Magneto-science: magnetic field effects on materials ; fundamentals and applications ; with 12 tables
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2006
Tokyo Kodansha |
Schriftenreihe: | Springer series in materials science
89 |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XX, 354 S. Ill., graph. Darst. |
ISBN: | 9783540370611 3540370617 4062130467 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022888334 | ||
003 | DE-604 | ||
005 | 20080317 | ||
007 | t | ||
008 | 071018s2006 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N35,0570 |2 dnb | ||
015 | |a 07,A29,0971 |2 dnb | ||
016 | 7 | |a 980745888 |2 DE-101 | |
020 | |a 9783540370611 |c (Springer) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.) |9 978-3-540-37061-1 | ||
020 | |a 3540370617 |c (Springer) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.) |9 3-540-37061-7 | ||
020 | |a 4062130467 |c (Kodansha) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.) |9 4-06-213046-7 | ||
028 | 5 | 2 | |a 11768647 |
035 | |a (OCoLC)255507365 | ||
035 | |a (DE-599)DNB980745888 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a QC675 | |
082 | 0 | |a 538.3 |2 22/ger | |
082 | 0 | |a 538 | |
084 | |a UP 6500 |0 (DE-625)146428: |2 rvk | ||
084 | |a ZM 7050 |0 (DE-625)157107: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
245 | 1 | 0 | |a Magneto-science |b magnetic field effects on materials ; fundamentals and applications ; with 12 tables |c M. Yamaguchi ... (ed.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2006 | |
264 | 1 | |a Tokyo |b Kodansha | |
300 | |a XX, 354 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in materials science |v 89 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Magnetfeldeffekt | |
650 | 4 | |a Magnetism | |
650 | 4 | |a Magnetooptics | |
650 | 0 | 7 | |a Magnetfeldeffekt |0 (DE-588)7573166-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Magnetfeldeffekt |0 (DE-588)7573166-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yamaguchi, Masuhiro |e Sonstige |0 (DE-588)13305361X |4 oth | |
830 | 0 | |a Springer series in materials science |v 89 |w (DE-604)BV000683335 |9 89 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2841849&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016093214&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016093214 |
Datensatz im Suchindex
_version_ | 1805089526237888512 |
---|---|
adam_text |
Contents
List of Contributors v
Preface ix
1. Fundamentals of Magnetic Field Effects 1
1.1 Basis of Magneto science 1
1.1.1 Origins of Magnetic Field Effects 1
A. Quantum Effect B. Magneto thermodynamic Effect
C. Magnetic Force D. Magnetic Torque and Alignment
E. Lorentz Force and MHD
1.1.2 Quantities and Units in Magnetism 5
A. Fields in Magnetism B. Susceptibility and Permeability
C. Magnetic Quantities of Materials
D. Demagnetization Field
References 8
1.2 Magnetic Energy and Magneto thermodynamic Effects 9
1.2.1 Magnetic Energy and Free Energy 9
A. Magnetic Energy
B. Free Energy and Chemical Potential
1.2.2 Chemical Equilibrium in Magnetic Fields 11
A. Condition of Equilibrium
B. Direction and Gibbs Phase Rule of Reactions
1.2.3 Magnetic Field Effects on Thermodynamic Quantities 13
A. Equilibrium Constant B. Electromotive Force
C. Heat, Free Energy and Entropy of Reaction
D. Phase Change
References 16
1.3 Effects of Magnetic Orientation, Magnetic Force and Lorentz
Force 17
1.3.1 Magnetic Orientation 17
A. Magnetic Orientation Due to Magnetic Susceptibility
Anisotropy
B. Magnetic Orientation Due to Shape Anisotropy
1.3.2 Magnetic Force 22
1.3.3 Lorentz Force 23
References 24
1.4 Dynamic Spin Chemistry 24
xii Contents
1.4.1 What Is Modern Spin Chemistry? 24
1.4.2 Theoretical Background for the Radical Pair Model 25
1.4.3 Experimental Methods and Examples 28
References 33
1.5 High field Generation for Magnetic Processing 33
1.5.1 Calculation and Characterization of Magnetic Fields 33
1.5.2 How to Generate High Magnetic Fields 35
A. Permanent Magnets B. Superconducting Magnets
C. Resistive Magnets D. Hybrid Magnets
E. Pulsed Magnets
1.5.3 Some Issues Regarding Processing in High Magnetic
Fields 39
1.5.4 Conclusions 39
References 39
2. Effects of Magnetic Force 41
2.1 Magnetic Levitation of Diamagnetic Materials 41
2.1.1 What Is Magnetic Levitation? 41
2.1.2 Experiments on Magnetic Levitation 43
2.1.3 Alignment and Orientation of Levitation Materials 44
2.1.4 Thermal Convection in Water under Levitation Conditions. 46
2.1.5 Solidification of a Levitating Water Droplet 48
2.1.6 Solution Crystal Growth 49
2.1.7 Magnetic Levitation Furnace 51
2.1.8 Thermal Behavior of Levitating Materials 53
References 54
2.2 Magneto Archimedes Effects and Related Effects 55
2.2.1 Moses Effect and Enhanced Moses Effect 55
2.2.2 Diamagnetic Levitation and Magneto Archimedes
Levitation 57
2.2.3 Magneto Archimedes Separation 59
2.2.4 Magnetic Field Effects on Some Physicochemical
Processes 62
A. Magnetic Field Effect on Oxygen Dissolution Process
