Theoretical microfluidics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2008
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Oxford master series in physics
18 : Condensed matter physics |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 346 S. Ill., graph. Darst. |
ISBN: | 9780199235087 9780199235094 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022892284 | ||
003 | DE-604 | ||
005 | 20080502 | ||
007 | t | ||
008 | 071019s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780199235087 |c hbk |9 978-0-19-923508-7 | ||
020 | |a 9780199235094 |9 978-0-19-923509-4 | ||
035 | |a (OCoLC)176807166 | ||
035 | |a (DE-599)BSZ266881424 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-91G |a DE-29T |a DE-11 |a DE-858 | ||
050 | 0 | |a TJ853 | |
082 | 0 | |a 629.8042 |2 22 | |
084 | |a UF 4500 |0 (DE-625)145585: |2 rvk | ||
084 | |a MAS 670f |2 stub | ||
100 | 1 | |a Bruus, Henrik |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theoretical microfluidics |c Henrik Bruus |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2008 | |
300 | |a XVI, 346 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Oxford master series in physics |v 18 : Condensed matter physics | |
650 | 4 | |a Biochips | |
650 | 4 | |a Fluidic devices | |
650 | 4 | |a Microfluidics | |
650 | 0 | 7 | |a Mikrofluidik |0 (DE-588)4803438-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mikrofluidik |0 (DE-588)4803438-1 |D s |
689 | 0 | |5 DE-604 | |
830 | 0 | |a Oxford master series in physics |v 18 : Condensed matter physics |w (DE-604)BV017064373 |9 18 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016097108&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016097108 |
Datensatz im Suchindex
_version_ | 1804137161295921152 |
---|---|
adam_text | THEORETICAL MICROFLUIDICS HENRIKBRUUS MIC - DEPARTMENT OF MICRO AND
NANOTECHNOLOGY TECHNICAL UNIVERSITY OF DENMARK OXPORD UNIVERSITY PRESS
CONTENTS LIST OF SYMBOLS 1 BASIC CONCEPTS IN MICROFIUIDICS 1.1 1.2 1.3
1.4 1.5 1.6 1.7 1.8 1.9 LAB-ON-A-CHIP TECHNOLOGY SCALING LAWS IN
MICROFLUIDICS FLUIDS AND FIELDS SI UNITS AND MATHEMATICAL NOTATION
PERTURBATION THEORY EIGENFUNCTION EXPANSION FURTHER READING EXERCISES
SOLUTIONS XM 1 1 2 3 7 11 13 15 15 17 GOVERNING EQUATIONS 19 2.1 MASS
FLUX, CONSERVATION OF MASS, AND THE CONTINUITY EQUATION 19 2.2
MOMENTUM FLUX, FORCE DENSITIES, AND THE EQUATION OF MOTION 21 2.3 ENERGY
FLUX AND THE HEAT-TRANSFER EQUATION 28 2.4 FURTHER READING 31 2.5
EXERCISES 32 2.6 SOLUTIONS 33 BASIC FLOW SOLUTIONS 37 3.1 FLUIDS IN
MECHANICAL EQUILIBRIUM 37 3.2 LIQUID FILM FLOW ON AN INCLINED PLANE 39
3.3 COUETTE FLOW * 4 0 3.4 POISEUILLE FLOW 41 3.5 POISEUILLE FLOW IN
