Structure determination from powder diffraction data:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2006
|
Ausgabe: | 1. publ. in paperback |
Schriftenreihe: | IUCr monographs on crystallography
13 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 337 S. Ill., graph. Darst. |
ISBN: | 9780199205530 0199205531 0198500912 9780198500919 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022872318 | ||
003 | DE-604 | ||
005 | 20071114 | ||
007 | t | ||
008 | 071009s2006 ad|| |||| 00||| eng d | ||
020 | |a 9780199205530 |9 978-0-19-920553-0 | ||
020 | |a 0199205531 |9 0-19-920553-1 | ||
020 | |a 0198500912 |9 0-19-850091-2 | ||
020 | |a 9780198500919 |9 978-0-19-850091-9 | ||
035 | |a (OCoLC)475491530 | ||
035 | |a (DE-599)BVBBV022872318 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-19 | ||
084 | |a VG 9900 |0 (DE-625)147245:253 |2 rvk | ||
245 | 1 | 0 | |a Structure determination from powder diffraction data |c ed. by W. I. F. David ... |
250 | |a 1. publ. in paperback | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2006 | |
300 | |a XIX, 337 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a IUCr monographs on crystallography |v 13 | |
650 | 4 | |a Crystal optics | |
650 | 0 | 7 | |a Pulvermethode |0 (DE-588)4176353-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pulvermethode |0 (DE-588)4176353-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a David, William I. F. |4 edt | |
830 | 0 | |a IUCr monographs on crystallography |v 13 |w (DE-604)BV005455767 |9 13 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016077397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016077397 |
Datensatz im Suchindex
_version_ | 1804137131867635712 |
---|---|
adam_text | Titel: Structure determination from powder diffraction data
Autor: David, William I. F
Jahr: 2006
Structure Determination from Powder Diffraction Data Edited by W. I. F. DAVID Rutherford Appleton Laboratory, Oxfordshire, UK K. SHANKLAND Rutherford Appleton Laboratory, Oxfordshire, UK L. B. McCUSKER Laboratory of Crystallography, ETH Zurich, Switzerland Ch. BAERLOCHER Laboratory of Crystallography, ETH Zurich, Switzerland OXFORD UNIVERSITY PRESS
Contents List of contributors 1 Introduction William l. F. David, Kenneth Shankland, Lynne B. McCusker and Christian Baerlocher 1.1 Crystal structures from powder diffraction data 1.2 The structure determination process 1.3 Adapting single-crystal structure solution methods to powder diffraction data 1.4 Direct-space methods that exploit chemical knowledge 1.5 Hybrid approaches 1.6 Outlook Acknowledgements References 2 Structure determination from powder diffraction data: an overview Anthony K. Cheetham 2.1 Introduction 2.2 Early history of powder diffraction 2.3 Early ab initio approaches 2.4 Pre-Rietveld refinement methods 2.5 Rietveld refinement 2.6 Solving unknown structures from powder data 2.7 Trial-and-error and simulation methods 2.8 Some examples of structure determination from powder data 2.9 Conclusions References 3 Laboratory X-ray powder diffraction Daniel Loiter 3.1 Introduction 3.2 The reflection overlap problem 3.2.1 Instrumental broadening— g(20) 3.2.2 Sample broadening—/),¿/(20) 3.2.3 H(x) profiles
X CONTENTS 3.3 Instrumentation and experimental considerations 34 3.3.1 Diffractometer geometries 34 3.3.2 Monochromatic radiation 36 3.3.3 Data quality 37 3.4 Examples of crystal structure solution 40 3.4.1 Bragg-Brentano powder diffraction data 40 3.4.2 Debye-Scherrer powder diffraction data 43 3.5 Conclusions 46 Acknowledgements 46 References 46 4 Synchrotron radiation powder diffraction Peter W. Stephens, David E. Cox and Andrew N. Fitch 49 4.1 Introduction 49 4.2 Synchrotron powder diffraction instruments in use for ah initio structure determination 51 4.3 Angular resolution, lineshape and choice of wavelength 54 