Microelectronic applications of chemical mechanical planarization:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, N.J.
Wiley
2008
|
Schlagworte: | |
Online-Zugang: | Table of contents only Publisher description Contributor biographical information Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references |
Beschreibung: | XXV, 734 S. Ill., graph. Darst. |
ISBN: | 9780471719199 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022881779 | ||
003 | DE-604 | ||
005 | 20080424 | ||
007 | t | ||
008 | 071015s2008 xxuad|| |||| 00||| eng d | ||
010 | |a 2007015557 | ||
020 | |a 9780471719199 |9 978-0-471-71919-9 | ||
035 | |a (OCoLC)123349971 | ||
035 | |a (DE-599)BVBBV022881779 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a TK7874 | |
082 | 0 | |a 621.3815 | |
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a ZN 4150 |0 (DE-625)157360: |2 rvk | ||
245 | 1 | 0 | |a Microelectronic applications of chemical mechanical planarization |c ed. by Yuzhuo Li |
264 | 1 | |a Hoboken, N.J. |b Wiley |c 2008 | |
300 | |a XXV, 734 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references | ||
650 | 4 | |a Integrated circuits |x Design and construction | |
650 | 4 | |a Chemical mechanical planarization | |
650 | 4 | |a Microelectronics |x Materials | |
650 | 0 | 7 | |a Oberflächenstruktur |0 (DE-588)4130418-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mikromechanik |0 (DE-588)4205811-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chemisches Verfahren |0 (DE-588)4454573-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Integrierte Schaltung |0 (DE-588)4027242-4 |D s |
689 | 0 | 1 | |a Mikromechanik |0 (DE-588)4205811-9 |D s |
689 | 0 | 2 | |a Oberflächenstruktur |0 (DE-588)4130418-4 |D s |
689 | 0 | 3 | |a Chemisches Verfahren |0 (DE-588)4454573-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Li, Yuzhuo |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip0715/2007015557.html |3 Table of contents only | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0740/2007015557-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0742/2007015557-b.html |3 Contributor biographical information | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016086744&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016086744 |
Datensatz im Suchindex
_version_ | 1804137145808453633 |
---|---|
adam_text | MICROELECTRONIC APPLICATIONS OF CHEMICAL MECHANICAL PLANARIZATION EDITED
BY YUZHUO LI 3ICENTENNIAL. 1 8 O 7 WILEY 2 O O 7 BICENTENN1AL
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
FOREWORD XIX CONTRIBUTING AUTHORS XXIII 1 WHY CMP? 1 YUZHUO LI 1.1
INTRODUCTION, 1 1.2 PREPARATION OF PLANAR SURFACE, 2 1.2.1 MULTILEVEL
METALLIZATION AND THE NEED FOR PLANARIZATION, 2 1.2.2 DEGREES OF
PLANARIZATION, 4 1.2.3 METHODS OF PLANARIZATION, 5 1.2.4 CHEMICAL AND
MECHANICAL PLANARIZATION OF DIELECTRIC FILMS, 7 1.2.5 PREPARATION OF
PLANAR THIN FILMS FOR NON-IC APPLICATIONS USING CMP, 8 1.3 FORMATION OF
FUNCTIONAL MICROSTRUCTURES, 9 1.3.1 RC DELAY AND NEW INTERCONNECT
MATERIALS, 9 1.3.2 DAMASCENE AND DUAL DAMASCENE, 12 1.3.3 TUNGSTEN CMP,
15 1.3.4 STI, 16 1.4 CMP TO CORRECT DEFECTS, 19 1.5 ADVANTAGES AND
DISADVANTAGES OF CMP, 20 1.6 CONCLUSION, 21 2 CURRENT AND FUTURE
CHALLENGES IN CMP MATERIALS MANSOUR MOINPOUR 2.1 INTRODUCTION, 25 2.2
HISTORIE PROSPECTIVE AND FUTURE TRENDS, 27 2.3 CMP MATERIAL
CHARACTERIZATION, 32 2.3.1 THERMAL EFFECTS, 33 2.3.2 SLURRY RHEOLOGY
STUDIES, 35 2.3.3 SLURRY-PAD INTERACTIONS, 38 2.3.4 PAED GROOVE EFFECTS,
42 2.3.5 PAD-WAFER CONTACT AND SLARRY TRANSPORT: DUAL EMISSION LASER
INDUCED FLUORESCENCE, 43 2.3.6 DYNAMIC NUCLEAR MAGNETIC RESONANCE, 45
2.3.7 CMP SLURRY STABILITY AND CORRELATION WITH DEFECTIVITY, 49 2.4
CONCLUSIONS, 51 3 PROCESSING TOOLS FOR MANUFACTURING MANABU TSUJIMURA
3.1 CMP OPERATION AND CHARACTERISTICS, 57 3.2 DESCRIPTION OF THE CMP
PROCESS, 59 3.3 OVERVIEW OF POLISHERS, 60 3.3.1 CMP SYSTEM, 60 3.3.2
BRIEF HISTORY OF CMP SYSTEMS, 61 3.3.3 DIVERSITY IN CMP TOOLS, 62 3.3.4
POLISHER, 62 3.3.5 CLEANING MODULE IN A DRY-IN/DRY-OUT SYSTEM, 64 3.4
CARRIERS AND DRESSERS, 65 3.4.1 FUNCTIONS OF CARRIERS AND DRESSERS, 65
3.4.2 CARRIER, 65 3.4.3 PROFILE CONTROL BY CARRIERS, 68 3.4.4 DRESSERS,
69 3.5 IN SITU AND EX SITU METROLOGIES, 72 3.5.1 APPLICATION, 72 3.5.2
REPRESENTATIVE MONITORS, 72 3.5.3 OTHER APPLICATIONS FOR THE MONITORS,
75 3.5.4 COMMUNICATION, 75 3.6 CONCLUSIONS, 78 4 TRIBOMETROLOGY OF CMP
PROCESS NORM GITIS AND RAGHU MUDHIVARTHI 4.1 INTRODUCTION, 81 4.2
TRIBOMETROLOGY OF CMP, 82 4.3 FACTORS INFLUENCING THE TNBOLOGY DURING
CMP, 85 4.3.1 PROCESS PARAMETERS DURING CMP, 85 4.3.2 POLISHING PAED
CHARACTERISTICS, 88 4.3.3 SLURRY CHARACTERISTICS, 90 4.3.4 WATER CONTOUR
CHARACTERISTS, 92 4.4 OPTIMIZING PAED CONDITIONING PROCESS, 92 4.4.1
PADPROBE*, 92 4.4.2 EFFECT OF TEMPERATURE, 100 4.5 CONDITIONER DESIGN,
102 4.6 CMP CONSUMABLE TESTING, 105 4.6.1 SLURRY TESTING, 105 4.6.2 PAED
TESTING, 108 4.6.3 RETAINING RINGS, 110 4.7 DEFECT ANALYSIS, 113 4.7.1
COEFFICIENT OF FRICTION AND ACOUSTIC EMISSION SIGNAL, 113 4.7.2 ADVANCED
SIGNAL PROCESSING, 114 4.8 SUMMARY, 117 5 PADS FOR IC CMP CHANGXUE WANG,
ED PAUL, TOSHIHIRO KOBAYASHI AND YUZHUO LI 5.1 INTRODUCTION, 123 5.2
PHYSICAL PROPERTIES OF CMP PADS AND THEIR EFFECTS ON POLISHING
PERFORMANCE, 124 5.2.1 PADTYPES, 124 5.2.2 PAED MICROSTRUCTURES AND
MACROSTRUCTURES, 125 5.2.3 POLYURETHANE PAED PROPERTIES AND CONTROL, 127
5.2.3.1 HARDNESS, YOUNG S MODULUS, AND STRENGTH, 127 5.2.3.2 PAED
POROSITY/DENSITY, 128 5.2.3.3 PAED THICKNESS, 128 5.2.3.4 PAED
STIFFNESS/STACKED PADS, 129 5.2.3.5 PAED GROOVES, 129 5.2.4 EFFECTS OF
PAED PROPERTY ON POLISHING PERFORMANCE, 129 5.2.4.1 PAED ROUGHNESS
EFFECTS, 130 5.2.4.2 PAED POROSITY/DENSITY EFFECTS, 131 5.2.4.3 PAED
HARDNESS, YOUNG S MODULUS, STIFFNESS, AND THICKNESS EFFECTS, 136 5.2.4.4