in Water
B. Magnetic Field Effect on Water Vaporization
C. Magnetic Field Control of Thermal Convection
2.2.5 Self organization of Feeble Magnetic Materials by
Magnetically Induced Dipole Interactions 67
References 70
2.3 Formation of Protein Crystals under Microgravity on Earth 71
2.3.1 Why High Quality Protein Crystals Are Necessary 71
2.3.2 A Method to Control Effective Gravity 71
2.3.3 Experimental Procedure 73
2.3.4 Experimental Results and Discussion 74
Contents xiii
A. Comparison between Microgravity grown Crystals
and 1.8 G grown Crystals
B. 1 G grown Crystals in the Presence and Absence of a
Magnetic Field
C. Comparison between Microgravity grown Crystals
and Crystals Grown Outside the Magnet
References 76
2.4 Control of Thermal Convection Using Magnetic Field 77
2.4.1 l,2 Dicyano l,2 bis(2,4,5 trimethyl 3 thienyl)ethene 77
2.4.2 Photoreaction of Diphenylamine and Carbon Tetrabromide. 80
References 81
2.5 Magnetic Separation of Transition Metal Ions 82
2.5.1 Magnetic Energy and Thermal Energy 82
2.5.2 Separation of Metal Ions in a Magnetic Field 82
2.5.3 Adsorption on Silica Gel Particles 84
2.5.4 Movement of Paramagnetic Ions in a Magnetic Field:
Theory 85
2.5.5 Movement of Paramagnetic Ions in a Magnetic Field:
Experiment 86
2.5.6 Magnetic Susceptibility and Adsorption Activity 88
References 88
2.6 Magnetic Force Used for Micropatterning, Separation and
Processing 89
2.6.1 Mechanism 89
2.6.2 Field Modulator 90
2.6.3 Micro Moses Effect 91
2.6.4 Micropatterning 92
2.6.5 Separation 93
2.6.6 Levitation Polymerization 93
2.6.7 Conclusion 94
References 94
2.7 Quantitative Evaluation of Solid Fraction during Solidification
or Melting Processes of Metals Using Measurement of Magnetic
Susceptibility 95
2.7.1 Magnetic Susceptibility Measurement 95
A. Method B. Results of Measurements
2.7.2 Calculation of Solid Fraction 97
A. Method B. Results
References 100
2.8 Magnetic Control of Gas Flow, Combustion and Oxidation
Reaction Magnetoaerodynamics 100
2.8.1 Magnetically Induced Gas Flows 100
A. Magnetic Attraction of O2 Gas
B. Behavior of Diamagnetic N2 Gas Injected into Air
xiv Contents
C. Quantitative Analysis of Air Convection Caused by
Magnetic fluid Coupling
2.8.2 Magnetic Promotion of Combustion in Diffusion Flames. 103
2.8.3 Magnetic Support of Combustion in Diffusion Flames
under Microgravity Conditions 104
A. Microgravity Experiment
B. Numerical Simulation of Magnetic Support of Com¬
bustion in Diffusion Flames under Microgravity Con¬
ditions
2.8.4 Magnetic Promotion and Quenching of Catalytic Combus¬
tion 106
2.8.5 Magnetic Effects on Proton Exchange Membrane Fuel
Cells 106
2.8.6 Conclusions and Future Prospects 108
References 108
3. Effects of Lorentz Force and Magnetohydrodynamic Effects Ill
3.1 Magneto electrochemical Processing Ill
3.1.1 Application of Lorentz Force 112
A. MHD Electrode B. Micro MHD Effects
3.1.2 Application of Heterogeneous Magnetic Force 118
A. Magneto convection B. Spin Electrode
References 120
3.2 Magnetic Field Effects in Silver Metal Deposition 121
3.2.1 A Three dimensional Reaction System: Copper Metal
Silver Ion System 121
3.2.2 Two dimensional Reaction Systems 124
A. Copper Metal Silver Ion System
B. Zinc Metal Silver Ion System
3.2.3 Conclusion 129
References 129
3.3 3D Morphological Chirality Induction Using Magnetic Fields 130
3.3.1 Membrane Tubes Grown along the Inner Surface of a
Vessel 130
3.3.2 Membrane Tubes Grown along the Outer Surface of a
Glass Rod Placed in a Vessel 131
3.3.3 Tubes Grown Apart from a Vessel Wall 132
3.3.4 Tubes Grown in Horizontal Magnetic Fields 133
3.3.5 In situ Observation of the Motion of the Solution in a
Magnetic Field 133
3.3.6 Mechanism of 3D Morphological Chirality Induction 134
References 135
3.4 Shaping of Molten Metal Using an Alternating Magnetic Field 136
3.4.1 Concept of Soft Contacting Solidification 136
3.4.2 Soft Contacting Solidification without Mold Oscillation 137
Contents xv
References 139
4. Magneto thermodynamic Effects 141
4.1 Magnetic Field induced Effects on Hydrogen Reaction with
Metals 141
4.1.1 The Metal Hydrogen System 141
4.1.2 Magnetic Field Effect on Equilibrium States 142
4.1.3 Magnetic Field Effect on the Electrochemical System 143
4.1.4 Magnetic Field Effect on Phase Diagram 145
4.1.5 Magnetic Field Effect on Hydrogen Pressure 145
4.1.6 Magnetic Field Effect on Hydrogen Composition 147
4.1.7 Magnetic Field Effect on Thermodynamic Parameters 148
References 150
4.2 Magnetic Field Controls of Molecular Assemblies and Gels 150
4.2.1 Micelles and Surfactant/Silicate Hybrids under Steady
Magnetic Fields 151
A. Magnetic Deformation of Micelles
B. Magnetic Control of Surfactant/Silicate Hybrid Struc¬
tures
4.2.2 Magnetic Regulation of Lipid Membranes 154
A. Steady Magnetic Field Effects on Black Lipid Mem¬
branes
B. Magnetofusion and Magnetodivision of Vesicles
4.2.3 Structure and Functions of Chemically Cross linked
Hydrogels Prepared under Steady Magnetic Fields 162
4.2.4 Conclusion 164