4.4 Data preparation and indexing 59 4.5 Pattern decomposition and intensity extraction 61 4.6 Systematic errors 64 4.6.1 Particle statistics 64 4.6.2 Preferred orientation 65 4.6.3 Absorption 65 4.6.4 Extinction 66 4.7 Examples of structure solution 66 4.7.1 Pioneering studies 66 4.7.2 Organic compounds 70 4.7.3 Microporous materials 75 4.7.4 Organomctallics 78 4.7.5 More difficult problems 80 4.8 Conclusions 83 Acknowledgements 84 References 84 5 Neutron powder diffraction Richard M. Ihherson and William I. F. David 88 5.1 Introduction 88 5.2 Instrumentation 89 5.3 Autoindexing and space group assignment 89 5.4 Patterson methods 91 5.5 Direct methods 91 5.6 X-n structure solution 92 5.7 Future possibilities 93 References 97
CONTENTS xi 6 Sample preparation, instrument selection and data collection Roderick J. Hill and ¡an C. Madsen 98 6.1 Introduction 98 6.2 Issues and early decisions—experimental design 99 6.3 Multiple datasets 100 6.4 The sample 101 6.4.1 Sources of sample-related errors 101 6.4.2 Number of crystallites contributing to the diffraction process 101 6.4.3 Increasing the number of crystallites examined 103 6.4.4 Generating random orientation 105 6.4.5 Removing extinction 105 6.5 The instrument 105 6.5.1 What radiation to use—X-rays or neutrons? 106 6.5.2 What wavelength to use? 106 6.5.3 Number of‘independent’ observations (integrated intensities) 106 6.5.4 What geometry to use? 108 6.5.5 Sources of instrument-related error 111 6.6 Data collection 112 6.6.1 Step time and width recommendations 113 6.6.2 Variable counting time data collection 114 6.7 Conclusions 116 References 116 7 Autoindexing Per-Erik Werner 118 7.1 Introduction 118 7.2 Basic relations 118 7.3 The indexing problem 120 7.4 The dominant zone problem 122 7.5 Geometrical ambiguities -derivative lattices 122 7.6 Errors in measurements 123 7.7 Indexing programs 125 7.7.1 ITO 125 7.7.2 DICVOL91 126 7.7.3 TREOR90 128 7.7.4 Why more than one indexing program? 129 7.8 Computing times 130 7.9 The PDF 2 database 131 7.10 Comments 132 Appendix: (Most likely) unit-cell dimensions for selected PDF-2 powder patterns 133 References 134
CONTENTS 8 Extracting integrated intensities from powder diffraction patterns William 1. F. David and Devinderjit S. Sivia 8.1 Introduction 8.2 The Le Bail method 8.2.1 The origins of the Le Bail method 8.2.2 The iterative Le Bail algorithm 8.3 The Pawley method 8.3.1 Introduction 8.3.2 Mathematical background 8.4 Space group determination 8.5 Overcoming Bragg peak overlap 8.6 Incorporating crystallographic information 8.7 Conclusions Acknowledgements References 9 Experimental methods for estimating the relative intensities of overlapping reflections Thomas Wessels, Christian Baerlocher, Lynne B. McCusker and William /. F. David 9.1 Introduction 9.2 Anisotropic thermal expansion 9.2.1 A simple two-peak analysis 9.2.2 Mathematical aspects of the analysis of integrated intensities collected at more than one temperature 9.2.3 An example of differential thermal expansion -chlorothiazide 9.3 Texture 9.3.1 Concept 9.3.2 Sample preparation 9.3.3 Texture description 9.3.4 Instrumentation 9.3.5 Data collection 9.3.6 Data analysis 9.3.7 Example 9.4 Conclusions References 10 Direct methods in powder diffraction basic concepts Rene Pcschar, Alike Ft:, Jouk Jansen and Hendrick Schenk 10.1 Introduction 10.2 Basics of Direct methods 10.3 Direct methods in practice 136 136 138 138 140 143 143 144 148 151 154 160 160 161 162 162 162 163 164 165 168 168 169 170 171 173 173 175 177 177 179 179 179 181