PAED GROOVE EFFECTS, 138 5.3 CHEMICAL PROPERTIES OF CMP PADS AND THEIR
EFFECTS ON POLISHING PERFORMANCES, 140 5.3.1 POLYURETHANE PAED
COMPONENTS, 140 5.3.2 POLYURETHANE PROPERTY CONTROL BY CHEMICAL
COMPONENTS, 140 5.3.3 CHEMICAL EFFECTS ON POLISHING PERFORMANCE, 141
VIII CONTENTS 5.4 PAED CONDITIONING AND ITS EFFECT ON CMP PERFORMANCE,
142 5.5 MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 145 5.5.1
REVIEW OF MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 145 5.5.2
MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 148 5.5.2.1 PADS AND
PRESSURE, 148 5.5.2.2 PADS AND ABRASIVES, 150 5.5.2.3 PADS, DISHING, AND
EROSION, 154 5.6 NOVEL DESIGNS OF CMP PADS, 159 5.6.1
PARTICLE-CONTAINING PADS, 159 5.6.2 SURFACE-TREATED PADS, 162 5.6.3
REACTIVE PAED, 164 6 MODELING 171 LEONARD BORUCKI AND AERA PHILIPOSSIAN
6.1 INTRODUCTION, 171 6.2 A TWO-STEP CHEMICAL MECHANICAL MATERIAL
REMOVAL MODEL, 172 6.3 PAED SURFACES AND PAED SURFACE CONTACT MODELING,
175 6.4 REACTION TEMPERATURE, 178 6.5 A POLISHING EXAMPLE, 185 6.6
TOPOGRAPHY PLANARIZATION, 189 7 KEY CHEMICAL COMPONENTS IN METAL CMP
SLURRIES 201 KRISHNAYYA CHEEMALAPATI, JASON KELEHER AND YUZHUO LI 7.1
INTRODUCTION, 201 7.2 OXIDIZERS, 202 7.2.1 NITRIC ACID, 202 7.2.2
HYDROGEN PEROXIDE, 203 7.2.3 FERRIC NITRATE, 210 7.2.4 POTASSIUM
PERMANGANATE, DICHROMATES, AND IODATE, 212 7.3 CHELATING AGENTS, 214
7.3.1 AMMONIA, 215 7.3.2 AMINO ACIDS, 216 7.3.3 ORGANIC ACIDS, 217 7.3.4
THERMODYNAMIC CONSIDERATION AND QUANTITATIVE DESCRIPTION, 218 7.4
SURFACTANTS, 219 7.4.1 STRUCTURES AND PHYSICAL PROPERTIES OF
SURFACTANTS, 219 7.4.2 DISPERSION OF PARTICLES, 221 7.4.3 SURFACE
MODIFICATION OF WAFER SURFACE, 222 CONTENTS I 7.5 ABRASIVE PARTICLES,
225 7.5.1 HARDNESS, 225 7.5.2 BULK PARTICLE DENSITY, 227 7.5.3 PARTICLE
CRYSTALLINITY AND SHAPES, 227 7.5.4 PARTICLE SIZE AND OVERSIZED PARTICLE
COUNT, 228 7.5.5 PARTICLE PREPARATION, 230 7.5.6 SURFACE PROPERTIES, 231
7.6 PARTICLE SURFACE MODIFICATION, 233 7.7 SOFT PARTICLES, 234 7.8 CASE
STUDY: ORGANIC PARTICLES AS ABRASIVES IN CU CMP, 235 7.8.1 PARTICLE
CHARACTERIZATION, 235 7.8.2 MATERIAL REMOVAL RATE AND SELECTIVITY, 235
7.8.3 STEP HEIGHT REDUCTION EFFICIENCY AND OVERPOLISHING WINDOW, 239
7.8.4 SUMMARY ON THE ORGANIC PARTICLES, 239 7.9 CONCLUSIONS, 239 8
CORROSION INHIBITOR FOR CU CMP SLURRY 249 SURESH KUMAR GOVINDASWAMY AND
YUZHUO LI 8.1 THERMODYNAMIC CONSIDERATIONS OF COPPER SURFACE, 250 8.2
TYPES OF PASSIVATING FILMS ON COPPER SURFACE UNDER OXDIZING CONDITIONS,
252 8.3 EFFECT OF PH ON BTA IN GLYCINE-HYDROGEN PEROXIDE BASED CU CMP
SLURRY, 257 8.4 EVALUATION OF POTENTIAL BTA ALTERNATIVES FOR ACIDIC CU
CMP SLURRY, 259 8.5 ELECTROCHEMICAL POLARIZATION STUDY OF CORROSION
INHIBITORS IN CU CMP SLURRY, 263 8.6 HYDROPHOBICITY OF THE SURFACE
PASSIVATION FILM, 265 8.7 COMPETITIVE SURFACE ADSORPTION BEHAVIOR OF
CORROSION INHIBITORS, 266 8.8 SUMMARY, 270 9 TUNGSTEN CMP APPLICATIONS
277 JEFF VISSER 9.1 INTRODUCTION, 277 9.2 BASIC TUNGSTEN APPLICATION,
REQUIREMENTS, AND PROCESS, 278 9.2.1 BASIC APPLICATIONS OF TUNGSTEN CMP,
278 9.2.2 BASIC W CMP REQUIREMENTS AND PROCEDURES, 281 X CONTENTS 9.3 W
CMP DEFECTS, 282 9.4 VARIOUS W CMP PROCESSING OPTIONS, 285 9.4.1 BASIC
CONSIDERATIONS, 285 9.4.2 BARRIER POLISHING, 289 9.4.3 OXIDE BUFFING,
289 9.4.4 POST-W CMP CLEANING, 290 9.5 OVERALL TUNGSTEN PROCESS (VARIOUS
PROCESSING DESIGN OPTIONS AND SUGGESTIONS), 290 9.5.1 W CMP PROCESS
CONTROLS, 290 9.5.2 PLATEN TEMPERATURE CONTROL, 291 9.5.3 SLURRY
SELECTIVITY, 292 9.6 CONCLUSIONS, 292 10 ELECTROCHEMISTRY IN ECMP 295
JINSHAN (JASON) HUO 10.1 INTRODUCTION, 295 10.2 PHYSICAL AND CHEMICAL
PROCESSES IN ELECTROCHEMICAL PLANARIZATION, 297 10.2.1
ELECTRODE/ELECTROLYTE INTERFACE, 297 10.2.2 ELECTROCHEMICAL REACTION,
298 10.2.3 MASS TRANSPORT, 299 10.2.4 ANODIC POLARIZATION CURVE AND
CONDITIONS FOR ELECTROCHEMICAL PLANARIZATION, 300 10.3 MECHANISMS AND
LIMITATION OF ELECTROCHEMICAL PLANARIZATION, 304 10.3.1 OHMIC LEVELING,
304 10.3.2 DIFFUSION LEVELING, 305 10.3.3 MIGRATION LEVELING, 307 10.4
IN SITU ANALYSIS OF ANODIC/PASSIVATION FILMS, 309 10.4.1 IMPEDANCE
MEASUREMENT, 309 10.4.2 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY, 310
10.4.3 ELLIPSOMETRY, 311 10.5 MODIFIED ELECTROCHEMICAL POLISHING
APPROACHES, 312 11 PLANARIZATION TECHNOLOGIES INVOLVING ELECTROCHEMICAL
REACTIONS 319 LAERTIS ECONOMIKOS 11.1 INTRODUCTION, 319 11.2 CMP, 321
11.3 ECP, 322 11.4 ECMP, 326 11.5 FUELL SEQUENCE
ELECTROCHEMICAL-MECHANICAL PLANARIZATION, 334 11.6 CONCLUSIONS, 340
CONTENTS XI 12 SHALLOW TRENCH ISOLATION CHEMICAL MECHANICAL
PLANARIZATION 345 YORDAN STEFANOV AND UDO SCHWALKE 12.1 INTRODUCTION,
345 12.2 LOCOS TO STI, 346 12.3 SHALLOW TRENCH ISOLATION, 349 12.4 THE
PLANARIZATION STEP IN DETAIL, 351 12.5 OPTIMIZATION TECHNIQUES, 358
12.5.1 DUMMY ACTIVE AREA INSERTION, 359 12.5.2 PATTERNED OXIDE ETCH
BACK, 359 12.5.3 NITRIDE OVERCOAT, 360 12.5.4 EXTIGATE, 361 12.5.5
SELECTIVE OXIDE DEPOSITION, 363 12.5.6 POLYSILICON-FILLED TRENCHES, 363
12.6 OUTLOOK, 364 13 CONSUMABLES FOR ADVANCED SHALLOW TRENCH ISOLATION
(STI) 369 CRAIG D. BURKHARD 13.1 INTRODUCTION, 369 13.2 REPRESENTATIVE
TESTING WAFERS FOR STI PROCESS AND CONSUMABLE EVALUATIONS, 371 13.3
EFFECTS OF ABRASIVE TYPES ON STI SLURRY PERFORMANCE, 373 13.4 EFFECTS OF
CHEMICAL ADDITIVES TO OXIDE: NITRIDE SELECTIVITY, 379 13.5 EFFECT OF
SLURRY PH, 385 13.6 EFFECT OF ABRASIVE PARTICLE SIZE ON REMOVAL RATE AND
DEFECTIVITY, 388 13.7 CONCLUSION, 395 14 FABRICATION OF MICRODEVICES
USING CMP 401 GERFRIED ZWICKER 14.1 INTRODUCTION, 401 14.2
MICROFABRICATION PROCESSES, 402 14.3 MICROFABRICATION PRODUCTS, 403 14.4
CMP REQUIREMENTS IN COMPARISON WITH IC FABRICATION, 404 14.5 EXAMPLES OF
CMP APPLICATIONS FOR MICROFABRICATION, 412 14.5.1 CASE STUDY I:
INTEGRATED PRESSURE SENSOR, 416 14.5.2 CASE STUDY II: POLY-SI SURFACE
MICROMACHINING AND ANGULAR RATE SENSOR, 417 14.5.3 CASE STUDY III:
INFRARED DIGITAL MICROMIRROR ARRAY, 422 14.5.4 MORE REPRESENTATIVE
APPLICATIONS, 425 14.6 OUTLOOK, 426 XII CONTENTS 15 THREE-DIMENSIONAL
(3D) INTEGRATION 431 J. JAY MCMAHON, JIAN-QIANG LU AND RONALD J. GUTMANN
15.1 OVERVIEW OF 3D TECHNOLOGY, 431 15.2 FACTORS MOTIVATING RESEARCH IN
3D, 432 15.2.1 SMALL FORM FACTOR, 432 15.2.2 HETEROGENEOUS INTEGRATION,
433 15.2.3 PERFORMANCE ENHANCEMENT, 434 15.3 APPROACHES TO 3D, 435
15.3.1 SINGULATED DIE 3D, 435 15.3.2 WAFER-LEVEL 3D, 436 15.3.2.1
WAFER-LEVEL 3D USING OXIDE-OXIDE BONDING, 436 15.3.2.2 WAFER-LEVEL 3D
USING COPPER-COPPER BONDING, 438 15.3.2.3 WAFER-LEVEL 3D USING ADHESIVE
BONDING, 439 15.3.2.4 3D INTEGRATION USING REDISTRIBUTION LAYER BONDING,
440 15.3.2.5 SUMMARY OF WAFER LEVEL 3D APPROACHES, 440 15.4 WAFER-LEVEL
3D UNIT PROCESSES, 442 15.4.1 WAFER-TO-WAFER ALIGNMENT, 442 15.4.2
WAFER-TO-WAFER BONDING, 444 15.4.2.1 OXIDE-OXIDE AND SILICON-OXIDE WAFER
BONDINGS, 444 15.4.2.2 COPPER-COPPER WAFER BONDING, 444 15.4.2.3 POLYMER
ADHESIVE WAFER BONDING, 446 15.4.3 WAFER THINNING FOR 3D, 447 15.4.3.1
TIMED REMOVAL THINNING APPROACHES, 448 15.4.3.2 THINNING TO EITHER AN
ETCH OR POLISH STOP, 448 15.4.4 THROUGH-SILICON VIAS, 449 15.5 PLANARITY
ISSUES IN 3D INTEGRATION, 450 15.5.1 CMP PLANARITY CAPABILITIES, 451
15.5.1.1 NANO-AND MICROSCALE PLANARIZATION, 451 15.5.1.2 WAFER-SCALE
PLANARITY, 451 15.5.2 PLANARITY ISSUES FOR VARIOUS 3D APPROACHES, 452
15.5.2.1 CMP FOR VIA-LAST APPROACH TO 3D USING OXIDE-TO-OXIDE BONDING,
452 15.5.2.2 CMP FOR VIA-LAST APPROACH TO 3D USING POLYMER ADHESIVE
BONDING, 454 15.5.2.3 CMP FOR VIA-FIRST APPROACH TO 3D USING
COPPER-TO-COPPER BONDING, 455 15.5.2.4 CMP FOR VIA-FIRST 3D USING
REDISTRIBUTION LAYER BONDING, 455 15.6 CONCLUSIONS, 456 CONTENTS XIII 16
POST-CMP CLEANING 467 JIN-GOO PARK, AHMED A. BUSNAINA AND YI-KOAN HONG
16.1 INTRODUCTION, 467 16.2 TYPES OF POST-CMP CLEANING PROCESSES, 468
16.2.1 WET BATH TYPE CLEANING, 468 16.2.2 SINGLE WAFER CLEANINGS, 469
16.2.2.1 IMMERSION-TYPE SINGLE-WAFER POST-CMP CLEANING SYSTEM, 469
16.2.2.2 SINGLE-WAFER SPIN CLEANER, 469 16.2.2.3 BRUSH CLEANING, 473
16.2.2.4 DRYING, 475 16.3 POST-CMP CLEANING CHEMISTRY, 477 16.3.1
CONVENTIONAL WET CLEANINGS, 477 16.3.2 CHEMICALS USED IN POST-CMP
CLEANING AND THEIR ROLES, 478 16.3.2.1 NH 4 OH, 478 16.3.2.2 HF, 478
16.3.2.3 ORGANIC ACIDS, 479 16.3.2.4 SURFACTANTS, 479 16.4 POST-CMP
CLEANING ACCORDING TO APPLICATIONS, 480 16.4.1 POST-OXIDE CMP CLEANING,
480 16.4.2 POST-W CMP CLEANING, 481 16.4.3 POST-STI CMP CLEANING, 481
16.4.4 POST-POLY-SI CMP CLEANING, 482 16.4.5 POST-CU/LOW-K CMP SURFACE
CLEANING, 484 16.4.5.1 CORROSION, 486 16.4.5.2 ORGANIC RESIDUE, 487
16.4.5.3 LOW-K MATERIALS, 489 16.4.5.4 EFFECT OF OTHER ADDITIVES ON
CLEANING, 491 16.5 ADHESION FORCE, FRICTION FORCE, AND DEFECTS DURING CU
CMP, 492 16.5.1 ADHESION FORCE OF SILICA AND ALUMINA ON CU, 493 16.5.2
FRICTION FORCE IN CU CMP PROCESS, 494 16.5.3 REMOVAL RATES OF CU SURFACE
IN CU CMP, 494 16.5.4 SURFACE QUALITY OF CU AFTER CU CMP PROCESS, 496
16.5.5 CORRELATION AMONG FRICTION, ADHESION FORCE, REMOVAL RATE, AND
SURFACE QUALITY IN CU CMP, 498 16.6 CASE STUDY: MEGASONIC POST-CMP
CLEANING OF THERMAL OXIDE WAFERS, 499 16.6.1 EXPERIMENTAL PROCEDURE, 499
16.6.2 THE EFFECT OF MEGASONIC INPUT POWER, 500 16.6.3 THE EFFECT OF
TEMPERATURE, 503 16.6.4 THE EFFECT OF ETCHING ON CLEANING, 503 16.7
SUMMARY, 505 XIV CONTENTS 17 DEFECTS OBSERVED ON THE WAFER AFTER THE CMP
PROCESS 511 PAUL LEFEVRE 17.1 INTRODUCTION, 511 17.2 DEFECTS AFTER OXIDE
CMP, 512 17.2.1 INTRODUCTION, 512 17.2.2 SCRATCHES, 513 17.2.3 COLOR
VARIATION*OXIDE THICKNESS VARIATION, 516 17.2.4 SLURRY RESIDUES AND
ORGANIC RESIDUES, 518 17.2.5 OTHER PARTICLES, 519 17.2.6 CRYSTAL
FORMATION, 519 17.2.7 TRACES ELEMENTS, 519 17.2.8 RADIOACTIVE
CONTAMINATION, 519 17.2.9 DEFECTS EXISTING BEFORE OXIDE CMP, 520 17.2.10
SOURCE OF DEFECT-CAUSING LARGE PARTICLES, 520 17.3 DEFECTS AFTER
POLYSILICON CMP, 520 17.3.1 INTRODUCTION, 520 17.3.2 SCRATCHES, 521
17.3.3 POLYSILICON RESIDUES, 521 17.3.4 PARTICLES, 522 17.3.5 RESIDUES,
522 17.3.6 TRACE ELEMENTS, 522 17.3.7 POLYSILICON PITTING AND VOIDS, 523
17.3.8 DISCOLORATION AT THE EDGE OF THE STRUCTURE OR EDGE OF THE ARRAYS,
523 17.3.9 DEFECTS EXISTING BEFORE AND REVEALED AFTER POLYSILICON CMP,
523 17.3.10 INFLUENCE OF PROCESSING TEMPERATURE, 524 17.4 DEFECTS AFTER
TUNGSTEN CMP, 524 17.4.1 INTRODUCTION, 524 17.4.2 CORROSION, PITTING,
AND VOID, 524 17.4.3 TUNGSTEN RECESS AND ROUGH TUNGSTEN SURFACE, 525
17.4.4 SCRATCHES, 528 17.4.5 DISCOLORATION*EDGE OVEREROSION (EOE), 529
17.4.6 TUNGSTEN AND METAL LINER RESIDUES, 530 17.4.7 PARTICLES, SLURRY
RESIDUES, AND TRACE METAL, 531 17.4.8 DELAMINATION, 531 17.4.9
PREEXISTING DEFECTS REVEALED AFTER TUNGSTEN CMP, 531 17.5 DEFECTS AFTER
COPPER CMP, 532 17.5.1 INTRODUCTION AND SUMMARY ON COPPER CMP DEFECTS,
532 17.5.2 COPPER CORROSION, 533 17.5.3 COPPER PITTING, 535 17.5.4
TRENCHING AT THE COPPER LINE EDGE, 537 CONTENTS XV 17.5.5 ROUGH COPPER
AND COPPER RECESS, 539 17.5.6 DISCOLORATION*METALS THICKNESS VARIATIONS
AND/OR DIELECTRIC THICKNESS VARIATION, 540 17.5.7 COPPER
ELECTROMIGRATION, 542 17.5.8 SCRATCHES, 544 17.5.9 METAL RESIDUES, 544
17.5.10 PARTICLES, RESIDUES, AND TRACE METALS, 547 17.5.11 DELAMINATION,
548 17.6 DEFECT OBSERVATION AND CHARACTERIZATION TECHNIQUES, 551 17.6.1
OPTICAL MICROSCOPE, 551 17.6.2 SCANNING ELECTRON MICROSCOPE, 552 17.6.3
ENERGY DISPERSIVE X-RAY SPECTROSCOPY (EDX), 552 17.6.4 SCANNING AUGER
MICROSCOPE (SAM), 553 17.6.5 ATOMIC FORCE MICROSCOPY, 553 17.7 ENSEMBLE
DEFECT DETECTION AND INSPECTION TECHNIQUES, 554 17.7.1 OPTICAL SCAN OF
FIAT FILM BLANKET WAFERS, 554 17.7.2 OPTICAL SCAN OF PATTERNED WAFERS,
554 17.7.3 DEFECT CLASSIFICATION, 555 17.8 CONSIDERATION FOR THE FUTURE,
555 18 CMP SLURRY METROLOGY, DISTRIBUTION, AND FILTRATION 563 RAKESH K.