SHAPE-PERTURBED CHANNELS 51 3.6 POISEUILLE FLOW FOR WEAKLY COMPRESSIBLE
FLUIDS 55 3.7 STOKES DRAG ON A SPHERE MOVING IN STEADY STATE 60 3.8
EXERCISES 63 3.9 SOLUTIONS 65 VIII CONTENTS 4 HYDRAULIC RESISTANCE AND
COMPLIANCE 71 4.1 VISCOUS DISSIPATION OF ENERGY FOR INCOMPRESSIBLE
FLUIDS 71 4.2 HYDRAULIC RESISTANCE OF SOME STRAIGHT CHANNELS 74 4.3
SHAPE DEPENDENCE OF HYDRAULIC RESISTANCE 75 4.4 REYNOLDS NUMBER FOR
SYSTEMS WITH TWO LENGTH SCALES 79 4.5 HYDRAULIC RESISTANCE, TWO
CONNECTED STRAIGHT CHANNELS 81 4.6 COMPLIANCE 83 4.7 EQUIVALENT CIRCUIT
THEORY AND KIRCHHOFF S LAWS 84 4.8 EXERCISES 86 4.9 SOLUTIONS 88 5
DIFFUSION 91 5.1 A RANDOM-WALK MODEL OF DIFFUSION 91 5.2 THE
CONVECTION-DIFFUSION EQUATION FOR SOLUTIONS 93 5.3 THE DIFFUSION
EQUATION 95 5.4 THE H-FILTER: SEPARATING SOLUTES BY DIFFUSION 98 5.5
TAYLOR DISPERSION; A CONVECTION-DIFFUSION EXAMPLE 100 5.6 EXERCISES 105
5.7 SOLUTIONS 106 6 TIME-DEPENDENT FLOW 109 6.1 STARTING A COUETTE FLOW
109 6.2 STOPPING A POISEUILLE FLOW BY VISCOUS FORCES 111 6.3 FLOW
INDUCED BY SLOWLY OSCILLATING BOUNDARIES 113 6.4 ACCELERATED MOTION OF A
SPHERICAL BODY IN A LIQUID 116 6.5 OTHER TIME-DEPENDENT FLOWS 117 6.6
EXERCISES 118 6.7 SOLUTIONS ^ 118 7 CAPILLARY EFFECTS 123 7.1 SURFACE
TENSION 123 7.2 CONTACT ANGLE 127 7.3 CAPILLARY LENGTH AND CAPILLARY
RISE 128 7.4 CAPILLARY PUMPS 131 7.5 MARANGONI EFFECT; SURFACE-TENSION
GRADIENTS 134 7.6 EXERCISES *. 134 7.7 SOLUTIONS 136 8
ELECTROHYDRODYNAMICS 141 8.1 POLARIZATION AND DIPOLE MOMENTS 141 8.2
ELECTROKINETIC EFFECTS 143 8.3 THE DEBYE LAYER NEAR CHARGED SURFACES 145
8.4 FURTHER READING 152 8.5 EXERCISES 152 8.6 SOLUTIONS 154 CONTENTS IX
9 ELECTROOSMOSIS 157 9.1 ELECTROHYDRODYNAMIC TRANSPORT THEORY 157 9.2
IDEAL ELECTRO-OSMOTIC FLOW 157 9.3 DEBYE-LAYER OVERLAP 161 9.4 IDEAL EO
FLOW WITH BACKPRESSURE 162 9.5 THE MANY-CHANNEL EO PUMP 165 9.6 THE
CASCADE EO PUMP 166 9.7 FURTHER READING 169 9.8 EXERCISES 169 9.9
SOLUTIONS 170 10 DIELECTROPHORESIS 173 10.1 INDUCED POLARIZATION AND
DIELECTRIC FORCES; HEURISTICALLY 173 10.2 A POINT DIPOLE IN A DIELECTRIC
FLUID 174 10.3 A DIELECTRIC SPHERE IN A DIELECTRIC FLUID; INDUCED DIPOLE
175 10.4 THE DIELECTROPHORETIC FORCE ON A DIELECTRIC SPHERE 177 10.5
DIELECTROPHORETIC PARTICLE TRAPPING IN MICROFLUIDICS 178 10.6 THE AC
DIELECTROPHORETIC FORCE ON A DIELECTRIC SPHERE 180 10.7 EXERCISES 182
10.8 SOLUTIONS 184 11 MAGNETOPHORESIS 187 11.1 MAGNETOPHORESIS AND
BIOANALYSIS 187 11.2 MAGNETOSTATICS . 188 11.3 BASIC EQUATIONS FOR
MAGNETOPHORESIS 190 11.4 CALCULATION OF MAGNETIC-BEAD MOTION 191 11.5
MAGNETOPHORETIC LAB-ON-A-CHIP SYSTEMS 193 11.6 FURTHER READING 194
11.7 EXERCISES 194 11.8 SOLUTIONS 195 12 THERMAL TRANSFER 197 12.1