xiii 181 182 182 183 183 184 184 185 186 188 190 190 191 191 195 196 197 198 198 198 200 200 202 202 203 204 204 CONTENTS 10.3.1 Normalization and setting up phase relations 10.3.2 Selection of starting-set phases 10.3.3 Active phase extension 10.3.4 Selection of most likely numerical starting set (criteria) 10.4 Whole-pattern fitting 10.4.1 The Pawley whole-pattern refinement 10.4.2 The two-step LSQPROF whole-pattern fitting procedure 10.5 Estimation of the intensity of completely overlapping reflections: the DOREES program 10.6 Direct methods for powder data in practice: the POWSIM package References Direct methods in powder diffraction—applications Carmelo Giacovazzo, Angela Ahornare, Maria Cristina Burla, Benedetta Carrozzini, Giovanni Luca Cascarano, Antonietta Guagliarcli, Anna Grazia G. Moliterni, Giampiero Polidori and Rosanna Rizzi 11.1 Introduction 11.2 A set of test structures 11.3 Performance of extraction algorithms 11.4 Some warnings about the use of powder data 11.5 Powder pattern decomposition using supplementary prior information 11.5.1 Pseudo-translational symmetry 11.5.2 Expected positivity of the Patterson function in reciprocal space 11.5.3 The expected positivity of the Patterson function in direct space 11.5.4 A located molecular fragment 11.6 Applications References Patterson methods in powder diffraction: maximum entropy and symmetry minimum function techniques Michael A. Estermann and William I. F. David 12.1 Introduction 12.2 The crystal structure and its Patterson function 12.2.1 Patterson maps calculated from X-ray powder diffraction data 12.2.2 Patterson maps calculated from neutron powder diffraction data 12.3 Conventional methods for improving the
205 205 207 208 210 212 212 214 216 217 219 219 220 223 226 227 232 232 233 233 233 235 236 237 241 241 242 242 243 245 CONTENTS interpretability of the Patterson map 12.4 Maximum entropy Patterson maps 12.5 Decomposition of overlapping Bragg peaks using the Patterson function 12.6 Solving a crystal structure directly from a powder Patterson map 12.7 Automatic location of atomic positions with the symmetry minimum function 12.8 Examples of structure solution using automated Patterson superposition techniques 12.8.1 Bismuth nitride fluoride Bi^NFf, 12.8.2 Synthetic CaTiSiOs Acknowledgements References Solution of Patterson-type syntheses with the Direct methods sum function Jouli Rius 13.1 Introduction 13.2 Definition of the modulus sum function 13.3 The modulus sum function in reciprocal space 13.4 The sum function tangent formula, S -TF 13.5 Application of the sum function tangent formula to powder diffraction data Acknowledgements References A maximum entropy approach to structure solution Christopher J. Gilmore, Kenneth Shanklatul and Wei Dong 14.1 Introduction 14.2 Data collection, range and overlap 14.3 Starting set choices: defining the origin and cnantiomorph 14.4 Basis set expansion and the phasing tree 14.5 Fog-likelihood gain 14.6 Centroid maps 14.7 Fragments and partial structures 14.8 Using likelihood to partition overlapped reflections 14.8.1 The overlap problem defined in terms of hypcrphascs and pseudophases 14.8.2 Duncan s procedure for multiple significance tests 14.8.3 The determination of pseudophases using the maximum entropy-likelihood method and Duncan’s procedure 14.9 The maximum entropy method and the need for
CONTENTS xv experimental designs 247 14.9.1 Error correcting codes and their use in MICE 247 14.10 Conclusions and other possibilities 249 Acknowledgements 250 References 250 15 Global optimization strategies Kenneth Shankland and William I. F. David 252 15.1 Introduction 252 15.2 Background 253 15.3 Describing a crystal structure 256 15.4 Calculating the odds 258 15.5 Beating the odds—global optimization algorithms 261 15.5.1 A search method with a physical basis—simulated annealing 262 15.5.2 A search method with a biological basis—genetic algorithms 263 15.5.3 Search methods with a social basis—the swarm 266 15.5.4 The downhill simplex algorithm—a ‘semi-global’ optimizer 267 15.5.5 Other approaches 268 15.5.6 Which algorithm is