SINGH 18.1 INTRODUCTION, 564 18.2 CMP SLURRY METROLOGY AND
CHARACTERIZATION, 567 18.2.1 SLURRY HEALTH MONITORING AND CONTROL, 568
18.2.2 CMP SLURRY BLEND CONTROL, 569 18.2.2.1 TWO-COMPONENT BLEND
CONTROL, 570 18.2.2.2 THREE-COMPONENT BLEND CONTROL, 572 18.2.3 CMP
SLURRY CHARACTERIZATION, 573 18.2.4 SUMMARY, 576 18.3 CMP SLURRY
BLENDING AND DISTRIBUTION, 577 18.3.1 SLURRY DELIVERY TECHNOLOGIES, 578
18.3.2 CONTINUOUS (ON-DEMAND) SLURRY DISPENSE AND METROLOGY, 578 18.3.3
SLURRY TURNOVERS IN FAB DISTRIBUTION, 580 18.3.4 SLURRY ABRASIVE
SETTLING AND DISPERSION, 580 18.3.4.1 SLURRY SETTLING RATE
QUANTIFICATION, 580 18.3.4.2 SETTLING BEHAVIOR OF DIFFERENT ABRASIVE CMP
SLURRIES, 581 18.3.4.3 REQUIRED MINIMUM FLOW VELOCITY FOR CMP SLURRIES,
584 18.3.5 SUMMARY, 585 18.4 CMP SLURRY FILTRATION, 586 18.4.1 SLURRY
FILTRATION METHODOLOGY, 587 XVI CONTENTS 18.4.2 FILTER DESIGN
CONSIDERATION, 588 18.4.3 SLURRY FILTER CHARACTERIZATION, 591 18.4.4 CMP
PROCESS AND CONSUMABLE TRENDS AND CHALLENGES, 592 18.4.5 SLURRY
FILTRATION-CASE STUDIES, 595 18.4.5.1 SILICA DISPERSION SINGLE-PASS
HIGH-RETENTION FILTRATION, 595 18.4.5.2 SILICA SLURRY POU AND
RECIRCULATION, 596 18.4.5.3 SILICA, CERIA, AND ALUMINA SLURRY TIGHTER
FILTRATION, 599 18.4.5.4 POLYSTYRENE LATEX (PSL) BEAD SOLUTION
FILTRATION, 602 18.4.6 SUMMARY, 602 18.5 PUMP HANDLING EFFECTS ON CMP
SLURRY FILTRATION*CASE STUDIES, 603 18.5.1 PUMP TECHNOLOGIES AND
APPLICATIONS, 604 18.5.2 PUMP SHEARING EFFECTS ON SLURRY ABRASIVES, 605
18.5.3 PUMP HANDLING AND FILTRATION DATA, 606 18.5.4 TEST CASES, 607
18.5.5 SUMMARY, 620 19 THE FACILITIES SIDE OF CMP 627 JOHN H. RYDZEWSKI
19.1 INTRODUCTION, 627 19.2 CHARACTERIZATION OF THE CMP WASTE STREAM,
628 19.3 MATERIALS OF COMPATIBILITY, 629 19.4 COLLECTION SYSTEM
METHODOLOGIES, 631 19.5 TREATMENT SYSTEM COMPONENTS, 632 19.5.1
COLLECTION TANK AND PH ADJUSTMENT, 632 19.5.2 OXIDIZER REMOVAL, 633
19.5.3 ORGANICS REMOVAL, 635 19.5.4 TREATMENT OF SUSPENDED SOLIDS, 635
19.5.5 REMOVAL OF TRACE METALS, 638 19.6 INTEGRATION OF
COMPONENTS*PUTTING IT ALL TOGETHER, 644 19.6.1 SOLIDS TREATMENT BEFORE
METALS REMOVAL, 644 19.6.2 SOLIDS TREATMENT AFTER METALS REMOVAL, 645
19.6.3 NO SOLIDS REMOVAL, 646 19.7 CONCLUSIONS, 647 20 CMP*THE NEXT
FIFTEEN YEARS 651 JOSEPH M. STEIGERWALD 20.1 THEPAST 15 YEARS, 651 20.2
CHALLENGES TO SILICON IC MANUFACTURING, 655 CONTENTS XVII 20.3 NEW CMP
PROCESSES, 661 20.3.1 THE TWO-YEAR DEVELOPMENT CYCLE, 661 20.3.2 FINFET
TRANSISTORS, 664 20.3.3 HIGH- GATE OXIDES, 665 20.3.4 OTHER EXAMPLES,
670 20.4 CMP CHALLENGES, 673 20.4.1 DEVELOPMENT TIME OF NEW CMP
MATERIALS, 673 20.4.2 CMP DEFECT REDUCTION, 675 20.4.3 CMP PROCESS
CONTROL, 677 20.4.3.1 CMP FILM THICKNESS CONTROL, 678 20.4.3.2 PROCESS
CONTROL SYSTEMS, CONSUMABLES MATERIAL CONTROL, AND EXCURSION PREVENTION,
680 20.4.4 COST OF CMP, 683 20.5 SUMMARY, 683 21 UTILITARIAN INFORMATION
FOR CMP SCIENTISTS AND ENGINEERS 687 YONGQING LAN AND YUZHUO LI 21.1
PHYSICAL AND CHEMICAL PROPERTIES OF ABRASIVE PARTICLES, 687 21.2
PHYSICAL AND CHEMICAL PROPERTIES ON OXIDIZERS, 690 21.3 PHYSICAL AND
CHEMICAL PROPERTIES ON RELEVANT SURFACTANTS, 690 21.3.1 CLASSIFICATION
OF SURFACTANTS, 690 21.3.2 CRITICAL MICELLAR CONCENTRATION, 692 21.3.3
TERNARY PHASE DIAGRAMS INVOLVING SURFACTANTS, 693 21.4 RELEVANT POURBAIX
DIAGRAM, 696 21.5 COMMONLY USED BUFFERING SYSTEMS, 703 21.6 USEFUL WEB
SITES, 704 INDEX 725
|
adam_txt |
MICROELECTRONIC APPLICATIONS OF CHEMICAL MECHANICAL PLANARIZATION EDITED
BY YUZHUO LI 3ICENTENNIAL. 1 8 O 7 WILEY 2 O O 7 BICENTENN1AL
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
FOREWORD XIX CONTRIBUTING AUTHORS XXIII 1 WHY CMP? 1 YUZHUO LI 1.1
INTRODUCTION, 1 1.2 PREPARATION OF PLANAR SURFACE, 2 1.2.1 MULTILEVEL
METALLIZATION AND THE NEED FOR PLANARIZATION, 2 1.2.2 DEGREES OF
PLANARIZATION, 4 1.2.3 METHODS OF PLANARIZATION, 5 1.2.4 CHEMICAL AND
MECHANICAL PLANARIZATION OF DIELECTRIC FILMS, 7 1.2.5 PREPARATION OF
PLANAR THIN FILMS FOR NON-IC APPLICATIONS USING CMP, 8 1.3 FORMATION OF
FUNCTIONAL MICROSTRUCTURES, 9 1.3.1 RC DELAY AND NEW INTERCONNECT
MATERIALS, 9 1.3.2 DAMASCENE AND DUAL DAMASCENE, 12 1.3.3 TUNGSTEN CMP,
15 1.3.4 STI, 16 1.4 CMP TO CORRECT DEFECTS, 19 1.5 ADVANTAGES AND
DISADVANTAGES OF CMP, 20 1.6 CONCLUSION, 21 2 CURRENT AND FUTURE
CHALLENGES IN CMP MATERIALS MANSOUR MOINPOUR 2.1 INTRODUCTION, 25 2.2
HISTORIE PROSPECTIVE AND FUTURE TRENDS, 27 2.3 CMP MATERIAL
CHARACTERIZATION, 32 2.3.1 THERMAL EFFECTS, 33 2.3.2 SLURRY RHEOLOGY
STUDIES, 35 2.3.3 SLURRY-PAD INTERACTIONS, 38 2.3.4 PAED GROOVE EFFECTS,
42 2.3.5 PAD-WAFER CONTACT AND SLARRY TRANSPORT: DUAL EMISSION LASER
