
415
A.
6
Links
418
Appendix
В
REGULAR POLYTOPES
421
B.I Chambers in the Barycentric Subdivision of a Polytope
421
B.2 Classification of Regular Polytopes
424
B.3 Regular Tessellations of Spheres
426
B.4 Regular Tessellations
428
Appendix
С
THE CLASSIFICATION OF SPHERICAL AND
EUCLIDEAN COXETER GROUPS
433
C.I Statements of the Classification Theorems
433
C.2 Calculating Some Determinants
434
C.3 Proofs of the Classification Theorems
436
Appendix
D
THE GEOMETRIC REPRESENTATION
439
D.
1
Injectivity of the Geometric Representation
439
D.2 The Tits Cone
442
D.3 Complement on Root Systems
446
Appendix
E
COMPLEXES OF GROUPS
449
E.
1
Background on Graphs of Groups
450
E.2 Complexes of Groups
454
E.3 The Meyer-Vietoris Spectral Sequence
459
Appendix
F
HOMOLOGY AND COHOMOLOGY OF GROUPS
465
F.
1
Some Basic Definitions
465
F.2 Equivalent (Co)homology with Group Ring Coefficients
467
F.3 Cohomological Dimension and Geometric Dimension
470
F.4 Finiteness Conditions
471
F.5
Poincaré
Duality Groups and Duality Groups
474
Appendix
G
ALGEBRAIC TOPOLOGY AT INFINITY
477
G.I Some Algebra
477
G.2 Homology and Cohomology at Infinity
479
G.3 Ends of a Space
482
G.4 Semistability and the Fundamental Group at Infinity
483
Appendix
H
THE NOVIKOV AND BOREL CONJECTURES
487
H.I Around the
Borei
Conjecture
487
H.2 Smoothing Theory
491
H.3 The Surgery Exact Sequence and the Assembly Map Conjecture
493
H.4 The Novikov Conjecture
496
XÜ CONTENTS
Appendix I
NONPOSITIVE
CURVATURE
499
1.
1
Geodesic Metric Spaces
499
1.2
The CAT(«-)-lnequality
499
1.3
Polyhedra of Piecewise Constant Curvature
507
1.4
Properties of
САДО)
Groups
511
1.5
Piecewise Spherical Polyhedra
513
1.6
Gromov s Lemma
516
1.7
Moussong s Lemma
520
1.8
The Visual Boundary of a CAT(O)-Space
524
Appendix
J ^-(COjHOMOLOGY
531
J.I Background on
von
Neumann Algebras
531
J.2 The Regular Representation
531
J.3 L2-(Co)homology
538
J.4 Basic L2 Algebraic Topology
541
J.5 L2-Betti Numbers and
Euler
Characteristics
544
J.6
Poincaré
Duality
546
J.7 The Singer Conjecture
547
J.8 Vanishing Theorems
548
Bibliography
555
Index
573
|
adam_txt |
Contents
Preface
xiü
Chapter
1
INTRODUCTION AND PREVIEW
1
1. ]
Introduction
1
1.2
A Preview of the Right-Angled Case
9
Chapter
2
SOME BASIC NOTIONS IN GEOMETRIC GROUP
THEORY
15
2.1
Cayley Graphs and Word Metrics
1 5
2.2
Cayley 2-Complexes
18
2.3
Background on Aspherical Spaces
21
Chapter
3
COXETER GROUPS
26
3.1
Dihedral Groups
26
3.2
Reflection Systems
30
3.3
Coxeter Systems
37
3.4
The Word Problem
40
3.5
Coxeter Diagrams
42
Chapter
4
MORE COMBINATORIAL THEORY OF COXETER
GROUPS
44
4.1
Special Subgroups in Coxeter Groups
44
4.2
Reflections
46
4.3
The Shortest Element in a Special Coset
47
4.4
Another Characterization of Coxeter Groups
48
4.5
Convex Subsets of
W
49
4.6
The Element of Longest Length
51
4.7
The Letters with Which a Reduced Expression Can End
53
4.8
A Lemma of Tits
55
4.9
Subgroups Generated by Reflections
57
4.