best? 269 15.5.7 Use of molecular envelope information 269 15.5.8 Hybrid DM-global optimization approaches 270 15.6 Structure evaluation—the cost function 270 15.6.1 Efficiency of function evaluations 270 15.6.2 Multi-objective optimization 272 15.6.3 Maximum likelihood 273 15.7 Examples 273 15.8 Influence of crystallographic factors 275 15.9 Caveats and pitfalls 279 15.10 Conclusions 282 Acknowledgements 282 References 283 16 Solution of flexible molecular structures by simulated annealing Peter G. Bruce and Yuri G. Andreev 286 16.1 Introduction 286 16.2 Simulated annealing 288
XVI CONTENTS 16.3 Constraints and restraints 289 16.3.1 Non-structural constraints 290 16.3.2 Structural restraints 290 16.3.3 Molecular crystals 291 16.4 Examples 293 16.4.1 (PE0) 3 :LiN(S0 2 CF,) 2 294 16.4.2 PE0:NaCF 3 S0 3 298 16.4.3 PEO(,:LiAsF 6 302 16.5 Discussion 303 Acknowledgements 305 References 305 17 Chemical information and intuition in solving crystal structures Lynne B. McCusker and Christian Baerlocher 307 17.1 Introduction 307 17.2 Data collection 308 17.3 Indexing and choice of space group 308 17.4 Model building 309 17.5 Computer generation of structural models 314 17.6 Using chemical information actively in an automated structure determination process 314 17.7 Recognizing a structure solution 316 17.8 Interpretation of Fourier maps 317 17.9 Elucidation of refinement difficulties 320 17.10 Evaluation of the final structure 321 17.11 Conclusion 321 References 322 Index of symbols 325 Index of abbreviations 327 Computer programs 328 Index 331
|
adam_txt |
Titel: Structure determination from powder diffraction data
Autor: David, William I. F
Jahr: 2006
Structure Determination from Powder Diffraction Data Edited by W. I. F. DAVID Rutherford Appleton Laboratory, Oxfordshire, UK K. SHANKLAND Rutherford Appleton Laboratory, Oxfordshire, UK L. B. McCUSKER Laboratory of Crystallography, ETH Zurich, Switzerland Ch. BAERLOCHER Laboratory of Crystallography, ETH Zurich, Switzerland OXFORD UNIVERSITY PRESS
Contents List of contributors 1 Introduction William l. F. David, Kenneth Shankland, Lynne B. McCusker and Christian Baerlocher 1.1 Crystal structures from powder diffraction data 1.2 The structure determination process 1.3 Adapting single-crystal structure solution methods to powder diffraction data 1.4 Direct-space methods that exploit chemical knowledge 1.5 Hybrid approaches 1.6 Outlook Acknowledgements References 2 Structure determination from powder diffraction data: an overview Anthony K. Cheetham 2.1 Introduction 2.2 Early history of powder diffraction 2.3 Early ab initio approaches 2.4 Pre-Rietveld refinement methods 2.5 Rietveld refinement 2.6 Solving unknown structures from powder data 2.7 Trial-and-error and simulation methods 2.8 Some examples of structure determination from powder data 2.9 Conclusions References 3 Laboratory X-ray powder diffraction Daniel Loiter 3.1 Introduction 3.2 The reflection overlap problem 3.2.1 Instrumental broadening— g(20) 3.2.2 Sample broadening—/),¿/(20) 3.2.3 H(x) profiles
X CONTENTS 3.3 Instrumentation and experimental considerations 34 3.3.1 Diffractometer geometries 34 3.3.2 Monochromatic radiation 36 3.3.3 Data quality 37 3.4 Examples of crystal structure solution 40 3.4.1 Bragg-Brentano powder diffraction data 40 3.4.2 Debye-Scherrer powder diffraction data 43 3.5 Conclusions 46 Acknowledgements 46 References 46 4 Synchrotron radiation powder diffraction Peter W. Stephens, David E. Cox and Andrew N. Fitch 49 4.1 Introduction 49 4.2 Synchrotron powder diffraction instruments in use for ah initio structure determination 51 4.3 Angular resolution, lineshape and choice of wavelength 54 4.4 Data preparation and indexing 59 4.5 Pattern decomposition and intensity extraction 61 4.6 Systematic errors 64 4.6.1 Particle statistics 64 