Runner and gating design handbook: tools for successful injection molding
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Munich [u.a.]
Hanser
2007
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVI, 308 S. zahlr. Ill. und graph. Darst. 24 cm |
ISBN: | 9783446407657 9781569904213 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022887747 | ||
003 | DE-604 | ||
005 | 20071024 | ||
007 | t | ||
008 | 071017s2007 xxuad|| |||| 00||| eng d | ||
020 | |a 9783446407657 |9 978-3-446-40765-7 | ||
020 | |a 9781569904213 |9 978-1-56990-421-3 | ||
035 | |a (OCoLC)156975324 | ||
035 | |a (DE-599)BVBBV022887747 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-29T |a DE-210 |a DE-91G |a DE-12 |a DE-92 |a DE-83 | ||
050 | 0 | |a TP1150 | |
082 | 0 | |a 668.4/12 |2 22 | |
084 | |a ZM 8160 |0 (DE-625)157161: |2 rvk | ||
084 | |a CIT 735f |2 stub | ||
100 | 1 | |a Beaumont, John P. |d 1952- |e Verfasser |0 (DE-588)124071295 |4 aut | |
245 | 1 | 0 | |a Runner and gating design handbook |b tools for successful injection molding |c John P. Beaumont |
250 | |a 2. ed. | ||
264 | 1 | |a Munich [u.a.] |b Hanser |c 2007 | |
300 | |a XVI, 308 S. |b zahlr. Ill. und graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a aInjection molding of plastics |a vHandbooks, manuals, etc | |
650 | 4 | |a aMolding (Chemical technology) |a vHandbooks, manuals, etc | |
650 | 0 | 7 | |a Spritzgießwerkzeug |0 (DE-588)4056563-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Heißkanalverfahren |0 (DE-588)4730959-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anguss |0 (DE-588)4226633-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Werkstoffgerechtes Konstruieren |0 (DE-588)4233887-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Spritzgießwerkzeug |0 (DE-588)4056563-4 |D s |
689 | 0 | 1 | |a Anguss |0 (DE-588)4226633-6 |D s |
689 | 0 | 2 | |a Werkstoffgerechtes Konstruieren |0 (DE-588)4233887-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Spritzgießwerkzeug |0 (DE-588)4056563-4 |D s |
689 | 1 | 1 | |a Heißkanalverfahren |0 (DE-588)4730959-3 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016092629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016092629 |
Datensatz im Suchindex
_version_ | 1804137154536800256 |
---|---|
adam_text | Contents
1 Overview of Runners, Gates, and Gate Positioning 1
1.1 Primary Parting Plane Runners 1
1.2 Sub Runners 2
1.2.1 Cold Sub Runners 2
1.2.2 Hot Sub Runners 2
1.3 Hybrid Sub-Runner and Parting Line Runner 3
1.4 Gate Designs 3
2 Rheology of Plastics 5
2.1 Laminar vs. Turbulent Flow 5
2.2 Fountain Flow 7
2.3 Factors Affecting Viscosity 7
2.3.1 Common Viscosity Models 8
2.3.2 Non-Newtonian Fluids 10
2.3.3 Temperature 11
2.3.4 Pressure 12
2.4 Melt Compressibility 12
2.5 Melt Flow Characterization 13
3 Filling and Packing Effects on Material and Molded Part 17
3.1 Process Effects on Material Viscosity 17
3.1.1 Melt Thermal Balance - Conductive Heat Loss vs. Shear Heating 17
3.1.2 Development of a Frozen Boundary Layer 19
3.2 Factors Affecting Plastic Material Degradation 20
3.2.1 Excessive Shear 20
3.2.2 Excessive Temperature 22
3.3 Effects of Mold Fill Rate on Fill Pressure 23
3.4 Post Filling or Packing Phase 24
3.4.1 Thermal Shrinkage as Plastic Cools 24
3.4.2 Compensation Flow to Offset Volumetric Shrinkage 25
3.4.3 Pressure Distribution During the Post Filling Phase 26
3.4.4 Gate Freeze-Off 26
3.5 Melt Flow Effects on Material and Molded Parts 27
3.5.1 Shrinkage 27
3.5.1.1 Volumetric Shrinkage 28
3.5.1.2 Orientation-Induced Shrinkage 29
3.5.2 Development of Residual Stresses and Warpage 33
3.5.2.1 Warpage and Residual Stress from Side-to-Side Shrinkage Variations .. 33
3.5.2.2 Warpage and Residual Stress from Global/Regional Shrinkage Variations 34
3.5.2.3 Warpage and Residual Stress from Orientation-Induced Shrinkage
Variations 34
3.5.3 Physical Properties as Effected by Orientation 35
3.6 Annealing a Molded Part 35
3.7 Summary 35