INDUCED FLUORESCENCE, 43 2.3.6 DYNAMIC NUCLEAR MAGNETIC RESONANCE, 45
2.3.7 CMP SLURRY STABILITY AND CORRELATION WITH DEFECTIVITY, 49 2.4
CONCLUSIONS, 51 3 PROCESSING TOOLS FOR MANUFACTURING MANABU TSUJIMURA
3.1 CMP OPERATION AND CHARACTERISTICS, 57 3.2 DESCRIPTION OF THE CMP
PROCESS, 59 3.3 OVERVIEW OF POLISHERS, 60 3.3.1 CMP SYSTEM, 60 3.3.2
BRIEF HISTORY OF CMP SYSTEMS, 61 3.3.3 DIVERSITY IN CMP TOOLS, 62 3.3.4
POLISHER, 62 3.3.5 CLEANING MODULE IN A DRY-IN/DRY-OUT SYSTEM, 64 3.4
CARRIERS AND DRESSERS, 65 3.4.1 FUNCTIONS OF CARRIERS AND DRESSERS, 65
3.4.2 CARRIER, 65 3.4.3 PROFILE CONTROL BY CARRIERS, 68 3.4.4 DRESSERS,
69 3.5 IN SITU AND EX SITU METROLOGIES, 72 3.5.1 APPLICATION, 72 3.5.2
REPRESENTATIVE MONITORS, 72 3.5.3 OTHER APPLICATIONS FOR THE MONITORS,
75 3.5.4 COMMUNICATION, 75 3.6 CONCLUSIONS, 78 4 TRIBOMETROLOGY OF CMP
PROCESS NORM GITIS AND RAGHU MUDHIVARTHI 4.1 INTRODUCTION, 81 4.2
TRIBOMETROLOGY OF CMP, 82 4.3 FACTORS INFLUENCING THE TNBOLOGY DURING
CMP, 85 4.3.1 PROCESS PARAMETERS DURING CMP, 85 4.3.2 POLISHING PAED
CHARACTERISTICS, 88 4.3.3 SLURRY CHARACTERISTICS, 90 4.3.4 WATER CONTOUR
CHARACTERISTS, 92 4.4 OPTIMIZING PAED CONDITIONING PROCESS, 92 4.4.1
PADPROBE*, 92 4.4.2 EFFECT OF TEMPERATURE, 100 4.5 CONDITIONER DESIGN,
102 4.6 CMP CONSUMABLE TESTING, 105 4.6.1 SLURRY TESTING, 105 4.6.2 PAED
TESTING, 108 4.6.3 RETAINING RINGS, 110 4.7 DEFECT ANALYSIS, 113 4.7.1
COEFFICIENT OF FRICTION AND ACOUSTIC EMISSION SIGNAL, 113 4.7.2 ADVANCED
SIGNAL PROCESSING, 114 4.8 SUMMARY, 117 5 PADS FOR IC CMP CHANGXUE WANG,
ED PAUL, TOSHIHIRO KOBAYASHI AND YUZHUO LI 5.1 INTRODUCTION, 123 5.2
PHYSICAL PROPERTIES OF CMP PADS AND THEIR EFFECTS ON POLISHING
PERFORMANCE, 124 5.2.1 PADTYPES, 124 5.2.2 PAED MICROSTRUCTURES AND
MACROSTRUCTURES, 125 5.2.3 POLYURETHANE PAED PROPERTIES AND CONTROL, 127
5.2.3.1 HARDNESS, YOUNG'S MODULUS, AND STRENGTH, 127 5.2.3.2 PAED
POROSITY/DENSITY, 128 5.2.3.3 PAED THICKNESS, 128 5.2.3.4 PAED
STIFFNESS/STACKED PADS, 129 5.2.3.5 PAED GROOVES, 129 5.2.4 EFFECTS OF
PAED PROPERTY ON POLISHING PERFORMANCE, 129 5.2.4.1 PAED ROUGHNESS
EFFECTS, 130 5.2.4.2 PAED POROSITY/DENSITY EFFECTS, 131 5.2.4.3 PAED
HARDNESS, YOUNG'S MODULUS, STIFFNESS, AND THICKNESS EFFECTS, 136 5.2.4.4
PAED GROOVE EFFECTS, 138 5.3 CHEMICAL PROPERTIES OF CMP PADS AND THEIR
EFFECTS ON POLISHING PERFORMANCES, 140 5.3.1 POLYURETHANE PAED
COMPONENTS, 140 5.3.2 POLYURETHANE PROPERTY CONTROL BY CHEMICAL
COMPONENTS, 140 5.3.3 CHEMICAL EFFECTS ON POLISHING PERFORMANCE, 141
VIII CONTENTS 5.4 PAED CONDITIONING AND ITS EFFECT ON CMP PERFORMANCE,
142 5.5 MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 145 5.5.1
REVIEW OF MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 145 5.5.2
MODELING OF PAED EFFECTS ON POLISHING PERFORMANCE, 148 5.5.2.1 PADS AND
PRESSURE, 148 5.5.2.2 PADS AND ABRASIVES, 150 5.5.2.3 PADS, DISHING, AND
EROSION, 154 5.6 NOVEL DESIGNS OF CMP PADS, 159 5.6.1
PARTICLE-CONTAINING PADS, 159 5.6.2 SURFACE-TREATED PADS, 162 5.6.3
REACTIVE PAED, 164 6 MODELING 171 LEONARD BORUCKI AND AERA PHILIPOSSIAN
6.1 INTRODUCTION, 171 6.2 A TWO-STEP CHEMICAL MECHANICAL MATERIAL
REMOVAL MODEL, 172 6.3 PAED SURFACES AND PAED SURFACE CONTACT MODELING,
175 6.4 REACTION TEMPERATURE, 178 6.5 A POLISHING EXAMPLE, 185 6.6
TOPOGRAPHY PLANARIZATION, 189 7 KEY CHEMICAL COMPONENTS IN METAL CMP
SLURRIES 201 KRISHNAYYA CHEEMALAPATI, JASON KELEHER AND YUZHUO LI 7.1
INTRODUCTION, 201 7.2 OXIDIZERS, 202 7.2.1 NITRIC ACID, 202 7.2.2
HYDROGEN PEROXIDE, 203 7.2.3 FERRIC NITRATE, 210 7.2.4 POTASSIUM
PERMANGANATE, DICHROMATES, AND IODATE, 212 7.3 CHELATING AGENTS, 214
7.3.1 AMMONIA, 215 7.3.2 AMINO ACIDS, 216 7.3.3 ORGANIC ACIDS, 217 7.3.4
THERMODYNAMIC CONSIDERATION AND QUANTITATIVE DESCRIPTION, 218 7.4
SURFACTANTS, 219 7.4.1 STRUCTURES AND PHYSICAL PROPERTIES OF
SURFACTANTS, 219 7.4.2 DISPERSION OF PARTICLES, 221 7.4.3 SURFACE
MODIFICATION OF WAFER SURFACE, 222 CONTENTS I\ 7.5 ABRASIVE PARTICLES,
225 7.5.1 HARDNESS, 225 7.5.2 BULK PARTICLE DENSITY, 227 7.5.3 PARTICLE
CRYSTALLINITY AND SHAPES, 227 7.5.4 PARTICLE SIZE AND OVERSIZED PARTICLE
COUNT, 228 7.5.5 PARTICLE PREPARATION, 230 7.5.6 SURFACE PROPERTIES, 231
7.6 PARTICLE SURFACE MODIFICATION, 233 7.7 SOFT PARTICLES, 234 7.8 CASE
STUDY: ORGANIC PARTICLES AS ABRASIVES IN CU CMP, 235 7.8.1 PARTICLE
CHARACTERIZATION, 235 7.8.2 MATERIAL REMOVAL RATE AND SELECTIVITY, 235
7.8.3 STEP HEIGHT REDUCTION EFFICIENCY AND OVERPOLISHING WINDOW, 239
7.8.4 SUMMARY ON THE ORGANIC PARTICLES, 239 7.9 CONCLUSIONS, 239 8
CORROSION INHIBITOR FOR CU CMP SLURRY 249 SURESH KUMAR GOVINDASWAMY AND
YUZHUO LI 8.1 THERMODYNAMIC CONSIDERATIONS OF COPPER SURFACE, 250 8.2