4.6.2 Preferred orientation 65 4.6.3 Absorption 65 4.6.4 Extinction 66 4.7 Examples of structure solution 66 4.7.1 Pioneering studies 66 4.7.2 Organic compounds 70 4.7.3 Microporous materials 75 4.7.4 Organomctallics 78 4.7.5 More difficult problems 80 4.8 Conclusions 83 Acknowledgements 84 References 84 5 Neutron powder diffraction Richard M. Ihherson and William I. F. David 88 5.1 Introduction 88 5.2 Instrumentation 89 5.3 Autoindexing and space group assignment 89 5.4 Patterson methods 91 5.5 Direct methods 91 5.6 X-n structure solution 92 5.7 Future possibilities 93 References 97
CONTENTS xi 6 Sample preparation, instrument selection and data collection Roderick J. Hill and ¡an C. Madsen 98 6.1 Introduction 98 6.2 Issues and early decisions—experimental design 99 6.3 Multiple datasets 100 6.4 The sample 101 6.4.1 Sources of sample-related errors 101 6.4.2 Number of crystallites contributing to the diffraction process 101 6.4.3 Increasing the number of crystallites examined 103 6.4.4 Generating random orientation 105 6.4.5 Removing extinction 105 6.5 The instrument 105 6.5.1 What radiation to use—X-rays or neutrons? 106 6.5.2 What wavelength to use? 106 6.5.3 Number of‘independent’ observations (integrated intensities) 106 6.5.4 What geometry to use? 108 6.5.5 Sources of instrument-related error 111 6.6 Data collection 112 6.6.1 Step time and width recommendations 113 6.6.2 Variable counting time data collection 114 6.7 Conclusions 116 References 116 7 Autoindexing Per-Erik Werner 118 7.1 Introduction 118 7.2 Basic relations 118 7.3 The indexing problem 120 7.4 The dominant zone problem 122 7.5 Geometrical ambiguities -derivative lattices 122 7.6 Errors in measurements 123 7.7 Indexing programs 125 7.7.1 ITO 125 7.7.2 DICVOL91 126 7.7.3 TREOR90 128 7.7.4 Why more than one indexing program? 129 7.8 Computing times 130 7.9 The PDF 2 database 131 7.10 Comments 132 Appendix: (Most likely) unit-cell dimensions for selected PDF-2 powder patterns 133 References 134
CONTENTS 8 Extracting integrated intensities from powder diffraction patterns William 1. F. David and Devinderjit S. Sivia 8.1 Introduction 8.2 The Le Bail method 8.2.1 The origins of the Le Bail method 8.2.2 The iterative Le Bail algorithm 8.3 The Pawley method 8.3.1 Introduction 8.3.2 Mathematical background 8.4 Space group determination 8.5 Overcoming Bragg peak overlap 8.6 Incorporating crystallographic information 8.7 Conclusions Acknowledgements References 9 Experimental methods for estimating the relative intensities of overlapping reflections Thomas Wessels, Christian Baerlocher, Lynne B. McCusker and William /. F. David 9.1 Introduction 9.2 Anisotropic thermal expansion 9.2.1 A simple two-peak analysis 9.2.2 Mathematical aspects of the analysis of integrated intensities collected at more than one temperature 9.2.3 An example of differential thermal expansion -chlorothiazide 9.3 Texture 9.3.1 Concept 9.3.2 Sample preparation 9.3.3 Texture description 9.3.4 Instrumentation 9.3.5 Data collection 9.3.6 Data analysis 9.3.7 Example 9.4 Conclusions References 10 Direct methods in powder diffraction basic concepts Rene Pcschar, Alike Ft:, Jouk Jansen and Hendrick Schenk 10.1 Introduction 10.2 Basics of Direct methods 10.3 Direct methods in practice 136 136 138 138 140 143 143 144 148 151 154 160 160 161 162 162 162 163 164 165 168 168 169 170 171 173 173 175 177 177 179 179 179 181