4 Gate Positioning and Molding Strategies 39
4.1 Gate Positioning Considerations 39
4.2 Design and Process Strategies for Injection Molding 41
4.2.1 Maintain Uniform Wall Thicknesses in a Part 41
4.2.2 Use Common Design Guidelines for Injection Molded Plastic Parts with Caution 42
4.2.3 Avoid Flowing from Thin to Thick 43
4.2.4 Establish a Simple Strategic Flow Pattern within a Cavity 44
4.2.5 Avoid Picture Framing 46
4.2.6 Integral Hinges 47
4.2.7 Balanced Filling Throughout a Mold 50
4.2.7.1 Gating Position(s) Within a Cavity 50
4.2.7.2 Multi-Cavity Molds 53
4.2.8 Provide for Uniform Temperatures (Mold and Melt) 55
4.2.9 Eliminate, Strategically Place, or Condition Welds 56
4.2.10 Avoiding Flow Hesitation 57
4.2.11 Managing Frictional Heating of the Melt 58
4.2.12 Minimize Runner Volume in Cold Runners 59
4.2.13 Avoid Excessive Shear Rates 60
4.2.14 Avoid Excessive, and Provide for Uniform, Shear Stresses 62
5 The Melt Delivery System 65
5.1 Runner Design Fundamentals 65
5.2 Overview of Runner/Melt Delivery System 66
5.2.1 Machine Nozzle 67
5.2.1.1 Nozzle Filter 68
5.2.1.2 Static Mixers 68
5.2.2 Sprue 68
5.2.3 Runner 69
5.2.4 Gate 69
5.3 Melt Flow Through the Melt Delivery System 69
5.3.1 Melt Preparation - The Injection Molding Machine 69
5.3.1.1 Pressure Development from a Molding Machine 70
5.3.1.2 Flow Through a Runner Channel 71
5.3.2 Effect of Temperature on Flow 72
5.3.2.1 Melt Temperature 72
5.3.2.2 Mold Temperature 73
5.3.3 Cold vs. Hot Runners 73
5.3.4 Pressure Drop through the Melt Delivery System
(Nozzle vs. Sprue vs. Runner vs. Gate vs. Part Forming Cavity) 74
5.4 Use of Mold Filling Analysis 75
5.5 Runner Cross Sectional Size and Shape 76
5.5.1 The Efficient Flow Channel 76
5.5.2 Pressure Development in the Runner 77
5.5.2.1 Flow through a Hot Runner vs. a Cold Runner 79
5.5.3 Runner Effect on Cycle Time 80
5.5.3.1 Cold Runner and Sprue Cooling Time 80
5.5.3.2 Hot Runner 80
5.5.4 Constant Diameter vs. Varying Diameter Runners 80
5.6 Designing Runners for Shear- and Thermally-Sensitive Materials 82
5.7 Runner Layouts 83
5.7.1 Geometrical Balanced Runners 84
5.7.2 Non-Geometrically Balanced Runners 84
5.7.3 Fishbone Runners vs. Geometrically Balanced Runners 85
5.7.3.1 Flow Balance Ratio 86
5.7.3.2 Melt Variation in Unbalanced Molds 87
5.7.3.3 Artificial Balancing of Runners 87
5.7.3.4 Does the Artificially Balanced Runners Reduce Runner Volume? 88
5.7.4 Family Molds 90
6 Filling and Melt Imbalances Developed in Multi-Cavity Molds 93
6.1 Source of Mold Filling Imbalances 93
6.1.1 Imbalances Developed from the Runner 93
6.1.2 Imbalance Caused by Non-Runner Layout Issues 95
6.2 Imbalance Effects on Process, Product, and Productivity 98
6.3 Shear-Induced Melt/Molding Imbalances in Geometrically Balanced Runners 102
6.3.1 Development and Stratification of Melt Variations Across a Runner Channel ... 102
6.3.2 Laminate Separation in Branching Runners Causing
Cavity-to-Cavity Filling Imbalances 103
6.3.3 Shear Induced Melt Imbalances in Stack Molds 105
6.3.4 Development of Intra-Cavity Variations 106
6.3.4.1 Warpage 107
6.3.4.2 Core Deflection 107
63.43 Effect on Concentric Parts (Gears, Fans, and Others) 108
6.3.5 Alternative Theories of the Cause of Mold Filling Imbalances 109
6.3.5.1 Cooling Variations 109
6.3.5.2 Plate Deflection 109
6.3.5.3 Corner Effect 110
6.3.5.4 Melt Pressure as the Cause of Filling Imbalance 110
6.4 Runner Layouts Ill
6.4.1 Identification of Various Flow Groups in Common Geometrically
Balanced Runners Ill
6.4.2 Apparent Geometrically Balanced Runner Layouts 112
6.5 Effect of Shear-Induced Melt Variations on Two-Stage Injection
Processes 113
6.5.1 Gas Assist Injection Molding 113
6.5.2 Co-Injection Molding 114
6.5.3 Structural and Microcellular Foam Molding 115
6.6 The Cost of Melt Imbalances 116
7 Managing Shear-Induced Melt Variations for Successful Molding 119
7.1 Static Mixers 119
7.2 Artificially Balancing 121