TYPES OF PASSIVATING FILMS ON COPPER SURFACE UNDER OXDIZING CONDITIONS,
252 8.3 EFFECT OF PH ON BTA IN GLYCINE-HYDROGEN PEROXIDE BASED CU CMP
SLURRY, 257 8.4 EVALUATION OF POTENTIAL BTA ALTERNATIVES FOR ACIDIC CU
CMP SLURRY, 259 8.5 ELECTROCHEMICAL POLARIZATION STUDY OF CORROSION
INHIBITORS IN CU CMP SLURRY, 263 8.6 HYDROPHOBICITY OF THE SURFACE
PASSIVATION FILM, 265 8.7 COMPETITIVE SURFACE ADSORPTION BEHAVIOR OF
CORROSION INHIBITORS, 266 8.8 SUMMARY, 270 9 TUNGSTEN CMP APPLICATIONS
277 JEFF VISSER 9.1 INTRODUCTION, 277 9.2 BASIC TUNGSTEN APPLICATION,
REQUIREMENTS, AND PROCESS, 278 9.2.1 BASIC APPLICATIONS OF TUNGSTEN CMP,
278 9.2.2 BASIC W CMP REQUIREMENTS AND PROCEDURES, 281 X CONTENTS 9.3 W
CMP DEFECTS, 282 9.4 VARIOUS W CMP PROCESSING OPTIONS, 285 9.4.1 BASIC
CONSIDERATIONS, 285 9.4.2 BARRIER POLISHING, 289 9.4.3 OXIDE BUFFING,
289 9.4.4 POST-W CMP CLEANING, 290 9.5 OVERALL TUNGSTEN PROCESS (VARIOUS
PROCESSING DESIGN OPTIONS AND SUGGESTIONS), 290 9.5.1 W CMP PROCESS
CONTROLS, 290 9.5.2 PLATEN TEMPERATURE CONTROL, 291 9.5.3 SLURRY
SELECTIVITY, 292 9.6 CONCLUSIONS, 292 10 ELECTROCHEMISTRY IN ECMP 295
JINSHAN (JASON) HUO 10.1 INTRODUCTION, 295 10.2 PHYSICAL AND CHEMICAL
PROCESSES IN ELECTROCHEMICAL PLANARIZATION, 297 10.2.1
ELECTRODE/ELECTROLYTE INTERFACE, 297 10.2.2 ELECTROCHEMICAL REACTION,
298 10.2.3 MASS TRANSPORT, 299 10.2.4 ANODIC POLARIZATION CURVE AND
CONDITIONS FOR ELECTROCHEMICAL PLANARIZATION, 300 10.3 MECHANISMS AND
LIMITATION OF ELECTROCHEMICAL PLANARIZATION, 304 10.3.1 OHMIC LEVELING,
304 10.3.2 DIFFUSION LEVELING, 305 10.3.3 MIGRATION LEVELING, 307 10.4
IN SITU ANALYSIS OF ANODIC/PASSIVATION FILMS, 309 10.4.1 IMPEDANCE
MEASUREMENT, 309 10.4.2 ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY, 310
10.4.3 ELLIPSOMETRY, 311 10.5 MODIFIED ELECTROCHEMICAL POLISHING
APPROACHES, 312 11 PLANARIZATION TECHNOLOGIES INVOLVING ELECTROCHEMICAL
REACTIONS 319 LAERTIS ECONOMIKOS 11.1 INTRODUCTION, 319 11.2 CMP, 321
11.3 ECP, 322 11.4 ECMP, 326 11.5 FUELL SEQUENCE
ELECTROCHEMICAL-MECHANICAL PLANARIZATION, 334 11.6 CONCLUSIONS, 340
CONTENTS XI 12 SHALLOW TRENCH ISOLATION CHEMICAL MECHANICAL
PLANARIZATION 345 YORDAN STEFANOV AND UDO SCHWALKE 12.1 INTRODUCTION,
345 12.2 LOCOS TO STI, 346 12.3 SHALLOW TRENCH ISOLATION, 349 12.4 THE
PLANARIZATION STEP IN DETAIL, 351 12.5 OPTIMIZATION TECHNIQUES, 358
12.5.1 DUMMY ACTIVE AREA INSERTION, 359 12.5.2 PATTERNED OXIDE ETCH
BACK, 359 12.5.3 NITRIDE OVERCOAT, 360 12.5.4 EXTIGATE, 361 12.5.5
SELECTIVE OXIDE DEPOSITION, 363 12.5.6 POLYSILICON-FILLED TRENCHES, 363
12.6 OUTLOOK, 364 13 CONSUMABLES FOR ADVANCED SHALLOW TRENCH ISOLATION
(STI) 369 CRAIG D. BURKHARD 13.1 INTRODUCTION, 369 13.2 REPRESENTATIVE
TESTING WAFERS FOR STI PROCESS AND CONSUMABLE EVALUATIONS, 371 13.3
EFFECTS OF ABRASIVE TYPES ON STI SLURRY PERFORMANCE, 373 13.4 EFFECTS OF
CHEMICAL ADDITIVES TO OXIDE: NITRIDE SELECTIVITY, 379 13.5 EFFECT OF
SLURRY PH, 385 13.6 EFFECT OF ABRASIVE PARTICLE SIZE ON REMOVAL RATE AND
DEFECTIVITY, 388 13.7 CONCLUSION, 395 14 FABRICATION OF MICRODEVICES
USING CMP 401 GERFRIED ZWICKER 14.1 INTRODUCTION, 401 14.2
MICROFABRICATION PROCESSES, 402 14.3 MICROFABRICATION PRODUCTS, 403 14.4
CMP REQUIREMENTS IN COMPARISON WITH IC FABRICATION, 404 14.5 EXAMPLES OF
CMP APPLICATIONS FOR MICROFABRICATION, 412 14.5.1 CASE STUDY I:
INTEGRATED PRESSURE SENSOR, 416 14.5.2 CASE STUDY II: POLY-SI SURFACE
MICROMACHINING AND ANGULAR RATE SENSOR, 417 14.5.3 CASE STUDY III:
INFRARED DIGITAL MICROMIRROR ARRAY, 422 14.5.4 MORE REPRESENTATIVE
APPLICATIONS, 425 14.6 OUTLOOK, 426 XII CONTENTS 15 THREE-DIMENSIONAL
(3D) INTEGRATION 431 J. JAY MCMAHON, JIAN-QIANG LU AND RONALD J. GUTMANN
15.1 OVERVIEW OF 3D TECHNOLOGY, 431 15.2 FACTORS MOTIVATING RESEARCH IN
3D, 432 15.2.1 SMALL FORM FACTOR, 432 15.2.2 HETEROGENEOUS INTEGRATION,
433 15.2.3 PERFORMANCE ENHANCEMENT, 434 15.3 APPROACHES TO 3D, 435
15.3.1 SINGULATED DIE 3D, 435 15.3.2 WAFER-LEVEL 3D, 436 15.3.2.1
WAFER-LEVEL 3D USING OXIDE-OXIDE BONDING, 436 15.3.2.2 WAFER-LEVEL 3D
USING COPPER-COPPER BONDING, 438 15.3.2.3 WAFER-LEVEL 3D USING ADHESIVE
BONDING, 439 15.3.2.4 3D INTEGRATION USING REDISTRIBUTION LAYER BONDING,
440 15.3.2.5 SUMMARY OF WAFER LEVEL 3D APPROACHES, 440 15.4 WAFER-LEVEL
3D UNIT PROCESSES, 442 15.4.1 WAFER-TO-WAFER ALIGNMENT, 442 15.4.2
WAFER-TO-WAFER BONDING, 444 15.4.2.1 OXIDE-OXIDE AND SILICON-OXIDE WAFER
BONDINGS, 444 15.4.2.2 COPPER-COPPER WAFER BONDING, 444 15.4.2.3 POLYMER
ADHESIVE WAFER BONDING, 446 15.4.3 WAFER THINNING FOR 3D, 447 15.4.3.1
TIMED REMOVAL THINNING APPROACHES, 448 15.4.3.2 THINNING TO EITHER AN
ETCH OR POLISH STOP, 448 15.4.4 THROUGH-SILICON VIAS, 449 15.5 PLANARITY