References 165
4.3 Magnetic Field induced Martensitic Transformation in Ferrous
Alloys 165
4.3.1 Effect of Magnetic Field on Martensitic Transformation
Temperature 165
4.3.2 Magnetoelastic Martensitic Transformation 171
4.3.3 Effect of Magnetic Field on Morphology and Arrangement
ofMartensites 173
4.3.4 Giant Magnetic Field induced Strain in Ferromagnetic
Shape Memory Alloys 175
4.3.5 Energy Evaluation for Twinning Plane Movement by
Magnetic Field 178
References 179
4.4 Control of the Solidification Process by High Static Magnetic
Field: Application to YBaCuO Superconductors 179
4.4.1 YBaCuO Growth 180
4.4.2 Magnetic Texturation Feasibility 180
A. Mechanisms B. Magnetic Alignment of YBaCuO
C. Nuclei Size and Orientation Time
xvi Contents
D. Improvement of Magnetic and Superconducting Prop¬
erties of Bulk YBaCuO
4.4.3 In situ Magnetic Susceptibility in High Fields 182
A. Experimental Setup B. Standard MTG Process
C. Magnetic Signature of Melting, Solidification and
Oxygen Exchanges
D. Anomalous Solidification E. Double Dwell Process
4.4.4 Supercooling Behavior of the Powder 186
A. Precursor Effect B. Overheating Effect
C. Solidification Nuclei above the Melting Point
4.4.5 Conclusion 188
References 188
5. Magnetic Orientation 191
5.1 Magnetic Orientation of Organic and Inorganic Crystals 191
5.1.1 Magnetic Orientation of Crystals 191
5.1.2 Crystals in Magnetic Fields 192
5.1.3 Crystal Structure and Magnetic Anisotropy 193
5.1.4 Magnetic Energy 193
5.1.5 Distribution of Directions of Crystals in Magnetic Fields . 193
5.1.6 Magnetic Orientation against Gravity 195
References 196
5.2 Magnetic Field Processing of Organic Polymers and Composites . 196
5.2.1 Underlying Principles of Magnetic Alignment of Particles. 197
5.2.2 Magnetic Alignment of Crystals 200
5.2.3 Magnetic Alignment of Liquid Crystalline Polymers 201
5.2.4 Magnetic Alignment of Crystalline Polymers 202
5.2.5 Nonrotation Type Magnetic Alignment of Crystalline
Polymers 204
5.2.6 Conclusion 205
References 206
5.3 Magnetic Alignment of Polymer Gels 207
5.3.1 Polymer Gels 207
5.3.2 Magnetic Field Effect for Agarose Gel 208
5.3.3 Magnetic Field Effects on Phase Transition Temperature . 208
5.3.4 Optical Measurements 210
5.3.5 Applications 211
References 213
5.4 Magnetic Alignment of Multi wall Carbon Nanotubes 214
5.4.1 Orientation of Carbon Nanotubes 214
5.4.2 Distribution of Directions of Carbon Nanotubes 215
5.4.3 Magnetic Orientation and Thermal Disordering: Boltzmann
Distribution 216
5.4.4 Estimation of Magnetic Anisotropy by Magnetic
Orientation 217
Contents xvii
5.4.5 Temperature Dependence of Magnetic Orientation 218
References 219
5.5 Magnetic Alignment of Single walled Carbon Nanotubes and
Nanocomposites 219
5.5.1 Fabrication of Magnetically Aligned Buckypapers Using
Syringe Filters 220
5.5.2 Fabrication of Large Magnetically Aligned Buckypaper
Using Custom Cylinder Filters 221
A. Experimental Setup
B. Fabrication of Large Magnetically Aligned Buckypapers
C. Large Magnetically Aligned SWNT Buckypapers
5.5.3 Investigation of SWNT Alignment in Magnetically Aligned
Buckypapers 223
A. Influences of Suspension Concentration
B. Influences of Magnetic Field Strength
5.5.4 Nanocomposites with In plane Aligned SWNT 226
A. Fabrication of Nanocomposites Using Magnetically
Aligned Buckypapers
B. DMA Analysis of Aligned Buckypaper Composites
C. Nanostructural Characterization of the Aligned Bucky¬
paper Composites
5.5.5 Conclusions 228
References 229
5.6 Magnetic Crystal Alignment of Inorganic Materials 229
5.6.1 Crystal Texture Control by Magnetic Field Theory 230
5.6.2 Crystal Orientation of Ceramics 230
A. Classification of Crystal Orientation
B. Experimental Procedure C. Results and Discussion
5.6.3 Control of Crystal Orientation in Metal Solidification 237
References 239
5.7 Minimum Field Intensity Required to Achieve Magnetic
Alignment of Diamagnetic and Paramagnetic Particles 240
5.7.1 Parameters That Control Magnetic Alignment of
Micron size Particles 240
5.7.2 Effect of Diamagnetic Anisotropy (A^)Dia on Magnetic
Alignment 242
5.7.3 Effect of Paramagnetic Anisotropy (A^)para on Magnetic
Alignment 244
5.7.4 Effect of Weight M of the Particle on Magnetic Alignment . 244
5.7.5 Effect of Temperature T on Magnetic Alignment 244
5.7.6 Conclusions 246
References 247
6. Dynamic Spin Chemistry 249
6.1 Magnetic Field Effects in Photochemical Reactions 249
xviii Contents
6.1.1 Theory 250
6.1.2 Relaxation Mechanism 251
6.1.3 MFEs Controlled by the RP Mechanism 252
A. MFEs of Chain linked Biradicals in Homogeneous
Solution
B. MFEs of RPs in Micellar Solution
C. MFEs of Other Reaction Systems
6.1.4 Conclusion 262
References 262
6.2 Magnetic Field Effects in Photosensitive Electrodes 263
6.2.1 Magnetic Field Effects in Photosensitive Electrodes
Modified with Donor Acceptor Linked Compounds 264
6.2.2 Magnetic Field Effects in Photosensitive Electrodes
Modified with Semiconductor Nanoparticles 266
References 271