7.2.1 Varying Sizes of Branching Runners or Gates to Achieve a
Filling Balance 121
7.2.2 Varying Temperatures to Control Filling Balance 122
7.3 Melt Rotation Technology 122
7.3.1 Melt Rotation Technology in Hot Runner Molds 127
7.3.2 Melt Rotation Technology in Cold Runner Molds 128
7.3.3 Melt Rotation for Intra-Cavity Imbalances 129
7.3.4 Multi-Axis Melt Symmetry 130
7.3.5 n-Mold Adjustable Rheological Control (iMARC™) 132
7.3.5.1 3D Molding 132
7.4 Melt Rotation for Controlling Two Stage Injection Processes 135
7.5 Controlling Warpage Through Melt Rotation Technology 136
7.5.1 Development of Warpage Potential 139
7.5.2 Controlled Warpage through Melt Rotation Technology 140
7.5.3 New Application for 3D Molding 142
8 Cold Runner Molds 145
8.1 Sprue 146
8.1.1 Cold Sprue 146
8.1.2 Hot Sprue 149
8.2 The Cold Runner 149
8.2.1 Important Machining Considerations 151
8.2.2 Sizing of Runners 152
8.2.3 Venting 153
8.2.4 Runner Ejection 153
8.2.4.1 Sprue Puller 153
8.2.4.2 Secondary Sprue/Cold Drop 154
8.2.4.3 Runner 155
8.2.5 Cold Slug Wells 155
8.3 Runners for Three-Plate Cold Runner Molds 156
8.4 Gate Designs 158
8.4.1 Sprue Gate 159
8.4.2 Common Edge Gate 160
8.4.3 Fan Gate 161
8.4.4 Film Gate or Flash Gate 162
8.4.5 Ring Gate 162
8.4.6 Diaphragm Gate 163
8.4.7 Tunnel Gate 164
8.4.8 Cashew or Banana Gate 165
8.4.9 Jump Gate 166
8.4.10 Pin Point Gate 166
8.4.11 Chisel Gate 166
8.4.12 Tab Gate 167
8.5 Effects of Gate Diameter in Multi-Cavity Molds 167
8.5.1 Study 1 167
8.5.2 Study2 168
8.5.3 Measuring Tolerances 169
9 Hot Runner Molds 173
9.1 Overview 173
9.1.1 Advantages and Disadvantage of Hot Runner Systems 174
9.1.1.1 Advantages of Hot Runners 174
9.1.1.2 Disadvantages of Hot Runners 176
9.1.1.3 Summary of Attributes of Different Runner Systems 178
9.2 Overview of Multi-Cavity Hot Runner Systems (Contrasting Systems) 179
9.2.1 Externally Heated Manifold and Drops/Nozzles 180
9.2.2 Externally Heated Manifold with Internally Heated Drops 181
9.2.3 Internally Heated Manifold and Internally Heated Drops 182
9.2.4 Insulated Manifold and Drops 182
9.3 Stack Molds 183
10 Hot Runner Flow Channel Design 185
10.1 Layout for Balanced Molding 185
10.2 Cross-Sectional Shape 186
10.3 Corners 187
10.4 Effect of Diameter 188
10.4.1 Pressure 188
10.4.2 Shot Control 190
10.4.3 Color Change 191
10.4.4 Material Change 194
11 Hot Runner Drops, Nozzles and Gates 195
11.1 Hot Drops 196
11.1.1 Externally Heated Hot Drops (Nozzles) 196
11.1.2 Internally Heated Hot Drops 197
11.1.3 Heat Conducting Nozzles 197
11.2 Restrictive/Pin Point Gates 198
11.3 Gate Design Considerations 199
11.3.1 Gate Freeze-Off 199
11.3.2 Stringing/Drooling 200
11.3.3 Packing 200
11.3.4 Mechanical Valve Gates 202
11.3.4.1 Sequential Valve Gates 204
11.3.5 Thermal Shut-Off Gates 205
11.3.6 Hot Edge Gates 205
11.3.7 Multi Tip Nozzles 206
12 Thermal Issues of Hot Runner Systems 207
12.1 Heating 207
12.1.1 Coil (Cable) Heaters 208
12.1.2 Band Heaters 208
12.1.3 Tubular Heaters 209
12.1.4 Cartridge Heaters 209
12.1.5 Heat Pipe Technology 210
12.2 Heater Temperature Control 210
12.2.1 Thermocouples 210
12.2.2 Temperature Controllers 211
12.3 Power Requirements 212
12.4 Thermal Isolation of the Hot Runner 213
12.5 Gate Temperature Control 215
12.5.1 Gate Heating 216
12.5.2 Gate Cooling 216
13 The Mechanics and Operation of Hot Runners 217
13.1 Assembly and Leakage Issues 217
13.1.1 System Design 218
13.1.2 Hot Runner System Machining and Assembly 220
13.2 Mold and Machine Distortions 223
13.3 Startup Procedures 225
13.4 Color and Material Changes 225
13.5 Gates 226
13.5.1 Vestige 226
13.5.2 Clog 227
13.5.3 Wear 227
13.6 Maintenance 227
14 Process of Designing and Selecting a Runner System (Gate and Runner) -
A Summary 229
14.1 Number of Gates 229
14.2 Gating Position on a Part 229
14.2.1 Cosmetic 229
14.2.2 Effect on Shrinkage, Warp, and Residual Stress 230
14.2.2.1 Orientation 230
14.2.2.2 Volumetric Shrinkage (Regional) 230
14.2.2.3 Unbalanced Filling 231