ISSUES IN 3D INTEGRATION, 450 15.5.1 CMP PLANARITY CAPABILITIES, 451
15.5.1.1 NANO-AND MICROSCALE PLANARIZATION, 451 15.5.1.2 WAFER-SCALE
PLANARITY, 451 15.5.2 PLANARITY ISSUES FOR VARIOUS 3D APPROACHES, 452
15.5.2.1 CMP FOR VIA-LAST APPROACH TO 3D USING OXIDE-TO-OXIDE BONDING,
452 15.5.2.2 CMP FOR VIA-LAST APPROACH TO 3D USING POLYMER ADHESIVE
BONDING, 454 15.5.2.3 CMP FOR VIA-FIRST APPROACH TO 3D USING
COPPER-TO-COPPER BONDING, 455 15.5.2.4 CMP FOR VIA-FIRST 3D USING
REDISTRIBUTION LAYER BONDING, 455 15.6 CONCLUSIONS, 456 CONTENTS XIII 16
POST-CMP CLEANING 467 JIN-GOO PARK, AHMED A. BUSNAINA AND YI-KOAN HONG
16.1 INTRODUCTION, 467 16.2 TYPES OF POST-CMP CLEANING PROCESSES, 468
16.2.1 WET BATH TYPE CLEANING, 468 16.2.2 SINGLE WAFER CLEANINGS, 469
16.2.2.1 IMMERSION-TYPE SINGLE-WAFER POST-CMP CLEANING SYSTEM, 469
16.2.2.2 SINGLE-WAFER SPIN CLEANER, 469 16.2.2.3 BRUSH CLEANING, 473
16.2.2.4 DRYING, 475 16.3 POST-CMP CLEANING CHEMISTRY, 477 16.3.1
CONVENTIONAL WET CLEANINGS, 477 16.3.2 CHEMICALS USED IN POST-CMP
CLEANING AND THEIR ROLES, 478 16.3.2.1 NH 4 OH, 478 16.3.2.2 HF, 478
16.3.2.3 ORGANIC ACIDS, 479 16.3.2.4 SURFACTANTS, 479 16.4 POST-CMP
CLEANING ACCORDING TO APPLICATIONS, 480 16.4.1 POST-OXIDE CMP CLEANING,
480 16.4.2 POST-W CMP CLEANING, 481 16.4.3 POST-STI CMP CLEANING, 481
16.4.4 POST-POLY-SI CMP CLEANING, 482 16.4.5 POST-CU/LOW-K CMP SURFACE
CLEANING, 484 16.4.5.1 CORROSION, 486 16.4.5.2 ORGANIC RESIDUE, 487
16.4.5.3 LOW-K MATERIALS, 489 16.4.5.4 EFFECT OF OTHER ADDITIVES ON
CLEANING, 491 16.5 ADHESION FORCE, FRICTION FORCE, AND DEFECTS DURING CU
CMP, 492 16.5.1 ADHESION FORCE OF SILICA AND ALUMINA ON CU, 493 16.5.2
FRICTION FORCE IN CU CMP PROCESS, 494 16.5.3 REMOVAL RATES OF CU SURFACE
IN CU CMP, 494 16.5.4 SURFACE QUALITY OF CU AFTER CU CMP PROCESS, 496
16.5.5 CORRELATION AMONG FRICTION, ADHESION FORCE, REMOVAL RATE, AND
SURFACE QUALITY IN CU CMP, 498 16.6 CASE STUDY: MEGASONIC POST-CMP
CLEANING OF THERMAL OXIDE WAFERS, 499 16.6.1 EXPERIMENTAL PROCEDURE, 499
16.6.2 THE EFFECT OF MEGASONIC INPUT POWER, 500 16.6.3 THE EFFECT OF
TEMPERATURE, 503 16.6.4 THE EFFECT OF ETCHING ON CLEANING, 503 16.7
SUMMARY, 505 XIV CONTENTS 17 DEFECTS OBSERVED ON THE WAFER AFTER THE CMP
PROCESS 511 PAUL LEFEVRE 17.1 INTRODUCTION, 511 17.2 DEFECTS AFTER OXIDE
CMP, 512 17.2.1 INTRODUCTION, 512 17.2.2 SCRATCHES, 513 17.2.3 COLOR
VARIATION*OXIDE THICKNESS VARIATION, 516 17.2.4 SLURRY RESIDUES AND
ORGANIC RESIDUES, 518 17.2.5 OTHER PARTICLES, 519 17.2.6 CRYSTAL
FORMATION, 519 17.2.7 TRACES ELEMENTS, 519 17.2.8 RADIOACTIVE
CONTAMINATION, 519 17.2.9 DEFECTS EXISTING BEFORE OXIDE CMP, 520 17.2.10
SOURCE OF DEFECT-CAUSING LARGE PARTICLES, 520 17.3 DEFECTS AFTER
POLYSILICON CMP, 520 17.3.1 INTRODUCTION, 520 17.3.2 SCRATCHES, 521
17.3.3 POLYSILICON RESIDUES, 521 17.3.4 PARTICLES, 522 17.3.5 RESIDUES,
522 17.3.6 TRACE ELEMENTS, 522 17.3.7 POLYSILICON PITTING AND VOIDS, 523
17.3.8 DISCOLORATION AT THE EDGE OF THE STRUCTURE OR EDGE OF THE ARRAYS,
523 17.3.9 DEFECTS EXISTING BEFORE AND REVEALED AFTER POLYSILICON CMP,
523 17.3.10 INFLUENCE OF PROCESSING TEMPERATURE, 524 17.4 DEFECTS AFTER
TUNGSTEN CMP, 524 17.4.1 INTRODUCTION, 524 17.4.2 CORROSION, PITTING,
AND VOID, 524 17.4.3 TUNGSTEN RECESS AND ROUGH TUNGSTEN SURFACE, 525
17.4.4 SCRATCHES, 528 17.4.5 DISCOLORATION*EDGE OVEREROSION (EOE), 529
17.4.6 TUNGSTEN AND METAL LINER RESIDUES, 530 17.4.7 PARTICLES, SLURRY
RESIDUES, AND TRACE METAL, 531 17.4.8 DELAMINATION, 531 17.4.9
PREEXISTING DEFECTS REVEALED AFTER TUNGSTEN CMP, 531 17.5 DEFECTS AFTER
COPPER CMP, 532 17.5.1 INTRODUCTION AND SUMMARY ON COPPER CMP DEFECTS,
532 17.5.2 COPPER CORROSION, 533 17.5.3 COPPER PITTING, 535 17.5.4
TRENCHING AT THE COPPER LINE EDGE, 537 CONTENTS XV 17.5.5 ROUGH COPPER
AND COPPER RECESS, 539 17.5.6 DISCOLORATION*METALS THICKNESS VARIATIONS
AND/OR DIELECTRIC THICKNESS VARIATION, 540 17.5.7 COPPER
ELECTROMIGRATION, 542 17.5.8 SCRATCHES, 544 17.5.9 METAL RESIDUES, 544
17.5.10 PARTICLES, RESIDUES, AND TRACE METALS, 547 17.5.11 DELAMINATION,
548 17.6 DEFECT OBSERVATION AND CHARACTERIZATION TECHNIQUES, 551 17.6.1
OPTICAL MICROSCOPE, 551 17.6.2 SCANNING ELECTRON MICROSCOPE, 552 17.6.3
ENERGY DISPERSIVE X-RAY SPECTROSCOPY (EDX), 552 17.6.4 SCANNING AUGER
MICROSCOPE (SAM), 553 17.6.5 ATOMIC FORCE MICROSCOPY, 553 17.7 ENSEMBLE
DEFECT DETECTION AND INSPECTION TECHNIQUES, 554 17.7.1 OPTICAL SCAN OF
FIAT FILM BLANKET WAFERS, 554 17.7.2 OPTICAL SCAN OF PATTERNED WAFERS,
554 17.7.3 DEFECT CLASSIFICATION, 555 17.8 CONSIDERATION FOR THE FUTURE,
555 18 CMP SLURRY METROLOGY, DISTRIBUTION, AND FILTRATION 563 RAKESH K.