1
0
Normalizers of Special Subgroups
59
VIH
CONTENTS
Chapter
5
THE BASIC CONSTRUCTION
63
5.Ì
The Space If
63
5.2
The Case of a Pre-Coxeter System
66
5.3
Sectors in
U
68
Chapter
б
GEOMETRIC REFLECTION GROUPS
72
6.1
Linear Reflections
73
6.2
Spaces of Constant Curvature
73
6.3
Polytopes with Nonobtuse Dihedral Angles
78
6.4
The Developing Map
81
6.5
Polygon Groups
85
6.6
Finite Linear Groups Generated by Reflections
87
6.7
Examples of Finite Reflection Groups
92
6.8
Geometric SimpHces: The Gram Matrix and the Cosine Matrix
96
6.9
Simplicia!
Coxeter Groups: banner's Theorem
102
6.10
Three-dimensional Hyperbolic Reflection Groups: Andreev's
Theorem
103
6.11
Higher-dimensional Hyperbolic Reflection Groups:
Vinberg
's
Theorem
110
6.12
The Canonical Representation
115
Chapter
7
THE COMPLEX
Σ
123
7.1
The Nerve of a Coxeter System
12 3
7.2
Geometric Realizations
126
7.3
A Cell Structure on
Σ
128
7.4
Examples
132
7.5
Fixed Posets and Fixed Subspaces
1 33
Chapter
8
THE ALGEBRAIC TOPOLOGY OF
U
AND OF
Σ
136
8.1
TheHomoJogyofW
137
8.2
Acyclicity Conditions
140
8.3
Cohomology with Compact Supports
146
8.4
The Case Where X Is a General Space
150
8.5
Cohomology with Group Ring Coefficients
152
8.6
Background on the Ends of a Group
1 57
8.7
The Ends of
W
159
8.8
Splittings of Coxeter Groups
160
8.9
Cohomology of Normalizers of Spherical Special Subgroups
1 63
Chapter
9
THE FUNDAMENTAL GROUP AND THE FUNDAMENTAL
GROUP AT INFINITY
166
9.
1 The Fundamental Group of
U
166
9.2'
What Is
Σ
Simply Connected at Infinity?
1 70
CONTENTS
¡χ
Chapter
1
0
ACTIONS ON MANIFOLDS
176
10.1
Reflection Groups on Manifolds
177
J
0.2
The Tangent Bundle
183
10.3
Background on Contractible Manifolds
185
10.4
Background on Homology Manifolds
191
10.5
Aspherical Manifolds Not Covered by Euclidean Space
195
10.6
When Is
Σ
a Manifold?
197
10.7
Reflection Groups on Homology Manifolds
197
10.8
Generalized Homology Spheres and Polytopes
201
10.9
Virtual
Poincaré
Duality Groups
205
Chapter
11
THE REFLECTION GROUP TRICK
212
1 ]. 1
The First Version of the Trick
212
11.2
Examples of Fundamental Groups of Closed Aspherical
Manifolds
215
11.3
Nonsmoothable Aspherical Manifolds
21
б
11.4
The
Borei
Conjecture and the PD"-Group Conjecture
21 7
11.5
The Second Version of the Trick
220
11.6
The Bestvina-Brady Examples
222
11.7
The Equivariant Reflection Group Trick
225
Chapter
1 2
Σ
IS CAliO): THEOREMS OF GROMOV AND
MOUSSONG
230
12.1
A Piecewise Euclidean Cell Structure on
Σ
231
12.2
The Right-Angled Case
233
12.3
The General Case
234
12.4
The Visual Boundary of
Σ
237
12.5
Background on Word Hyperbolic Groups
238
12.6
When Is
Σ
CATC-
1)? 241
12.7
Free Abelian Subgroups of Coxeter Groups
245
12.8
Relative Hyperbolization
247
Chapter
13
RIGIDITY
255
13.1
Definitions, Examples, Counterexamples
255
13.2
Spherical Parabolic Subgroups and Their Fixed Subspaces
260
13.3
Coxeter Groups of Type PM
263
13.4
Strong Rigidity for Groups of Type PM
268
Chapter
14
FREE QUOTIENTS AND SURFACE SUBGROUPS
276