xiii 181 182 182 183 183 184 184 185 186 188 190 190 191 191 195 196 197 198 198 198 200 200 202 202 203 204 204 CONTENTS 10.3.1 Normalization and setting up phase relations 10.3.2 Selection of starting-set phases 10.3.3 Active phase extension 10.3.4 Selection of most likely numerical starting set (criteria) 10.4 Whole-pattern fitting 10.4.1 The Pawley whole-pattern refinement 10.4.2 The two-step LSQPROF whole-pattern fitting procedure 10.5 Estimation of the intensity of completely overlapping reflections: the DOREES program 10.6 Direct methods for powder data in practice: the POWSIM package References Direct methods in powder diffraction—applications Carmelo Giacovazzo, Angela Ahornare, Maria Cristina Burla, Benedetta Carrozzini, Giovanni Luca Cascarano, Antonietta Guagliarcli, Anna Grazia G. Moliterni, Giampiero Polidori and Rosanna Rizzi 11.1 Introduction 11.2 A set of test structures 11.3 Performance of extraction algorithms 11.4 Some warnings about the use of powder data 11.5 Powder pattern decomposition using supplementary prior information 11.5.1 Pseudo-translational symmetry 11.5.2 Expected positivity of the Patterson function in reciprocal space 11.5.3 The expected positivity of the Patterson function in direct space 11.5.4 A located molecular fragment 11.6 Applications References Patterson methods in powder diffraction: maximum entropy and symmetry minimum function techniques Michael A. Estermann and William I. F. David 12.1 Introduction 12.2 The crystal structure and its Patterson function 12.2.1 Patterson maps calculated from X-ray powder diffraction data 12.2.2 Patterson maps calculated from neutron powder diffraction data 12.3 Conventional methods for improving the
205 205 207 208 210 212 212 214 216 217 219 219 220 223 226 227 232 232 233 233 233 235 236 237 241 241 242 242 243 245 CONTENTS interpretability of the Patterson map 12.4 Maximum entropy Patterson maps 12.5 Decomposition of overlapping Bragg peaks using the Patterson function 12.6 Solving a crystal structure directly from a powder Patterson map 12.7 Automatic location of atomic positions with the symmetry minimum function 12.8 Examples of structure solution using automated Patterson superposition techniques 12.8.1 Bismuth nitride fluoride Bi^NFf, 12.8.2 Synthetic CaTiSiOs Acknowledgements References Solution of Patterson-type syntheses with the Direct methods sum function Jouli Rius 13.1 Introduction 13.2 Definition of the modulus sum function 13.3 The modulus sum function in reciprocal space 13.4 The sum function tangent formula, S' -TF 13.5 Application of the sum function tangent formula to powder diffraction data Acknowledgements References A maximum entropy approach to structure solution Christopher J. Gilmore, Kenneth Shanklatul and Wei Dong 14.1 Introduction 14.2 Data collection, range and overlap 14.3 Starting set choices: defining the origin and cnantiomorph 14.4 Basis set expansion and the phasing tree 14.5 Fog-likelihood gain 14.6 Centroid maps 14.7 Fragments and partial structures 14.8 Using likelihood to partition overlapped reflections 14.8.1 The overlap problem defined in terms of hypcrphascs and pseudophases 14.8.2 Duncan's procedure for multiple significance tests 14.8.3 The determination of pseudophases using the maximum entropy-likelihood method and Duncan’s procedure 14.9 The maximum entropy method and the need for
CONTENTS xv experimental designs 247 14.9.1 Error correcting codes and their use in MICE 247 14.10 Conclusions and other possibilities 249 Acknowledgements 250 References 250 15 Global optimization strategies Kenneth Shankland and William I. F. David 252 15.1 Introduction 252 15.2 Background 253 15.3 Describing a crystal structure 256 15.4 Calculating the odds 258 15.5 Beating the odds—global optimization algorithms 261 15.5.1 A search method with a physical basis—simulated annealing 262 15.5.2 A search method with a biological basis—genetic algorithms 263 15.5.3 Search methods with a social basis—the swarm 266 15.5.4 The downhill simplex algorithm—a ‘semi-global’ optimizer 267 15.5.5 Other approaches 268 15.5.6 Which algorithm is best? 269 15.5.7 Use of molecular envelope information 269 15.5.8 Hybrid DM-global optimization approaches 270 15.6 Structure evaluation—the cost function 270 15.6.1 Efficiency of function evaluations 270 15.6.2 Multi-objective optimization 272 15.6.3 Maximum likelihood 273 15.7 Examples 273 15.8 Influence of crystallographic factors 275 15.9 Caveats and pitfalls 279 15.10 Conclusions 282 Acknowledgements 282 References 283 16 Solution of flexible molecular structures by simulated annealing Peter G. Bruce and Yuri G. Andreev 286 16.1 Introduction 286 16.2 Simulated annealing 288