THERMAL EFFECTS IN HYDROSTATICS 198 12.2 POISEUILLE FLOW IN A
TRANSVERSE TEMPERATURE GRADIENT 201 12.3 EQUIVALENT CIRCUIT MODEL FOR
HEAT TRANSFER 205 12.4 THE PCR BIOCHIP *, 208 12.5 EXERCISES 210 12.6
SOLUTIONS 211 13 TWO-PHASE FLOW 213 13.1 TWO-PHASE POISEUILLE FLOW 213
13.2 CAPILLARY AND GRAVITY WAVES 215 13.3 GAS BUBBLES IN MICROFLUIDIC
CHANNELS 220 13.4 DROPLETS IN MICROFLUIDIC JUNCTIONS AND DIGITAL
FLUIDICS 224 13.5 FURTHER READING 226 13.6 EXERCISES 226 13.7 SOLUTIONS
228 X CONTENTS 14 COMPLEX FLOW PATTERNS 231 14.1 PRESSURE-DRIVEN FLOW IN
SHAPE-PERTURBED MICROCHANNELS 231 14.2 STREAMLINES IN A SHAPE-PERTURBED
CHANNEL 235 14.3 LUBRICATION THEORY 237 14.4 THE STAGGERED HERRING-BONE
MIXER 238 14.5 INDUCED-CHARGE ELECTROLYTIC FLOW 240 14.6 EXERCISES 248
14.7 SOLUTIONS 249 15 ACOUSTOFLUIDICS 255 15.1 THE ACOUSTIC-WAVE
EQUATION FOR ZERO VISCOSITY 256 15.2 ACOUSTIC WAVES IN FIRST-ORDER
PERTURBATION THEORY 258 15.3 VISCOUS DAMPING OF FIRST-ORDER ACOUSTIC
WAVES 260 15.4 ACOUSTIC RESONANCES 262 15.5 ACOUSTIC WAVES IN MULTILAYER
SYSTEMS 264 15.6 SECOND-ORDER ACOUSTIC FIELDS 267 15.7 FURTHER READING
270 15.8 EXERCISES 271 15.9 SOLUTIONS 272 16 OPTOFLUIDICS 275 16.1 THE
OPTICAL WAVE EQUATION IN ELECTROLYTES 276 16.2 MOLECULAR ABSORPTION AND
BEER-LAMBERT S LAW 278 16.3 MOLECULAR FLUORESCENCE AND PHOSPHORESCENCE
281 16.4 ONCHIP WAVEGUIDES 282 16.5 ONCHIP LASER SOURCES 283 16.6
PHOTONIC BANDGAP STRUCTURES IN OPTOFLUIDICS 286 16.7 FURTHER READING
288 16.8 EXERCISES 288 16.9 SOLUTIONS 289 17 NANOFLUIDICS 291 17.1
INVESTIGATION OF THE NO-SLIP BOUNDARY CONDITION 291 17.2 CAPILLARY
FILLING OF NANOCHANNELS 294 17.3 SQUEEZE FLOW IN NANOIMPRINT LITHOGRAPHY
298 17.4 NANOFLUIDICS AND MOLECULAR DYNAMICS & 302 17.5 EXERCISES 304
17.6 SOLUTIONS 305 APPENDIX A PHYSICAL CONSTANTS 309 A.I WATER 309 A.2
VISCOSITY 309 A.3 DIFFUSIVITY 310 A.4 SURFACE TENSION AND CONTACT ANGLE
310 CONTENTS XI APPENDIX B DIMENSIONLESS NUMBERS 311 APPENDIX C
CURVILINEAR CO-ORDINATES 313 C.I CARTESIAN CO-ORDINATES 313 C.2
CYLINDRICAL POLAR CO-ORDINATES 314 C.3 SPHERICAL POLAR CO-ORDINATES 316
APPENDIX D THE CHEMICAL POTENTIAL 319 D.I THE PARTITION FUNCTION AND THE
FREE ENERGY 319 D.2 THE CHEMICAL POTENTIAL OF A SOLUTION 320 APPENDIX E
THE WAVE EQUATION 321 APPENDIX F NUMERICAL SIMULATIONS 325 F.I THE
FINITE-ELEMENT METHOD (FEM) 325 F.2 THE LEVEL SET METHOD AND MOTION OF
INTERFACES 329 BIBLIOGRAPHY 333 INDEX 339
|
adam_txt |
THEORETICAL MICROFLUIDICS HENRIKBRUUS MIC - DEPARTMENT OF MICRO AND
NANOTECHNOLOGY TECHNICAL UNIVERSITY OF DENMARK OXPORD UNIVERSITY PRESS
CONTENTS LIST OF SYMBOLS 1 BASIC CONCEPTS IN MICROFIUIDICS 1.1 1.2 1.3
1.4 1.5 1.6 1.7 1.8 1.9 LAB-ON-A-CHIP TECHNOLOGY SCALING LAWS IN