6.3 Spin Probe and Spin Trapping Studies on the Magnetic Field Effects
on Chemical Reactions in the Nanospace of MCM 41 272
6.3.1 Magnetic Field dependent Photoreactions in MCM 41
Nanospace 272
6.3.2 A New View of the Physicochemical Processes in
Nanosystems 274
6.3.3 Detection of Liquid Flow through MCM 41
Nanochannels 275
6.3.4 Spin Probe and NMR Studies on the Dynamics and
Distribution of Solution Molecules in the MCM 41
Nanochannel 277
6.3.5 Spin Probe and NMR Studies on the Phase Separation of
the Molecular System in the Nanochannel of MCM 41 279
6.3.6 Conclusion 280
References 280
6.4 From Spin Dynamics in Ionic Pairs to Softening of Crystals in
Magnetic Field 281
6.4.1 Spin dependent Magnetic Field Effect in Eu2+ Clusters
Being Formed during Slow Aggregation in Crystal Lattice:
"Bulk Diffusion" Mode 283
6.4.2 Magnetic Field Influence on Eu2+ Clusters Formed near
Dislocation Cores by Diffusion: "Fast Diffusion" Mode 287
6.4.3 Magnetic Field Effects on Eu2+ Clusters Generated by
Moving Dislocations: "Cut Off" Mode 288
6.4.4 Spin dependent Magnetic Field Effect on Plasticity of
Crystals at Different Modes of Magnetosensitive Cluster
Formation 289
A. Bulk Diffusion Mode B. Cut Off Mode
C. Fast Diffusion Mode
6.4.5 Conclusions 293
Contents xix
References 294
7. Novel Magnetic Field Effects 295
7.1 Magnetic Field Effects on Adsorption of Gas 295
7.1.1 Magnetic Field Effects on Adsorption 298
A. Steady Magnetic Field Effects on Paramagnetic
Gases
B. Steady Magnetic Field Effects on Diamagnetic Gases
C. Thermodynamic Features in Magnetoadsorption
7.1.2 Local Magnetic Field Gradient Effects on O2 Adsorption . 306
7.1.3 Future Problems 308
A. Gas Separation Due to Static Magnetic Fields
B. Magneto photoadsorption
C. Electron Spin Resonance Adsorption
7.1.4 Conclusion 308
References 309
7.2 Magnetic Field Effect on Optical Properties of Water and
Aqueous Electrolyte Solutions 310
7.2.1 Sensitive Measurement of the Refractive Index under
High Magnetic Fields 310
7.2.2 Slight Optical Responses of Water to High Magnetic
Fields 312
7.2.3 Comparison with a Nonhydrogen bonded Liquid 313
7.2.4 Magnetic Responses of Hydrated Water of Magnetic and
Nonmagnetic Ions 314
7.2.5 Summary of Recent Magneto optical Effect Studies on
Aqueous Systems 317
References 317
7.3 Magnetic Field Effects on Phase Transitions in Diamagnetic
Materials 318
7.3.1 Magnetic Field Effect on the Melting Transition of H2O
andD2O 320
7.3.2 Magnetic Field Effect on the Ferroelectric Transition of
Single Crystalline KD2PO4 324
7.3.3 Magnetic Field Effect on the Liquid Crystal to the Iso
tropic Liquid Transition of iV p ethoxybenzylidene p'
butylaniline 325
7.3.4 Magnetic Field Effect on the Rotator Transition and
Melting Transition in C32H66 326
References 326
7.4 Diamagnetic Anisotropy of Inorganic Insulators Deriving from
Individual Chemical Bonds and Detection of Small Magnetic
Anisotropy Using Micro gravity 327
7.4.1 Detection of Magnetic Anisotropy with High Sensitivity 327 |
adam_txt |
Contents
List of Contributors v
Preface ix
1. Fundamentals of Magnetic Field Effects 1
1.1 Basis of Magneto science 1
1.1.1 Origins of Magnetic Field Effects 1
A. Quantum Effect B. Magneto thermodynamic Effect
C. Magnetic Force D. Magnetic Torque and Alignment
E. Lorentz Force and MHD
1.1.2 Quantities and Units in Magnetism 5
A. Fields in Magnetism B. Susceptibility and Permeability
C. Magnetic Quantities of Materials
D. Demagnetization Field
References 8
1.2 Magnetic Energy and Magneto thermodynamic Effects 9
1.2.1 Magnetic Energy and Free Energy 9
A. Magnetic Energy
B. Free Energy and Chemical Potential
1.2.2 Chemical Equilibrium in Magnetic Fields 11
A. Condition of Equilibrium
B. Direction and Gibbs Phase Rule of Reactions
1.2.3 Magnetic Field Effects on Thermodynamic Quantities 13
A. Equilibrium Constant B. Electromotive Force
C. Heat, Free Energy and Entropy of Reaction
D. Phase Change
References 16
1.3 Effects of Magnetic Orientation, Magnetic Force and Lorentz
Force 17
1.3.1 Magnetic Orientation 17
A. Magnetic Orientation Due to Magnetic Susceptibility
Anisotropy
B. Magnetic Orientation Due to Shape Anisotropy
1.3.2 Magnetic Force 22
1.3.3 Lorentz Force 23
References 24
1.4 Dynamic Spin Chemistry 24
xii Contents
1.4.1 What Is Modern Spin Chemistry? 24
1.4.2 Theoretical Background for the Radical Pair Model 25
1.4.3 Experimental Methods and Examples 28
References 33
1.5 High field Generation for Magnetic Processing 33
1.5.1 Calculation and Characterization of Magnetic Fields 33
1.5.2 How to Generate High Magnetic Fields 35
A. Permanent Magnets B. Superconducting Magnets
C. Resistive Magnets D. Hybrid Magnets
E. Pulsed Magnets
1.5.3 Some Issues Regarding Processing in High Magnetic
Fields 39
1.5.4 Conclusions 39
References 39
2. Effects of Magnetic Force 41
2.1 Magnetic Levitation of Diamagnetic Materials 41
2.1.1 What Is Magnetic Levitation? 41
2.1.2 Experiments on Magnetic Levitation 43
2.1.3 Alignment and Orientation of Levitation Materials 44