14.1
Largeness
276
14.2
Surface Subgroups
282
X
CONTENTS
Chapter
1 5
ANOTHER LOOK AT (CO)HOMOLOGY
286
1
5.1
Cohomology with Constant Coefficients
286
15.2
Decompositions of Coefficient Systems
288
15.3
The W-Module Structure on (Cojhomology
295
15.4
The Case Where
W
Is finite
303
Chapter
1 6
THE
EULER
CHARACTERISTIC
306
16.1
Background on
Euler
Characteristics
306
16.2
The
Euler
Characteristic Conjecture
310
16.3
The Flag Complex Conjecture
313
Chapter
17
GROWTH SERIES
315
1
7.1
Rationality of the Growth Series
31 5
17.2'
Exponential versus Polynomial Growth
322
17.3
Reciprocity
324
17.4
Relationship with the
/г
-Polynomial
325
Chapter
18
BUILDINGS
328
18.1
The Combinatorial Theory of Buildings
328
18.2
The Geometric Realization of a Building
336
18.3
Buildings Are
CAT(O)
338
18.4
Euler-Poincaré
Measure
341
Chapter
19
HECKE-VON NEUMANN ALGEBRAS
344
19.1 Hecke
Algebras
344
19.2 Hecke-Von
Neumann Algebras
349
Chapter
20
WEIGHTED ^-(COJHOMOLOGY
359
20.1
Weighted ¿2-(Co)homology
361
20.2
Weighted
/ЛВеМ
Numbers and
Euler
Characteristics
366
20.3
Concentration of (Co)homology in Dimension
0 368
20.4
Weighted
Poincaré
Duality
370
20.5
A Weighted Version of the Singer Conjecture
374
20.6
Decomposition Theorems
376
20.7
Decoupling Cohomology
389
20.8'
^-Cohomology of Buildings
394
Appendix A CELL COMPLEXES
401
A.I Cells and Cell Complexes
401
A.2 Posets and Abstract Simplicial Complexes
406
A.3 Flag Complexes and Barycentric Subdivisions
409
A.4 Joins
412
CONTENTS
χ/
Α.
5
Faces and Cofaces
415
A.
6
Links
418
Appendix
В
REGULAR POLYTOPES
421
B.I Chambers in the Barycentric Subdivision of a Polytope
421
B.2 Classification of Regular Polytopes
424
B.3 Regular Tessellations of Spheres
426
B.4 Regular Tessellations
428
Appendix
С
THE CLASSIFICATION OF SPHERICAL AND
EUCLIDEAN COXETER GROUPS
433
C.I Statements of the Classification Theorems
433
C.2 Calculating Some Determinants
434
C.3 Proofs of the Classification Theorems
436
Appendix
D
THE GEOMETRIC REPRESENTATION
439
D.
1
Injectivity of the Geometric Representation
439
D.2 The Tits Cone
442
D.3 Complement on Root Systems
446
Appendix
E
COMPLEXES OF GROUPS
449
E.
1
Background on Graphs of Groups
450
E.2 Complexes of Groups
454
E.3 The Meyer-Vietoris Spectral Sequence
459
Appendix
F
HOMOLOGY AND COHOMOLOGY OF GROUPS
465
F.
1
Some Basic Definitions
465
F.2 Equivalent (Co)homology with Group Ring Coefficients
467
F.3 Cohomological Dimension and Geometric Dimension
470
F.4 Finiteness Conditions
471
F.5
Poincaré
Duality Groups and Duality Groups
474
Appendix
G
ALGEBRAIC TOPOLOGY AT INFINITY
477
G.I Some Algebra
477
G.2 Homology and Cohomology at Infinity
479
G.3 Ends of a Space
482
G.4 Semistability and the Fundamental Group at Infinity
483
Appendix
H
THE NOVIKOV AND BOREL CONJECTURES
487
H.I Around the
Borei
Conjecture
487
H.2 Smoothing Theory
491
H.3 The Surgery Exact Sequence and the Assembly Map Conjecture
493
H.4 The Novikov Conjecture
496
XÜ CONTENTS
Appendix I
NONPOSITIVE
CURVATURE
499
1.