MICROFLUIDICS FLUIDS AND FIELDS SI UNITS AND MATHEMATICAL NOTATION
PERTURBATION THEORY EIGENFUNCTION EXPANSION FURTHER READING EXERCISES
SOLUTIONS XM 1 1 2 3 7 11 13 15 15 17 GOVERNING EQUATIONS 19 2.1 MASS
FLUX, CONSERVATION OF MASS, AND THE CONTINUITY EQUATION ' 19 2.2
MOMENTUM FLUX, FORCE DENSITIES, AND THE EQUATION OF MOTION 21 2.3 ENERGY
FLUX AND THE HEAT-TRANSFER EQUATION 28 2.4 FURTHER READING 31 2.5
EXERCISES 32 2.6 SOLUTIONS 33 BASIC FLOW SOLUTIONS ' 37 3.1 FLUIDS IN
MECHANICAL EQUILIBRIUM 37 3.2 LIQUID FILM FLOW ON AN INCLINED PLANE 39
3.3 COUETTE FLOW * 4 0 3.4 POISEUILLE FLOW 41 3.5 POISEUILLE FLOW IN
SHAPE-PERTURBED CHANNELS 51 3.6 POISEUILLE FLOW FOR WEAKLY COMPRESSIBLE
FLUIDS 55 3.7 STOKES DRAG ON A SPHERE MOVING IN STEADY STATE 60 3.8
EXERCISES 63 3.9 SOLUTIONS 65 VIII CONTENTS 4 HYDRAULIC RESISTANCE AND
COMPLIANCE 71 4.1 VISCOUS DISSIPATION OF ENERGY FOR INCOMPRESSIBLE
FLUIDS 71 4.2 HYDRAULIC RESISTANCE OF SOME STRAIGHT CHANNELS 74 4.3
SHAPE DEPENDENCE OF HYDRAULIC RESISTANCE 75 4.4 REYNOLDS NUMBER FOR
SYSTEMS WITH TWO LENGTH SCALES 79 4.5 HYDRAULIC RESISTANCE, TWO
CONNECTED STRAIGHT CHANNELS 81 4.6 COMPLIANCE 83 4.7 EQUIVALENT CIRCUIT
THEORY AND KIRCHHOFF'S LAWS 84 4.8 EXERCISES 86 4.9 SOLUTIONS 88 5
DIFFUSION 91 5.1 A RANDOM-WALK MODEL OF DIFFUSION 91 5.2 THE
CONVECTION-DIFFUSION EQUATION FOR SOLUTIONS 93 5.3 THE DIFFUSION
EQUATION 95 5.4 THE H-FILTER: SEPARATING SOLUTES BY DIFFUSION 98 5.5
TAYLOR DISPERSION; A CONVECTION-DIFFUSION EXAMPLE 100 5.6 EXERCISES 105
5.7 SOLUTIONS 106 6 TIME-DEPENDENT FLOW 109 6.1 STARTING A COUETTE FLOW
109 6.2 STOPPING A POISEUILLE FLOW BY VISCOUS FORCES 111 6.3 FLOW
INDUCED BY SLOWLY OSCILLATING BOUNDARIES 113 6.4 ACCELERATED MOTION OF A
SPHERICAL BODY IN A LIQUID 116 6.5 OTHER TIME-DEPENDENT FLOWS 117 6.6
EXERCISES 118 6.7 SOLUTIONS ' ^ 118 7 CAPILLARY EFFECTS 123 7.1 SURFACE
TENSION 123 7.2 CONTACT ANGLE 127 7.3 CAPILLARY LENGTH AND CAPILLARY
RISE ' 128 7.4 CAPILLARY PUMPS 131 7.5 MARANGONI EFFECT; SURFACE-TENSION
GRADIENTS 134 7.6 EXERCISES *. 134 7.7 SOLUTIONS 136 8
ELECTROHYDRODYNAMICS 141 8.1 POLARIZATION AND DIPOLE MOMENTS 141 8.2
ELECTROKINETIC EFFECTS 143 8.3 THE DEBYE LAYER NEAR CHARGED SURFACES 145
8.4 FURTHER READING 152 8.5 EXERCISES' 152 8.6 SOLUTIONS 154 CONTENTS IX
9 ELECTROOSMOSIS 157 9.1 ELECTROHYDRODYNAMIC TRANSPORT THEORY 157 9.2
IDEAL ELECTRO-OSMOTIC FLOW 157 9.3 DEBYE-LAYER OVERLAP 161 9.4 IDEAL EO
FLOW WITH BACKPRESSURE 162 9.5 THE MANY-CHANNEL EO PUMP 165 9.6 THE
CASCADE EO PUMP 166 9.7 FURTHER READING 169 9.8 EXERCISES 169 9.9
SOLUTIONS 170 10 DIELECTROPHORESIS 173 10.1 INDUCED POLARIZATION AND
DIELECTRIC FORCES; HEURISTICALLY 173 10.2 A POINT DIPOLE IN A DIELECTRIC