2.1.4 Thermal Convection in Water under Levitation Conditions. 46
2.1.5 Solidification of a Levitating Water Droplet 48
2.1.6 Solution Crystal Growth 49
2.1.7 Magnetic Levitation Furnace 51
2.1.8 Thermal Behavior of Levitating Materials 53
References 54
2.2 Magneto Archimedes Effects and Related Effects 55
2.2.1 Moses Effect and Enhanced Moses Effect 55
2.2.2 Diamagnetic Levitation and Magneto Archimedes
Levitation 57
2.2.3 Magneto Archimedes Separation 59
2.2.4 Magnetic Field Effects on Some Physicochemical
Processes 62
A. Magnetic Field Effect on Oxygen Dissolution Process
in Water
B. Magnetic Field Effect on Water Vaporization
C. Magnetic Field Control of Thermal Convection
2.2.5 Self organization of Feeble Magnetic Materials by
Magnetically Induced Dipole Interactions 67
References 70
2.3 Formation of Protein Crystals under Microgravity on Earth 71
2.3.1 Why High Quality Protein Crystals Are Necessary 71
2.3.2 A Method to Control Effective Gravity 71
2.3.3 Experimental Procedure 73
2.3.4 Experimental Results and Discussion 74
Contents xiii
A. Comparison between Microgravity grown Crystals
and 1.8 G grown Crystals
B. 1 G grown Crystals in the Presence and Absence of a
Magnetic Field
C. Comparison between Microgravity grown Crystals
and Crystals Grown Outside the Magnet
References 76
2.4 Control of Thermal Convection Using Magnetic Field 77
2.4.1 l,2 Dicyano l,2 bis(2,4,5 trimethyl 3 thienyl)ethene 77
2.4.2 Photoreaction of Diphenylamine and Carbon Tetrabromide. 80
References 81
2.5 Magnetic Separation of Transition Metal Ions 82
2.5.1 Magnetic Energy and Thermal Energy 82
2.5.2 Separation of Metal Ions in a Magnetic Field 82
2.5.3 Adsorption on Silica Gel Particles 84
2.5.4 Movement of Paramagnetic Ions in a Magnetic Field:
Theory 85
2.5.5 Movement of Paramagnetic Ions in a Magnetic Field:
Experiment 86
2.5.6 Magnetic Susceptibility and Adsorption Activity 88
References 88
2.6 Magnetic Force Used for Micropatterning, Separation and
Processing 89
2.6.1 Mechanism 89
2.6.2 Field Modulator 90
2.6.3 Micro Moses Effect 91
2.6.4 Micropatterning 92
2.6.5 Separation 93
2.6.6 Levitation Polymerization 93
2.6.7 Conclusion 94
References 94
2.7 Quantitative Evaluation of Solid Fraction during Solidification
or Melting Processes of Metals Using Measurement of Magnetic
Susceptibility 95
2.7.1 Magnetic Susceptibility Measurement 95
A. Method B. Results of Measurements
2.7.2 Calculation of Solid Fraction 97
A. Method B. Results
References 100
2.8 Magnetic Control of Gas Flow, Combustion and Oxidation
Reaction Magnetoaerodynamics 100
2.8.1 Magnetically Induced Gas Flows 100
A. Magnetic Attraction of O2 Gas
B. Behavior of Diamagnetic N2 Gas Injected into Air
xiv Contents
C. Quantitative Analysis of Air Convection Caused by
Magnetic fluid Coupling
2.8.2 Magnetic Promotion of Combustion in Diffusion Flames. 103
2.8.3 Magnetic Support of Combustion in Diffusion Flames
under Microgravity Conditions 104
A. Microgravity Experiment
B. Numerical Simulation of Magnetic Support of Com¬
bustion in Diffusion Flames under Microgravity Con¬
ditions
2.8.4 Magnetic Promotion and Quenching of Catalytic Combus¬
tion 106
2.8.5 Magnetic Effects on Proton Exchange Membrane Fuel
Cells 106
2.8.6 Conclusions and Future Prospects 108
References 108
3. Effects of Lorentz Force and Magnetohydrodynamic Effects Ill
3.1 Magneto electrochemical Processing Ill
3.1.1 Application of Lorentz Force 112
A. MHD Electrode B. Micro MHD Effects
3.1.2 Application of Heterogeneous Magnetic Force 118
A. Magneto convection B. Spin Electrode
References 120
3.2 Magnetic Field Effects in Silver Metal Deposition 121
3.2.1 A Three dimensional Reaction System: Copper Metal
Silver Ion System 121
3.2.2 Two dimensional Reaction Systems 124
A. Copper Metal Silver Ion System
B. Zinc Metal Silver Ion System
3.2.3 Conclusion 129
References 129
3.3 3D Morphological Chirality Induction Using Magnetic Fields 130
3.3.1 Membrane Tubes Grown along the Inner Surface of a
Vessel 130
3.3.2 Membrane Tubes Grown along the Outer Surface of a
Glass Rod Placed in a Vessel 131
3.3.3 Tubes Grown Apart from a Vessel Wall 132
3.3.4 Tubes Grown in Horizontal Magnetic Fields 133
3.3.5 In situ Observation of the Motion of the Solution in a
Magnetic Field 133
3.3.6 Mechanism of 3D Morphological Chirality Induction 134
References 135
3.4 Shaping of Molten Metal Using an Alternating Magnetic Field 136
3.4.1 Concept of Soft Contacting Solidification 136
3.4.2 Soft Contacting Solidification without Mold Oscillation 137
Contents xv
References 139
4. Magneto thermodynamic Effects 141
4.1 Magnetic Field induced Effects on Hydrogen Reaction with
Metals 141
4.1.1 The Metal Hydrogen System 141
4.1.2 Magnetic Field Effect on Equilibrium States 142
4.1.3 Magnetic Field Effect on the Electrochemical System 143
4.1.4 Magnetic Field Effect on Phase Diagram 145
4.1.5 Magnetic Field Effect on Hydrogen Pressure 145
4.1.6 Magnetic Field Effect on Hydrogen Composition 147
4.1.7 Magnetic Field Effect on Thermodynamic Parameters 148