1
Geodesic Metric Spaces
499
1.2
The CAT(«-)-lnequality
499
1.3
Polyhedra of Piecewise Constant Curvature
507
1.4
Properties of
САДО)
Groups
511
1.5
Piecewise Spherical Polyhedra
513
1.6
Gromov's Lemma
516
1.7
Moussong's Lemma
520
1.8
The Visual Boundary of a CAT(O)-Space
524
Appendix
J ^-(COjHOMOLOGY
531
J.I Background on
von
Neumann Algebras
531
J.2 The Regular Representation
531
J.3 L2-(Co)homology
538
J.4 Basic L2 Algebraic Topology
541
J.5 L2-Betti Numbers and
Euler
Characteristics
544
J.6
Poincaré
Duality
546
J.7 The Singer Conjecture
547
J.8 Vanishing Theorems
548
Bibliography
555
Index
573 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Davis, Michael |
author_facet | Davis, Michael |
author_role | aut |
author_sort | Davis, Michael |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV022931345 |
callnumber-first | Q - Science |
callnumber-label | QA183 |
callnumber-raw | QA183 |
callnumber-search | QA183 |
callnumber-sort | QA 3183 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 260 |
ctrlnum | (OCoLC)77485786 (DE-599)BVBBV022931345 |
dewey-full | 512/.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.2 |
dewey-search | 512/.2 |
dewey-sort | 3512 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02118nam a2200529zcb4500</leader><controlfield tag="001">BV022931345</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080603 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071022s2008 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006052879</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691131384</subfield><subfield code="9">0-691-13138-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691131382</subfield><subfield code="9">978-0-691-13138-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77485786</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022931345</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA183</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20F55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Davis, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The geometry and topology of Coxeter groups</subfield><subfield code="c">Michael W. Davis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N. J. [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 584 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London Mathematical Society monographs series</subfield><subfield code="v">32</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coxeter groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometric group theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrie</subfield><subfield code="0">(DE-588)4020236-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Coxeter-Gruppe</subfield><subfield code="0">(DE-588)4261522-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraische Topologie</subfield><subfield code="0">(DE-588)4120861-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London Mathematical Society monographs series</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV045355493</subfield><subfield code="9">32</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0726/2006052879-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016136158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016136158</subfield></datafield></record></collection> |
id | DE-604.BV022931345 |
illustrated | Illustrated |
index_date | 2024-07-02T18:54:33Z |
indexdate | 2024-07-09T21:07:55Z |
institution | BVB |
isbn | 0691131384 9780691131382 |
language | English |
lccn | 2006052879 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016136158 |
oclc_num | 77485786 |
open_access_boolean | |
owner | DE-703 DE-384 DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-11 DE-83 |
owner_facet | DE-703 DE-384 DE-20 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-11 DE-83 |
physical | XIV, 584 S. graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Princeton Univ. Press |
record_format | marc |
series | London Mathematical Society monographs series |
series2 | London Mathematical Society monographs series |
spelling | Davis, Michael Verfasser aut The geometry and topology of Coxeter groups Michael W. Davis Princeton, N. J. [u.a.] Princeton Univ. Press 2008 XIV, 584 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier London Mathematical Society monographs series 32 Includes bibliographical references and index Coxeter groups Geometric group theory Algebraische Topologie (DE-588)4120861-4 gnd rswk-swf Geometrie (DE-588)4020236-7 gnd rswk-swf Coxeter-Gruppe (DE-588)4261522-7 gnd rswk-swf Coxeter-Gruppe (DE-588)4261522-7 s Geometrie (DE-588)4020236-7 s DE-604 Algebraische Topologie (DE-588)4120861-4 s London Mathematical Society monographs series 32 (DE-604)BV045355493 32 http://www.loc.gov/catdir/enhancements/fy0726/2006052879-d.html Publisher description Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016136158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Davis, Michael The geometry and topology of Coxeter groups London Mathematical Society monographs series Coxeter groups Geometric group theory Algebraische Topologie (DE-588)4120861-4 gnd Geometrie (DE-588)4020236-7 gnd Coxeter-Gruppe (DE-588)4261522-7 gnd |
subject_GND | (DE-588)4120861-4 (DE-588)4020236-7 (DE-588)4261522-7 |
title | The geometry and topology of Coxeter groups |
title_auth | The geometry and topology of Coxeter groups |
title_exact_search | The geometry and topology of Coxeter groups |
title_exact_search_txtP | The geometry and topology of Coxeter groups |
title_full | The geometry and topology of Coxeter groups Michael W. Davis |
title_fullStr | The geometry and topology of Coxeter groups Michael W. Davis |
title_full_unstemmed | The geometry and topology of Coxeter groups Michael W. Davis |
title_short | The geometry and topology of Coxeter groups |
title_sort | the geometry and topology of coxeter groups |
topic | Coxeter groups Geometric group theory Algebraische Topologie (DE-588)4120861-4 gnd Geometrie (DE-588)4020236-7 gnd Coxeter-Gruppe (DE-588)4261522-7 gnd |
topic_facet | Coxeter groups Geometric group theory Algebraische Topologie Geometrie Coxeter-Gruppe |
url | http://www.loc.gov/catdir/enhancements/fy0726/2006052879-d.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016136158&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV045355493 |
work_keys_str_mv | AT davismichael thegeometryandtopologyofcoxetergroups |