FLUID 174 10.3 A DIELECTRIC SPHERE IN A DIELECTRIC FLUID; INDUCED DIPOLE
175 10.4 THE DIELECTROPHORETIC FORCE ON A DIELECTRIC SPHERE 177 10.5
DIELECTROPHORETIC PARTICLE TRAPPING IN MICROFLUIDICS 178 10.6 THE AC
DIELECTROPHORETIC FORCE ON A DIELECTRIC SPHERE 180 10.7 EXERCISES 182
10.8 SOLUTIONS 184 11 MAGNETOPHORESIS 187 11.1 MAGNETOPHORESIS AND
BIOANALYSIS 187 11.2 MAGNETOSTATICS . 188 11.3 BASIC EQUATIONS FOR
MAGNETOPHORESIS 190 11.4 CALCULATION OF MAGNETIC-BEAD MOTION 191 11.5
MAGNETOPHORETIC LAB-ON-A-CHIP SYSTEMS 193 11.6 FURTHER READING '" 194
11.7 EXERCISES 194 11.8 SOLUTIONS 195 12 THERMAL TRANSFER 197 12.1
THERMAL EFFECTS IN HYDROSTATICS ' 198 12.2 POISEUILLE FLOW IN A
TRANSVERSE TEMPERATURE GRADIENT 201 12.3 EQUIVALENT CIRCUIT MODEL FOR
HEAT TRANSFER 205 12.4 THE PCR BIOCHIP *, 208 12.5 EXERCISES 210 12.6
SOLUTIONS 211 13 TWO-PHASE FLOW 213 13.1 TWO-PHASE POISEUILLE FLOW 213
13.2 CAPILLARY AND GRAVITY WAVES 215 13.3 GAS BUBBLES IN MICROFLUIDIC
CHANNELS 220 13.4 DROPLETS IN MICROFLUIDIC JUNCTIONS AND DIGITAL
FLUIDICS 224 13.5 FURTHER READING 226 13.6 EXERCISES 226 13.7 SOLUTIONS
228 X CONTENTS 14 COMPLEX FLOW PATTERNS 231 14.1 PRESSURE-DRIVEN FLOW IN
SHAPE-PERTURBED MICROCHANNELS 231 14.2 STREAMLINES IN A SHAPE-PERTURBED
CHANNEL 235 14.3 LUBRICATION THEORY 237 14.4 THE STAGGERED HERRING-BONE
MIXER 238 14.5 INDUCED-CHARGE ELECTROLYTIC FLOW 240 14.6 EXERCISES 248
14.7 SOLUTIONS 249 15 ACOUSTOFLUIDICS 255 15.1 THE ACOUSTIC-WAVE
EQUATION FOR ZERO VISCOSITY 256 15.2 ACOUSTIC WAVES IN FIRST-ORDER
PERTURBATION THEORY 258 15.3 VISCOUS DAMPING OF FIRST-ORDER ACOUSTIC
WAVES 260 15.4 ACOUSTIC RESONANCES 262 15.5 ACOUSTIC WAVES IN MULTILAYER
SYSTEMS 264 15.6 SECOND-ORDER ACOUSTIC FIELDS 267 15.7 FURTHER READING
270 15.8 EXERCISES 271 15.9 SOLUTIONS 272 16 OPTOFLUIDICS 275 16.1 THE
OPTICAL WAVE EQUATION IN ELECTROLYTES 276 16.2 MOLECULAR ABSORPTION AND
BEER-LAMBERT'S LAW 278 16.3 MOLECULAR FLUORESCENCE AND PHOSPHORESCENCE
281 16.4 ONCHIP WAVEGUIDES " 282 16.5 ONCHIP LASER SOURCES 283 16.6
PHOTONIC BANDGAP STRUCTURES IN OPTOFLUIDICS 286 16.7 FURTHER READING '
288 16.8 EXERCISES 288 16.9 SOLUTIONS 289 17 NANOFLUIDICS 291 17.1
INVESTIGATION OF THE NO-SLIP BOUNDARY CONDITION " 291 17.2 CAPILLARY
FILLING OF NANOCHANNELS 294 17.3 SQUEEZE FLOW IN NANOIMPRINT LITHOGRAPHY
298 17.4 NANOFLUIDICS AND MOLECULAR DYNAMICS & 302 17.5 EXERCISES 304
17.6 SOLUTIONS 305 APPENDIX A PHYSICAL CONSTANTS 309 A.I WATER 309 A.2
VISCOSITY 309 A.3 DIFFUSIVITY 310 A.4 SURFACE TENSION AND CONTACT ANGLE
310 CONTENTS XI APPENDIX B DIMENSIONLESS NUMBERS 311 APPENDIX C
CURVILINEAR CO-ORDINATES 313 C.I CARTESIAN CO-ORDINATES 313 C.2
CYLINDRICAL POLAR CO-ORDINATES 314 C.3 SPHERICAL POLAR CO-ORDINATES 316