References 150
4.2 Magnetic Field Controls of Molecular Assemblies and Gels 150
4.2.1 Micelles and Surfactant/Silicate Hybrids under Steady
Magnetic Fields 151
A. Magnetic Deformation of Micelles
B. Magnetic Control of Surfactant/Silicate Hybrid Struc¬
tures
4.2.2 Magnetic Regulation of Lipid Membranes 154
A. Steady Magnetic Field Effects on Black Lipid Mem¬
branes
B. Magnetofusion and Magnetodivision of Vesicles
4.2.3 Structure and Functions of Chemically Cross linked
Hydrogels Prepared under Steady Magnetic Fields 162
4.2.4 Conclusion 164
References 165
4.3 Magnetic Field induced Martensitic Transformation in Ferrous
Alloys 165
4.3.1 Effect of Magnetic Field on Martensitic Transformation
Temperature 165
4.3.2 Magnetoelastic Martensitic Transformation 171
4.3.3 Effect of Magnetic Field on Morphology and Arrangement
ofMartensites 173
4.3.4 Giant Magnetic Field induced Strain in Ferromagnetic
Shape Memory Alloys 175
4.3.5 Energy Evaluation for Twinning Plane Movement by
Magnetic Field 178
References 179
4.4 Control of the Solidification Process by High Static Magnetic
Field: Application to YBaCuO Superconductors 179
4.4.1 YBaCuO Growth 180
4.4.2 Magnetic Texturation Feasibility 180
A. Mechanisms B. Magnetic Alignment of YBaCuO
C. Nuclei Size and Orientation Time
xvi Contents
D. Improvement of Magnetic and Superconducting Prop¬
erties of Bulk YBaCuO
4.4.3 In situ Magnetic Susceptibility in High Fields 182
A. Experimental Setup B. Standard MTG Process
C. Magnetic Signature of Melting, Solidification and
Oxygen Exchanges
D. Anomalous Solidification E. Double Dwell Process
4.4.4 Supercooling Behavior of the Powder 186
A. Precursor Effect B. Overheating Effect
C. Solidification Nuclei above the Melting Point
4.4.5 Conclusion 188
References 188
5. Magnetic Orientation 191
5.1 Magnetic Orientation of Organic and Inorganic Crystals 191
5.1.1 Magnetic Orientation of Crystals 191
5.1.2 Crystals in Magnetic Fields 192
5.1.3 Crystal Structure and Magnetic Anisotropy 193
5.1.4 Magnetic Energy 193
5.1.5 Distribution of Directions of Crystals in Magnetic Fields . 193
5.1.6 Magnetic Orientation against Gravity 195
References 196
5.2 Magnetic Field Processing of Organic Polymers and Composites . 196
5.2.1 Underlying Principles of Magnetic Alignment of Particles. 197
5.2.2 Magnetic Alignment of Crystals 200
5.2.3 Magnetic Alignment of Liquid Crystalline Polymers 201
5.2.4 Magnetic Alignment of Crystalline Polymers 202
5.2.5 Nonrotation Type Magnetic Alignment of Crystalline
Polymers 204
5.2.6 Conclusion 205
References 206
5.3 Magnetic Alignment of Polymer Gels 207
5.3.1 Polymer Gels 207
5.3.2 Magnetic Field Effect for Agarose Gel 208
5.3.3 Magnetic Field Effects on Phase Transition Temperature . 208
5.3.4 Optical Measurements 210
5.3.5 Applications 211
References 213
5.4 Magnetic Alignment of Multi wall Carbon Nanotubes 214
5.4.1 Orientation of Carbon Nanotubes 214
5.4.2 Distribution of Directions of Carbon Nanotubes 215
5.4.3 Magnetic Orientation and Thermal Disordering: Boltzmann
Distribution 216
5.4.4 Estimation of Magnetic Anisotropy by Magnetic
Orientation 217
Contents xvii
5.4.5 Temperature Dependence of Magnetic Orientation 218
References 219
5.5 Magnetic Alignment of Single walled Carbon Nanotubes and
Nanocomposites 219
5.5.1 Fabrication of Magnetically Aligned Buckypapers Using
Syringe Filters 220
5.5.2 Fabrication of Large Magnetically Aligned Buckypaper
Using Custom Cylinder Filters 221
A. Experimental Setup
B. Fabrication of Large Magnetically Aligned Buckypapers
C. Large Magnetically Aligned SWNT Buckypapers
5.5.3 Investigation of SWNT Alignment in Magnetically Aligned
Buckypapers 223
A. Influences of Suspension Concentration
B. Influences of Magnetic Field Strength
5.5.4 Nanocomposites with In plane Aligned SWNT 226
A. Fabrication of Nanocomposites Using Magnetically
Aligned Buckypapers
B. DMA Analysis of Aligned Buckypaper Composites
C. Nanostructural Characterization of the Aligned Bucky¬
paper Composites
5.5.5 Conclusions 228
References 229
5.6 Magnetic Crystal Alignment of Inorganic Materials 229
5.6.1 Crystal Texture Control by Magnetic Field Theory 230
5.6.2 Crystal Orientation of Ceramics 230
A. Classification of Crystal Orientation
B. Experimental Procedure C. Results and Discussion
5.6.3 Control of Crystal Orientation in Metal Solidification 237
References 239
5.7 Minimum Field Intensity Required to Achieve Magnetic
Alignment of Diamagnetic and Paramagnetic Particles 240
5.7.1 Parameters That Control Magnetic Alignment of
Micron size Particles 240
5.7.2 Effect of Diamagnetic Anisotropy (A^)Dia on Magnetic
Alignment 242
5.7.3 Effect of Paramagnetic Anisotropy (A^)para on Magnetic
Alignment 244
5.7.4 Effect of Weight M of the Particle on Magnetic Alignment . 244
5.7.5 Effect of Temperature T on Magnetic Alignment 244
5.7.6 Conclusions 246
References 247
6. Dynamic Spin Chemistry 249
6.1 Magnetic Field Effects in Photochemical Reactions 249
xviii Contents