14.2.3 Structural Issues 231
14.2.3.1 Gate Stress 231
14.2.3.2 Flow Orientation 232
14.2.4 Gating into Restricted, or otherwise Difficult to Reach Locations 232
14.3 Cavity Positioning 232
14.4 Material 232
14.5 Jetting 233
14.6 Thick vs. Thin Regions of the Part 233
14.6.1 Volumetric Shrinkage 233
14.6.2 Hesitation 233
14.7 Number of Cavities 233
14.8 Production Volume 234
14.9 Precision Molding (Precision Size, Shape, Weight, Mechanical Properties
and Consistency) 234
14.10 Color Changes 234
14.11 Material Change 235
14.12 Regrind of Runners 235
14.13 Part Thickness 235
14.13.1 Thin Part 235
14.13.2ThickPart 236
14.14 Part Size 236
14.15 Labor Skill Level 236
14.16 Post Mold Handling 237
14.17 Part/Gate Stress Issues 237
14.18 Hot and Cold Runner Combinations 237
14.19 Two-Phase Injection Processes 237
15 Troubleshooting 239
15.1 The 5 Step Process™ 239
15.1.1 Shear-Induced Flow Imbalance Developed in a Geometrically Balanced Runner 239
15.1.2 Steel Variations in the Mold 240
15.1.3 Cooling Affects 240
15.1.4 Hot Runner Systems 241
15.1.5 Summary of Test Data 241
15.1.6 The 5 Step Process: Method of Application 241
15.2 Injection Molding Troubleshooting Guidelines for Scientific Injection Molding 243
15.3 Two Stage Molding Set-Up 290
15.4 Intensification Ratio (Ri) 301
15.5 Characterizing Flow Behavior in an Injection Mold 302
15.6 List of Amorphous and Semi-Crystalline Resins 302
|
adam_txt |
Contents
1 Overview of Runners, Gates, and Gate Positioning 1
1.1 Primary Parting Plane Runners 1
1.2 Sub Runners 2
1.2.1 Cold Sub Runners 2
1.2.2 Hot Sub Runners 2
1.3 Hybrid Sub-Runner and Parting Line Runner 3
1.4 Gate Designs 3
2 Rheology of Plastics 5
2.1 Laminar vs. Turbulent Flow 5
2.2 Fountain Flow 7
2.3 Factors Affecting Viscosity 7
2.3.1 Common Viscosity Models 8
2.3.2 Non-Newtonian Fluids 10
2.3.3 Temperature 11
2.3.4 Pressure 12
2.4 Melt Compressibility 12
2.5 Melt Flow Characterization 13
3 Filling and Packing Effects on Material and Molded Part 17
3.1 Process Effects on Material Viscosity 17
3.1.1 Melt Thermal Balance - Conductive Heat Loss vs. Shear Heating 17
3.1.2 Development of a Frozen Boundary Layer 19
3.2 Factors Affecting Plastic Material Degradation 20
3.2.1 Excessive Shear 20
3.2.2 Excessive Temperature 22
3.3 Effects of Mold Fill Rate on Fill Pressure 23
3.4 Post Filling or Packing Phase 24
3.4.1 Thermal Shrinkage as Plastic Cools 24
3.4.2 Compensation Flow to Offset Volumetric Shrinkage 25
3.4.3 Pressure Distribution During the Post Filling Phase 26
3.4.4 Gate Freeze-Off 26
3.5 Melt Flow Effects on Material and Molded Parts 27
3.5.1 Shrinkage 27
3.5.1.1 Volumetric Shrinkage 28
3.5.1.2 Orientation-Induced Shrinkage 29
3.5.2 Development of Residual Stresses and Warpage 33
3.5.2.1 Warpage and Residual Stress from Side-to-Side Shrinkage Variations . 33
3.5.2.2 Warpage and Residual Stress from Global/Regional Shrinkage Variations 34
3.5.2.3 Warpage and Residual Stress from Orientation-Induced Shrinkage
Variations 34
3.5.3 Physical Properties as Effected by Orientation 35
3.6 Annealing a Molded Part 35
3.7 Summary 35
4 Gate Positioning and Molding Strategies 39
4.1 Gate Positioning Considerations 39
4.2 Design and Process Strategies for Injection Molding 41
4.2.1 Maintain Uniform Wall Thicknesses in a Part 41
4.2.2 Use Common Design Guidelines for Injection Molded Plastic Parts with Caution 42
4.2.3 Avoid Flowing from Thin to Thick 43
4.2.4 Establish a Simple Strategic Flow Pattern within a Cavity 44
4.2.5 Avoid Picture Framing 46
4.2.6 Integral Hinges 47
4.2.7 Balanced Filling Throughout a Mold 50
4.2.7.1 Gating Position(s) Within a Cavity 50
4.2.7.2 Multi-Cavity Molds 53
4.2.8 Provide for Uniform Temperatures (Mold and Melt) 55
4.2.9 Eliminate, Strategically Place, or Condition Welds 56
4.2.10 Avoiding Flow Hesitation 57
4.2.11 Managing Frictional Heating of the Melt 58
4.2.12 Minimize Runner Volume in Cold Runners 59
4.2.13 Avoid Excessive Shear Rates 60