SINGH 18.1 INTRODUCTION, 564 18.2 CMP SLURRY METROLOGY AND
CHARACTERIZATION, 567 18.2.1 SLURRY HEALTH MONITORING AND CONTROL, 568
18.2.2 CMP SLURRY BLEND CONTROL, 569 18.2.2.1 TWO-COMPONENT BLEND
CONTROL, 570 18.2.2.2 THREE-COMPONENT BLEND CONTROL, 572 18.2.3 CMP
SLURRY CHARACTERIZATION, 573 18.2.4 SUMMARY, 576 18.3 CMP SLURRY
BLENDING AND DISTRIBUTION, 577 18.3.1 SLURRY DELIVERY TECHNOLOGIES, 578
18.3.2 CONTINUOUS (ON-DEMAND) SLURRY DISPENSE AND METROLOGY, 578 18.3.3
SLURRY TURNOVERS IN FAB DISTRIBUTION, 580 18.3.4 SLURRY ABRASIVE
SETTLING AND DISPERSION, 580 18.3.4.1 SLURRY SETTLING RATE
QUANTIFICATION, 580 18.3.4.2 SETTLING BEHAVIOR OF DIFFERENT ABRASIVE CMP
SLURRIES, 581 18.3.4.3 REQUIRED MINIMUM FLOW VELOCITY FOR CMP SLURRIES,
584 18.3.5 SUMMARY, 585 18.4 CMP SLURRY FILTRATION, 586 18.4.1 SLURRY
FILTRATION METHODOLOGY, 587 XVI CONTENTS 18.4.2 FILTER DESIGN
CONSIDERATION, 588 18.4.3 SLURRY FILTER CHARACTERIZATION, 591 18.4.4 CMP
PROCESS AND CONSUMABLE TRENDS AND CHALLENGES, 592 18.4.5 SLURRY
FILTRATION-CASE STUDIES, 595 18.4.5.1 SILICA DISPERSION SINGLE-PASS
HIGH-RETENTION FILTRATION, 595 18.4.5.2 SILICA SLURRY POU AND
RECIRCULATION, 596 18.4.5.3 SILICA, CERIA, AND ALUMINA SLURRY TIGHTER
FILTRATION, 599 18.4.5.4 POLYSTYRENE LATEX (PSL) BEAD SOLUTION
FILTRATION, 602 18.4.6 SUMMARY, 602 18.5 PUMP HANDLING EFFECTS ON CMP
SLURRY FILTRATION*CASE STUDIES, 603 18.5.1 PUMP TECHNOLOGIES AND
APPLICATIONS, 604 18.5.2 PUMP SHEARING EFFECTS ON SLURRY ABRASIVES, 605
18.5.3 PUMP HANDLING AND FILTRATION DATA, 606 18.5.4 TEST CASES, 607
18.5.5 SUMMARY, 620 19 THE FACILITIES SIDE OF CMP 627 JOHN H. RYDZEWSKI
19.1 INTRODUCTION, 627 19.2 CHARACTERIZATION OF THE CMP WASTE STREAM,
628 19.3 MATERIALS OF COMPATIBILITY, 629 19.4 COLLECTION SYSTEM
METHODOLOGIES, 631 19.5 TREATMENT SYSTEM COMPONENTS, 632 19.5.1
COLLECTION TANK AND PH ADJUSTMENT, 632 19.5.2 OXIDIZER REMOVAL, 633
19.5.3 ORGANICS REMOVAL, 635 19.5.4 TREATMENT OF SUSPENDED SOLIDS, 635
19.5.5 REMOVAL OF TRACE METALS, 638 19.6 INTEGRATION OF
COMPONENTS*PUTTING IT ALL TOGETHER, 644 19.6.1 SOLIDS TREATMENT BEFORE
METALS REMOVAL, 644 19.6.2 SOLIDS TREATMENT AFTER METALS REMOVAL, 645
19.6.3 NO SOLIDS REMOVAL, 646 19.7 CONCLUSIONS, 647 20 CMP*THE NEXT
FIFTEEN YEARS 651 JOSEPH M. STEIGERWALD 20.1 THEPAST 15 YEARS, 651 20.2
CHALLENGES TO SILICON IC MANUFACTURING, 655 CONTENTS XVII 20.3 NEW CMP
PROCESSES, 661 20.3.1 THE TWO-YEAR DEVELOPMENT CYCLE, 661 20.3.2 FINFET
TRANSISTORS, 664 20.3.3 HIGH- GATE OXIDES, 665 20.3.4 OTHER EXAMPLES,
670 20.4 CMP CHALLENGES, 673 20.4.1 DEVELOPMENT TIME OF NEW CMP
MATERIALS, 673 20.4.2 CMP DEFECT REDUCTION, 675 20.4.3 CMP PROCESS
CONTROL, 677 20.4.3.1 CMP FILM THICKNESS CONTROL, 678 20.4.3.2 PROCESS
CONTROL SYSTEMS, CONSUMABLES MATERIAL CONTROL, AND EXCURSION PREVENTION,
680 20.4.4 COST OF CMP, 683 20.5 SUMMARY, 683 21 UTILITARIAN INFORMATION
FOR CMP SCIENTISTS AND ENGINEERS 687 YONGQING LAN AND YUZHUO LI 21.1
PHYSICAL AND CHEMICAL PROPERTIES OF ABRASIVE PARTICLES, 687 21.2
PHYSICAL AND CHEMICAL PROPERTIES ON OXIDIZERS, 690 21.3 PHYSICAL AND
CHEMICAL PROPERTIES ON RELEVANT SURFACTANTS, 690 21.3.1 CLASSIFICATION
OF SURFACTANTS, 690 21.3.2 CRITICAL MICELLAR CONCENTRATION, 692 21.3.3
TERNARY PHASE DIAGRAMS INVOLVING SURFACTANTS, 693 21.4 RELEVANT POURBAIX
DIAGRAM, 696 21.5 COMMONLY USED BUFFERING SYSTEMS, 703 21.6 USEFUL WEB
SITES, 704 INDEX 725 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022881779 |
callnumber-first | T - Technology |
callnumber-label | TK7874 |
callnumber-raw | TK7874 |
callnumber-search | TK7874 |
callnumber-sort | TK 47874 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 3700 ZN 4150 |
ctrlnum | (OCoLC)123349971 (DE-599)BVBBV022881779 |
dewey-full | 621.3815 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.3815 |
dewey-search | 621.3815 |
dewey-sort | 3621.3815 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02231nam a2200529zc 4500</leader><controlfield tag="001">BV022881779</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080424 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071015s2008 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007015557</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471719199</subfield><subfield code="9">978-0-471-71919-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)123349971</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022881779</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7874</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.3815</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 4150</subfield><subfield code="0">(DE-625)157360:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microelectronic applications of chemical mechanical planarization</subfield><subfield code="c">ed. by Yuzhuo Li</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, N.J.</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXV, 734 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integrated circuits</subfield><subfield code="x">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical mechanical planarization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microelectronics</subfield><subfield code="x">Materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Oberflächenstruktur</subfield><subfield code="0">(DE-588)4130418-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chemisches Verfahren</subfield><subfield code="0">(DE-588)4454573-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Integrierte Schaltung</subfield><subfield code="0">(DE-588)4027242-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mikromechanik</subfield><subfield code="0">(DE-588)4205811-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Oberflächenstruktur</subfield><subfield code="0">(DE-588)4130418-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Chemisches Verfahren</subfield><subfield code="0">(DE-588)4454573-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yuzhuo</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip0715/2007015557.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0740/2007015557-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0742/2007015557-b.html</subfield><subfield code="3">Contributor biographical information</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016086744&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016086744</subfield></datafield></record></collection> |
id | DE-604.BV022881779 |
illustrated | Illustrated |
index_date | 2024-07-02T18:50:44Z |
indexdate | 2024-07-09T21:07:39Z |
institution | BVB |
isbn | 9780471719199 |
language | English |
lccn | 2007015557 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016086744 |
oclc_num | 123349971 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XXV, 734 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Microelectronic applications of chemical mechanical planarization ed. by Yuzhuo Li Hoboken, N.J. Wiley 2008 XXV, 734 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references Integrated circuits Design and construction Chemical mechanical planarization Microelectronics Materials Oberflächenstruktur (DE-588)4130418-4 gnd rswk-swf Mikromechanik (DE-588)4205811-9 gnd rswk-swf Chemisches Verfahren (DE-588)4454573-3 gnd rswk-swf Integrierte Schaltung (DE-588)4027242-4 gnd rswk-swf Integrierte Schaltung (DE-588)4027242-4 s Mikromechanik (DE-588)4205811-9 s Oberflächenstruktur (DE-588)4130418-4 s Chemisches Verfahren (DE-588)4454573-3 s DE-604 Li, Yuzhuo Sonstige oth http://www.loc.gov/catdir/toc/ecip0715/2007015557.html Table of contents only http://www.loc.gov/catdir/enhancements/fy0740/2007015557-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0742/2007015557-b.html Contributor biographical information GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016086744&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Microelectronic applications of chemical mechanical planarization Integrated circuits Design and construction Chemical mechanical planarization Microelectronics Materials Oberflächenstruktur (DE-588)4130418-4 gnd Mikromechanik (DE-588)4205811-9 gnd Chemisches Verfahren (DE-588)4454573-3 gnd Integrierte Schaltung (DE-588)4027242-4 gnd |
subject_GND | (DE-588)4130418-4 (DE-588)4205811-9 (DE-588)4454573-3 (DE-588)4027242-4 |
title | Microelectronic applications of chemical mechanical planarization |
title_auth | Microelectronic applications of chemical mechanical planarization |
title_exact_search | Microelectronic applications of chemical mechanical planarization |
title_exact_search_txtP | Microelectronic applications of chemical mechanical planarization |
title_full | Microelectronic applications of chemical mechanical planarization ed. by Yuzhuo Li |
title_fullStr | Microelectronic applications of chemical mechanical planarization ed. by Yuzhuo Li |
title_full_unstemmed | Microelectronic applications of chemical mechanical planarization ed. by Yuzhuo Li |
title_short | Microelectronic applications of chemical mechanical planarization |
title_sort | microelectronic applications of chemical mechanical planarization |
topic | Integrated circuits Design and construction Chemical mechanical planarization Microelectronics Materials Oberflächenstruktur (DE-588)4130418-4 gnd Mikromechanik (DE-588)4205811-9 gnd Chemisches Verfahren (DE-588)4454573-3 gnd Integrierte Schaltung (DE-588)4027242-4 gnd |
topic_facet | Integrated circuits Design and construction Chemical mechanical planarization Microelectronics Materials Oberflächenstruktur Mikromechanik Chemisches Verfahren Integrierte Schaltung |
url | http://www.loc.gov/catdir/toc/ecip0715/2007015557.html http://www.loc.gov/catdir/enhancements/fy0740/2007015557-d.html http://www.loc.gov/catdir/enhancements/fy0742/2007015557-b.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016086744&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT liyuzhuo microelectronicapplicationsofchemicalmechanicalplanarization |