6.1.1 Theory 250
6.1.2 Relaxation Mechanism 251
6.1.3 MFEs Controlled by the RP Mechanism 252
A. MFEs of Chain linked Biradicals in Homogeneous
Solution
B. MFEs of RPs in Micellar Solution
C. MFEs of Other Reaction Systems
6.1.4 Conclusion 262
References 262
6.2 Magnetic Field Effects in Photosensitive Electrodes 263
6.2.1 Magnetic Field Effects in Photosensitive Electrodes
Modified with Donor Acceptor Linked Compounds 264
6.2.2 Magnetic Field Effects in Photosensitive Electrodes
Modified with Semiconductor Nanoparticles 266
References 271
6.3 Spin Probe and Spin Trapping Studies on the Magnetic Field Effects
on Chemical Reactions in the Nanospace of MCM 41 272
6.3.1 Magnetic Field dependent Photoreactions in MCM 41
Nanospace 272
6.3.2 A New View of the Physicochemical Processes in
Nanosystems 274
6.3.3 Detection of Liquid Flow through MCM 41
Nanochannels 275
6.3.4 Spin Probe and NMR Studies on the Dynamics and
Distribution of Solution Molecules in the MCM 41
Nanochannel 277
6.3.5 Spin Probe and NMR Studies on the Phase Separation of
the Molecular System in the Nanochannel of MCM 41 279
6.3.6 Conclusion 280
References 280
6.4 From Spin Dynamics in Ionic Pairs to Softening of Crystals in
Magnetic Field 281
6.4.1 Spin dependent Magnetic Field Effect in Eu2+ Clusters
Being Formed during Slow Aggregation in Crystal Lattice:
"Bulk Diffusion" Mode 283
6.4.2 Magnetic Field Influence on Eu2+ Clusters Formed near
Dislocation Cores by Diffusion: "Fast Diffusion" Mode 287
6.4.3 Magnetic Field Effects on Eu2+ Clusters Generated by
Moving Dislocations: "Cut Off" Mode 288
6.4.4 Spin dependent Magnetic Field Effect on Plasticity of
Crystals at Different Modes of Magnetosensitive Cluster
Formation 289
A. Bulk Diffusion Mode B. Cut Off Mode
C. Fast Diffusion Mode
6.4.5 Conclusions 293
Contents xix
References 294
7. Novel Magnetic Field Effects 295
7.1 Magnetic Field Effects on Adsorption of Gas 295
7.1.1 Magnetic Field Effects on Adsorption 298
A. Steady Magnetic Field Effects on Paramagnetic
Gases
B. Steady Magnetic Field Effects on Diamagnetic Gases
C. Thermodynamic Features in Magnetoadsorption
7.1.2 Local Magnetic Field Gradient Effects on O2 Adsorption . 306
7.1.3 Future Problems 308
A. Gas Separation Due to Static Magnetic Fields
B. Magneto photoadsorption
C. Electron Spin Resonance Adsorption
7.1.4 Conclusion 308
References 309
7.2 Magnetic Field Effect on Optical Properties of Water and
Aqueous Electrolyte Solutions 310
7.2.1 Sensitive Measurement of the Refractive Index under
High Magnetic Fields 310
7.2.2 Slight Optical Responses of Water to High Magnetic
Fields 312
7.2.3 Comparison with a Nonhydrogen bonded Liquid 313
7.2.4 Magnetic Responses of Hydrated Water of Magnetic and
Nonmagnetic Ions 314
7.2.5 Summary of Recent Magneto optical Effect Studies on
Aqueous Systems 317
References 317
7.3 Magnetic Field Effects on Phase Transitions in Diamagnetic
Materials 318
7.3.1 Magnetic Field Effect on the Melting Transition of H2O
andD2O 320
7.3.2 Magnetic Field Effect on the Ferroelectric Transition of
Single Crystalline KD2PO4 324
7.3.3 Magnetic Field Effect on the Liquid Crystal to the Iso
tropic Liquid Transition of iV p ethoxybenzylidene p'
butylaniline 325
7.3.4 Magnetic Field Effect on the Rotator Transition and
Melting Transition in C32H66 326
References 326
7.4 Diamagnetic Anisotropy of Inorganic Insulators Deriving from
Individual Chemical Bonds and Detection of Small Magnetic
Anisotropy Using Micro gravity 327
7.4.1 Detection of Magnetic Anisotropy with High Sensitivity 327 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)13305361X |
building | Verbundindex |
bvnumber | BV022888334 |
callnumber-first | Q - Science |
callnumber-label | QC675 |
callnumber-raw | QC675 |
callnumber-search | QC675 |
callnumber-sort | QC 3675 |
callnumber-subject | QC - Physics |
classification_rvk | UP 6500 ZM 7050 |
ctrlnum | (OCoLC)255507365 (DE-599)DNB980745888 |
dewey-full | 538.3 538 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 538 - Magnetism |
dewey-raw | 538.3 538 |
dewey-search | 538.3 538 |
dewey-sort | 3538.3 |
dewey-tens | 530 - Physics |
discipline | Physik Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Physik Werkstoffwissenschaften / Fertigungstechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV022888334</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080317</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071018s2006 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N35,0570</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,A29,0971</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">980745888</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540370611</subfield><subfield code="c">(Springer) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.)</subfield><subfield code="9">978-3-540-37061-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540370617</subfield><subfield code="c">(Springer) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.)