4.2.14 Avoid Excessive, and Provide for Uniform, Shear Stresses 62
5 The Melt Delivery System 65
5.1 Runner Design Fundamentals 65
5.2 Overview of Runner/Melt Delivery System 66
5.2.1 Machine Nozzle 67
5.2.1.1 Nozzle Filter 68
5.2.1.2 Static Mixers 68
5.2.2 Sprue 68
5.2.3 Runner 69
5.2.4 Gate 69
5.3 Melt Flow Through the Melt Delivery System 69
5.3.1 Melt Preparation - The Injection Molding Machine 69
5.3.1.1 Pressure Development from a Molding Machine 70
5.3.1.2 Flow Through a Runner Channel 71
5.3.2 Effect of Temperature on Flow 72
5.3.2.1 Melt Temperature 72
5.3.2.2 Mold Temperature 73
5.3.3 Cold vs. Hot Runners 73
5.3.4 Pressure Drop through the Melt Delivery System
(Nozzle vs. Sprue vs. Runner vs. Gate vs. Part Forming Cavity) 74
5.4 Use of Mold Filling Analysis 75
5.5 Runner Cross Sectional Size and Shape 76
5.5.1 The Efficient Flow Channel 76
5.5.2 Pressure Development in the Runner 77
5.5.2.1 Flow through a Hot Runner vs. a Cold Runner 79
5.5.3 Runner Effect on Cycle Time 80
5.5.3.1 Cold Runner and Sprue Cooling Time 80
5.5.3.2 Hot Runner 80
5.5.4 Constant Diameter vs. Varying Diameter Runners 80
5.6 Designing Runners for Shear- and Thermally-Sensitive Materials 82
5.7 Runner Layouts 83
5.7.1 Geometrical Balanced Runners 84
5.7.2 Non-Geometrically Balanced Runners 84
5.7.3 Fishbone Runners vs. Geometrically Balanced Runners 85
5.7.3.1 Flow Balance Ratio 86
5.7.3.2 Melt Variation in Unbalanced Molds 87
5.7.3.3 Artificial Balancing of Runners 87
5.7.3.4 Does the Artificially Balanced Runners Reduce Runner Volume? 88
5.7.4 Family Molds 90
6 Filling and Melt Imbalances Developed in Multi-Cavity Molds 93
6.1 Source of Mold Filling Imbalances 93
6.1.1 Imbalances Developed from the Runner 93
6.1.2 Imbalance Caused by Non-Runner Layout Issues 95
6.2 Imbalance Effects on Process, Product, and Productivity 98
6.3 Shear-Induced Melt/Molding Imbalances in Geometrically Balanced Runners 102
6.3.1 Development and Stratification of Melt Variations Across a Runner Channel . 102
6.3.2 Laminate Separation in Branching Runners Causing
Cavity-to-Cavity Filling Imbalances 103
6.3.3 Shear Induced Melt Imbalances in Stack Molds 105
6.3.4 Development of Intra-Cavity Variations 106
6.3.4.1 Warpage 107
6.3.4.2 Core Deflection 107
63.43 Effect on Concentric Parts (Gears, Fans, and Others) 108
6.3.5 Alternative Theories of the Cause of Mold Filling Imbalances 109
6.3.5.1 Cooling Variations 109
6.3.5.2 Plate Deflection 109
6.3.5.3 Corner Effect 110
6.3.5.4 Melt Pressure as the Cause of Filling Imbalance 110
6.4 Runner Layouts Ill
6.4.1 Identification of Various Flow Groups in Common Geometrically
Balanced Runners Ill
6.4.2 Apparent Geometrically Balanced Runner Layouts 112
6.5 Effect of Shear-Induced Melt Variations on Two-Stage Injection
Processes 113
6.5.1 Gas Assist Injection Molding 113
6.5.2 Co-Injection Molding 114
6.5.3 Structural and Microcellular Foam Molding 115
6.6 The Cost of Melt Imbalances 116
7 Managing Shear-Induced Melt Variations for Successful Molding 119
7.1 Static Mixers 119
7.2 Artificially Balancing 121
7.2.1 Varying Sizes of Branching Runners or Gates to Achieve a
Filling Balance 121
7.2.2 Varying Temperatures to Control Filling Balance 122
7.3 Melt Rotation Technology 122
7.3.1 Melt Rotation Technology in Hot Runner Molds 127
7.3.2 Melt Rotation Technology in Cold Runner Molds 128
7.3.3 Melt Rotation for Intra-Cavity Imbalances 129
7.3.4 Multi-Axis Melt Symmetry 130
7.3.5 n-Mold Adjustable Rheological Control (iMARC™) 132
7.3.5.1 3D Molding 132
7.4 Melt Rotation for Controlling Two Stage Injection Processes 135
7.5 Controlling Warpage Through Melt Rotation Technology 136
7.5.1 Development of Warpage Potential 139
7.5.2 Controlled Warpage through Melt Rotation Technology 140
7.5.3 New Application for 3D Molding 142
8 Cold Runner Molds 145
8.1 Sprue 146
8.1.1 Cold Sprue 146
8.1.2 Hot Sprue 149
8.2 The Cold Runner 149
8.2.1 Important Machining Considerations 151