APPENDIX D THE CHEMICAL POTENTIAL 319 D.I THE PARTITION FUNCTION AND THE
FREE ENERGY 319 D.2 THE CHEMICAL POTENTIAL OF A SOLUTION 320 APPENDIX E
THE WAVE EQUATION 321 APPENDIX F NUMERICAL SIMULATIONS 325 F.I THE
FINITE-ELEMENT METHOD (FEM) 325 F.2 THE LEVEL SET METHOD AND MOTION OF
INTERFACES 329 BIBLIOGRAPHY 333 INDEX 339 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bruus, Henrik |
author_facet | Bruus, Henrik |
author_role | aut |
author_sort | Bruus, Henrik |
author_variant | h b hb |
building | Verbundindex |
bvnumber | BV022892284 |
callnumber-first | T - Technology |
callnumber-label | TJ853 |
callnumber-raw | TJ853 |
callnumber-search | TJ853 |
callnumber-sort | TJ 3853 |
callnumber-subject | TJ - Mechanical Engineering and Machinery |
classification_rvk | UF 4500 |
classification_tum | MAS 670f |
ctrlnum | (OCoLC)176807166 (DE-599)BSZ266881424 |
dewey-full | 629.8042 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 629 - Other branches of engineering |
dewey-raw | 629.8042 |
dewey-search | 629.8042 |
dewey-sort | 3629.8042 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik Maschinenbau |
discipline_str_mv | Physik Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik Maschinenbau |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01608nam a2200433 cb4500</leader><controlfield tag="001">BV022892284</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080502 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071019s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199235087</subfield><subfield code="c">hbk</subfield><subfield code="9">978-0-19-923508-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199235094</subfield><subfield code="9">978-0-19-923509-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)176807166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ266881424</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TJ853</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">629.8042</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UF 4500</subfield><subfield code="0">(DE-625)145585:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAS 670f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bruus, Henrik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical microfluidics</subfield><subfield code="c">Henrik Bruus</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 346 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Oxford master series in physics</subfield><subfield code="v">18 : Condensed matter physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biochips</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluidic devices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microfluidics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mikrofluidik</subfield><subfield code="0">(DE-588)4803438-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Oxford master series in physics</subfield><subfield code="v">18 : Condensed matter physics</subfield><subfield code="w">(DE-604)BV017064373</subfield><subfield code="9">18</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016097108&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016097108</subfield></datafield></record></collection> |
id | DE-604.BV022892284 |
illustrated | Illustrated |
index_date | 2024-07-02T18:54:05Z |
indexdate | 2024-07-09T21:07:53Z |
institution | BVB |
isbn | 9780199235087 9780199235094 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016097108 |
oclc_num | 176807166 |
open_access_boolean | |
owner | DE-703 DE-91G DE-BY-TUM DE-29T DE-11 DE-858 |
owner_facet | DE-703 DE-91G DE-BY-TUM DE-29T DE-11 DE-858 |
physical | XVI, 346 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Oxford Univ. Press |
record_format | marc |
series | Oxford master series in physics |
series2 | Oxford master series in physics |
spelling | Bruus, Henrik Verfasser aut Theoretical microfluidics Henrik Bruus 1. publ. Oxford [u.a.] Oxford Univ. Press 2008 XVI, 346 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Oxford master series in physics 18 : Condensed matter physics Biochips Fluidic devices Microfluidics Mikrofluidik (DE-588)4803438-1 gnd rswk-swf Mikrofluidik (DE-588)4803438-1 s DE-604 Oxford master series in physics 18 : Condensed matter physics (DE-604)BV017064373 18 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016097108&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bruus, Henrik Theoretical microfluidics Oxford master series in physics Biochips Fluidic devices Microfluidics Mikrofluidik (DE-588)4803438-1 gnd |
subject_GND | (DE-588)4803438-1 |
title | Theoretical microfluidics |
title_auth | Theoretical microfluidics |
title_exact_search | Theoretical microfluidics |
title_exact_search_txtP | Theoretical microfluidics |
title_full | Theoretical microfluidics Henrik Bruus |
title_fullStr | Theoretical microfluidics Henrik Bruus |
title_full_unstemmed | Theoretical microfluidics Henrik Bruus |
title_short | Theoretical microfluidics |
title_sort | theoretical microfluidics |
topic | Biochips Fluidic devices Microfluidics Mikrofluidik (DE-588)4803438-1 gnd |
topic_facet | Biochips Fluidic devices Microfluidics Mikrofluidik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016097108&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV017064373 |
work_keys_str_mv | AT bruushenrik theoreticalmicrofluidics |