</subfield><subfield code="9">3-540-37061-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">4062130467</subfield><subfield code="c">(Kodansha) Pp. : EUR 128.35 (freier Pr.), sfr 203.00 (freier Pr.)</subfield><subfield code="9">4-06-213046-7</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11768647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255507365</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB980745888</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC675</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">538.3</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">538</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 6500</subfield><subfield code="0">(DE-625)146428:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 7050</subfield><subfield code="0">(DE-625)157107:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magneto-science</subfield><subfield code="b">magnetic field effects on materials ; fundamentals and applications ; with 12 tables</subfield><subfield code="c">M. Yamaguchi ... (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Tokyo</subfield><subfield code="b">Kodansha</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 354 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in materials science</subfield><subfield code="v">89</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetfeldeffekt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetooptics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetfeldeffekt</subfield><subfield code="0">(DE-588)7573166-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Magnetfeldeffekt</subfield><subfield code="0">(DE-588)7573166-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yamaguchi, Masuhiro</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)13305361X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in materials science</subfield><subfield code="v">89</subfield><subfield code="w">(DE-604)BV000683335</subfield><subfield code="9">89</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2841849&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016093214&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016093214</subfield></datafield></record></collection> |
id | DE-604.BV022888334 |
illustrated | Illustrated |
index_date | 2024-07-02T18:52:35Z |
indexdate | 2024-07-20T09:25:19Z |
institution | BVB |
isbn | 9783540370611 3540370617 4062130467 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016093214 |
oclc_num | 255507365 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | XX, 354 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer Kodansha |
record_format | marc |
series | Springer series in materials science |
series2 | Springer series in materials science |
spelling | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables M. Yamaguchi ... (ed.) Berlin [u.a.] Springer 2006 Tokyo Kodansha XX, 354 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in materials science 89 Literaturangaben Magnetfeldeffekt Magnetism Magnetooptics Magnetfeldeffekt (DE-588)7573166-6 gnd rswk-swf Magnetfeldeffekt (DE-588)7573166-6 s DE-604 Yamaguchi, Masuhiro Sonstige (DE-588)13305361X oth Springer series in materials science 89 (DE-604)BV000683335 89 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2841849&prov=M&dok_var=1&dok_ext=htm Inhaltstext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016093214&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables Springer series in materials science Magnetfeldeffekt Magnetism Magnetooptics Magnetfeldeffekt (DE-588)7573166-6 gnd |
subject_GND | (DE-588)7573166-6 |
title | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables |
title_auth | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables |
title_exact_search | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables |
title_exact_search_txtP | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables |
title_full | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables M. Yamaguchi ... (ed.) |
title_fullStr | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables M. Yamaguchi ... (ed.) |
title_full_unstemmed | Magneto-science magnetic field effects on materials ; fundamentals and applications ; with 12 tables M. Yamaguchi ... (ed.) |
title_short | Magneto-science |
title_sort | magneto science magnetic field effects on materials fundamentals and applications with 12 tables |
title_sub | magnetic field effects on materials ; fundamentals and applications ; with 12 tables |
topic | Magnetfeldeffekt Magnetism Magnetooptics Magnetfeldeffekt (DE-588)7573166-6 gnd |
topic_facet | Magnetfeldeffekt Magnetism Magnetooptics |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2841849&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016093214&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000683335 |
work_keys_str_mv | AT yamaguchimasuhiro magnetosciencemagneticfieldeffectsonmaterialsfundamentalsandapplicationswith12tables |