8.2.2 Sizing of Runners 152
8.2.3 Venting 153
8.2.4 Runner Ejection 153
8.2.4.1 Sprue Puller 153
8.2.4.2 Secondary Sprue/Cold Drop 154
8.2.4.3 Runner 155
8.2.5 Cold Slug Wells 155
8.3 Runners for Three-Plate Cold Runner Molds 156
8.4 Gate Designs 158
8.4.1 Sprue Gate 159
8.4.2 Common Edge Gate 160
8.4.3 Fan Gate 161
8.4.4 Film Gate or Flash Gate 162
8.4.5 Ring Gate 162
8.4.6 Diaphragm Gate 163
8.4.7 Tunnel Gate 164
8.4.8 Cashew or Banana Gate 165
8.4.9 Jump Gate 166
8.4.10 Pin Point Gate 166
8.4.11 Chisel Gate 166
8.4.12 Tab Gate 167
8.5 Effects of Gate Diameter in Multi-Cavity Molds 167
8.5.1 Study 1 167
8.5.2 Study2 168
8.5.3 Measuring Tolerances 169
9 Hot Runner Molds 173
9.1 Overview 173
9.1.1 Advantages and Disadvantage of Hot Runner Systems 174
9.1.1.1 Advantages of Hot Runners 174
9.1.1.2 Disadvantages of Hot Runners 176
9.1.1.3 Summary of Attributes of Different Runner Systems 178
9.2 Overview of Multi-Cavity Hot Runner Systems (Contrasting Systems) 179
9.2.1 Externally Heated Manifold and Drops/Nozzles 180
9.2.2 Externally Heated Manifold with Internally Heated Drops 181
9.2.3 Internally Heated Manifold and Internally Heated Drops 182
9.2.4 Insulated Manifold and Drops 182
9.3 Stack Molds 183
10 Hot Runner Flow Channel Design 185
10.1 Layout for Balanced Molding 185
10.2 Cross-Sectional Shape 186
10.3 Corners 187
10.4 Effect of Diameter 188
10.4.1 Pressure 188
10.4.2 Shot Control 190
10.4.3 Color Change 191
10.4.4 Material Change 194
11 Hot Runner Drops, Nozzles and Gates 195
11.1 Hot Drops 196
11.1.1 Externally Heated Hot Drops (Nozzles) 196
11.1.2 Internally Heated Hot Drops 197
11.1.3 Heat Conducting Nozzles 197
11.2 Restrictive/Pin Point Gates 198
11.3 Gate Design Considerations 199
11.3.1 Gate Freeze-Off 199
11.3.2 Stringing/Drooling 200
11.3.3 Packing 200
11.3.4 Mechanical Valve Gates 202
11.3.4.1 Sequential Valve Gates 204
11.3.5 Thermal Shut-Off Gates 205
11.3.6 Hot Edge Gates 205
11.3.7 Multi Tip Nozzles 206
12 Thermal Issues of Hot Runner Systems 207
12.1 Heating 207
12.1.1 Coil (Cable) Heaters 208
12.1.2 Band Heaters 208
12.1.3 Tubular Heaters 209
12.1.4 Cartridge Heaters 209
12.1.5 Heat Pipe Technology 210
12.2 Heater Temperature Control 210
12.2.1 Thermocouples 210
12.2.2 Temperature Controllers 211
12.3 Power Requirements 212
12.4 Thermal Isolation of the Hot Runner 213
12.5 Gate Temperature Control 215
12.5.1 Gate Heating 216
12.5.2 Gate Cooling 216
13 The Mechanics and Operation of Hot Runners 217
13.1 Assembly and Leakage Issues 217
13.1.1 System Design 218
13.1.2 Hot Runner System Machining and Assembly 220
13.2 Mold and Machine Distortions 223
13.3 Startup Procedures 225
13.4 Color and Material Changes 225
13.5 Gates 226
13.5.1 Vestige 226
13.5.2 Clog 227
13.5.3 Wear 227
13.6 Maintenance 227
14 Process of Designing and Selecting a Runner System (Gate and Runner) -
A Summary 229
14.1 Number of Gates 229
14.2 Gating Position on a Part 229
14.2.1 Cosmetic 229
14.2.2 Effect on Shrinkage, Warp, and Residual Stress 230
14.2.2.1 Orientation 230
14.2.2.2 Volumetric Shrinkage (Regional) 230
14.2.2.3 Unbalanced Filling 231
14.2.3 Structural Issues 231
14.2.3.1 Gate Stress 231
14.2.3.2 Flow Orientation 232
14.2.4 Gating into Restricted, or otherwise Difficult to Reach Locations 232
14.3 Cavity Positioning 232
14.4 Material 232
14.5 Jetting 233
14.6 Thick vs. Thin Regions of the Part 233
14.6.1 Volumetric Shrinkage 233
14.6.2 Hesitation 233
14.7 Number of Cavities 233
14.8 Production Volume 234
14.9 Precision Molding (Precision Size, Shape, Weight, Mechanical Properties
and Consistency) 234
14.10 Color Changes 234
14.11 Material Change 235
14.12 Regrind of Runners 235
14.13 Part Thickness 235
14.13.1 Thin Part 235
14.13.2ThickPart 236
14.14 Part Size 236
14.15 Labor Skill Level 236
14.16 Post Mold Handling 237
14.17 Part/Gate Stress Issues 237
14.18 Hot and Cold Runner Combinations 237
14.19 Two-Phase Injection Processes 237
15 Troubleshooting 239
15.1 The 5 Step Process™ 239
15.1.1 Shear-Induced Flow Imbalance Developed in a Geometrically Balanced Runner 239
15.1.2 Steel Variations in the Mold 240
15.1.3 Cooling Affects 240
15.1.4 Hot Runner Systems 241
15.1.5 Summary of Test Data 241
15.1.6 The 5 Step Process: Method of Application 241
15.2 Injection Molding Troubleshooting Guidelines for Scientific Injection Molding 243
15.3 Two Stage Molding Set-Up 290
15.4 Intensification Ratio (Ri) 301
15.5 Characterizing Flow Behavior in an Injection Mold 302
15.6 List of Amorphous and Semi-Crystalline Resins 302 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Beaumont, John P. 1952- |
author_GND | (DE-588)124071295 |
author_facet | Beaumont, John P. 1952- |
author_role | aut |
author_sort | Beaumont, John P. 1952- |
author_variant | j p b jp jpb |
building | Verbundindex |
bvnumber | BV022887747 |
callnumber-first | T - Technology |
callnumber-label | TP1150 |
callnumber-raw | TP1150 |
callnumber-search | TP1150 |
callnumber-sort | TP 41150 |
callnumber-subject | TP - Chemical Technology |
classification_rvk | ZM 8160 |
classification_tum | CIT 735f |
ctrlnum | (OCoLC)156975324 (DE-599)BVBBV022887747 |
dewey-full | 668.4/12 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 668 - Technology of other organic products |
dewey-raw | 668.4/12 |
dewey-search | 668.4/12 |
dewey-sort | 3668.4 212 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Chemie / Pharmazie Werkstoffwissenschaften Chemie-Ingenieurwesen Werkstoffwissenschaften / Fertigungstechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02068nam a2200505zc 4500</leader><controlfield tag="001">BV022887747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071024 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071017s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783446407657</subfield><subfield code="9">978-3-446-40765-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781569904213</subfield><subfield code="9">978-1-56990-421-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)156975324</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022887747</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TP1150</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">668.4/12</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 8160</subfield><subfield code="0">(DE-625)157161:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CIT 735f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Beaumont, John P.</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124071295</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Runner and gating design handbook</subfield><subfield code="b">tools for successful injection molding</subfield><subfield code="c">John P. Beaumont</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Munich [u.a.]</subfield><subfield code="b">Hanser</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVI, 308 S.</subfield><subfield code="b">zahlr. Ill. und graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aInjection molding of plastics</subfield><subfield code="a">vHandbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aMolding (Chemical technology)</subfield><subfield code="a">vHandbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spritzgießwerkzeug</subfield><subfield code="0">(DE-588)4056563-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Heißkanalverfahren</subfield><subfield code="0">(DE-588)4730959-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anguss</subfield><subfield code="0">(DE-588)4226633-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Werkstoffgerechtes Konstruieren</subfield><subfield code="0">(DE-588)4233887-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Spritzgießwerkzeug</subfield><subfield code="0">(DE-588)4056563-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anguss</subfield><subfield code="0">(DE-588)4226633-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Werkstoffgerechtes Konstruieren</subfield><subfield code="0">(DE-588)4233887-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Spritzgießwerkzeug</subfield><subfield code="0">(DE-588)4056563-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Heißkanalverfahren</subfield><subfield code="0">(DE-588)4730959-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016092629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016092629</subfield></datafield></record></collection> |
id | DE-604.BV022887747 |
illustrated | Illustrated |
index_date | 2024-07-02T18:52:26Z |
indexdate | 2024-07-09T21:07:47Z |
institution | BVB |
isbn | 9783446407657 9781569904213 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016092629 |
oclc_num | 156975324 |
open_access_boolean | |
owner | DE-29T DE-210 DE-91G DE-BY-TUM DE-12 DE-92 DE-83 |
owner_facet | DE-29T DE-210 DE-91G DE-BY-TUM DE-12 DE-92 DE-83 |
physical | XVI, 308 S. zahlr. Ill. und graph. Darst. 24 cm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Hanser |
record_format | marc |
spelling | Beaumont, John P. 1952- Verfasser (DE-588)124071295 aut Runner and gating design handbook tools for successful injection molding John P. Beaumont 2. ed. Munich [u.a.] Hanser 2007 XVI, 308 S. zahlr. Ill. und graph. Darst. 24 cm txt rdacontent n rdamedia nc rdacarrier aInjection molding of plastics vHandbooks, manuals, etc aMolding (Chemical technology) vHandbooks, manuals, etc Spritzgießwerkzeug (DE-588)4056563-4 gnd rswk-swf Heißkanalverfahren (DE-588)4730959-3 gnd rswk-swf Anguss (DE-588)4226633-6 gnd rswk-swf Werkstoffgerechtes Konstruieren (DE-588)4233887-6 gnd rswk-swf Spritzgießwerkzeug (DE-588)4056563-4 s Anguss (DE-588)4226633-6 s Werkstoffgerechtes Konstruieren (DE-588)4233887-6 s DE-604 Heißkanalverfahren (DE-588)4730959-3 s HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016092629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Beaumont, John P. 1952- Runner and gating design handbook tools for successful injection molding aInjection molding of plastics vHandbooks, manuals, etc aMolding (Chemical technology) vHandbooks, manuals, etc Spritzgießwerkzeug (DE-588)4056563-4 gnd Heißkanalverfahren (DE-588)4730959-3 gnd Anguss (DE-588)4226633-6 gnd Werkstoffgerechtes Konstruieren (DE-588)4233887-6 gnd |
subject_GND | (DE-588)4056563-4 (DE-588)4730959-3 (DE-588)4226633-6 (DE-588)4233887-6 |
title | Runner and gating design handbook tools for successful injection molding |
title_auth | Runner and gating design handbook tools for successful injection molding |
title_exact_search | Runner and gating design handbook tools for successful injection molding |
title_exact_search_txtP | Runner and gating design handbook tools for successful injection molding |
title_full | Runner and gating design handbook tools for successful injection molding John P. Beaumont |
title_fullStr | Runner and gating design handbook tools for successful injection molding John P. Beaumont |
title_full_unstemmed | Runner and gating design handbook tools for successful injection molding John P. Beaumont |
title_short | Runner and gating design handbook |
title_sort | runner and gating design handbook tools for successful injection molding |
title_sub | tools for successful injection molding |
topic | aInjection molding of plastics vHandbooks, manuals, etc aMolding (Chemical technology) vHandbooks, manuals, etc Spritzgießwerkzeug (DE-588)4056563-4 gnd Heißkanalverfahren (DE-588)4730959-3 gnd Anguss (DE-588)4226633-6 gnd Werkstoffgerechtes Konstruieren (DE-588)4233887-6 gnd |
topic_facet | aInjection molding of plastics vHandbooks, manuals, etc aMolding (Chemical technology) vHandbooks, manuals, etc Spritzgießwerkzeug Heißkanalverfahren Anguss Werkstoffgerechtes Konstruieren |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016092629&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT beaumontjohnp runnerandgatingdesignhandbooktoolsforsuccessfulinjectionmolding |