XVI CONTENTS 16.3 Constraints and restraints 289 16.3.1 Non-structural constraints 290 16.3.2 Structural restraints 290 16.3.3 Molecular crystals 291 16.4 Examples 293 16.4.1 (PE0) 3 :LiN(S0 2 CF,) 2 294 16.4.2 PE0:NaCF 3 S0 3 298 16.4.3 PEO(,:LiAsF 6 302 16.5 Discussion 303 Acknowledgements 305 References 305 17 Chemical information and intuition in solving crystal structures Lynne B. McCusker and Christian Baerlocher 307 17.1 Introduction 307 17.2 Data collection 308 17.3 Indexing and choice of space group 308 17.4 Model building 309 17.5 Computer generation of structural models 314 17.6 Using chemical information actively in an automated structure determination process 314 17.7 Recognizing a structure solution 316 17.8 Interpretation of Fourier maps 317 17.9 Elucidation of refinement difficulties 320 17.10 Evaluation of the final structure 321 17.11 Conclusion 321 References 322 Index of symbols 325 Index of abbreviations 327 Computer programs 328 Index 331 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | David, William I. F. |
author2_role | edt |
author2_variant | w i f d wif wifd |
author_facet | David, William I. F. |
building | Verbundindex |
bvnumber | BV022872318 |
classification_rvk | VG 9900 |
ctrlnum | (OCoLC)475491530 (DE-599)BVBBV022872318 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
edition | 1. publ. in paperback |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01527nam a2200397 cb4500</leader><controlfield tag="001">BV022872318</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071009s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780199205530</subfield><subfield code="9">978-0-19-920553-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0199205531</subfield><subfield code="9">0-19-920553-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198500912</subfield><subfield code="9">0-19-850091-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198500919</subfield><subfield code="9">978-0-19-850091-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)475491530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022872318</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VG 9900</subfield><subfield code="0">(DE-625)147245:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure determination from powder diffraction data</subfield><subfield code="c">ed. by W. I. F. David ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ. in paperback</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 337 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">IUCr monographs on crystallography</subfield><subfield code="v">13</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystal optics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pulvermethode</subfield><subfield code="0">(DE-588)4176353-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pulvermethode</subfield><subfield code="0">(DE-588)4176353-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">David, William I. F.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">IUCr monographs on crystallography</subfield><subfield code="v">13</subfield><subfield code="w">(DE-604)BV005455767</subfield><subfield code="9">13</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016077397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016077397</subfield></datafield></record></collection> |
id | DE-604.BV022872318 |
illustrated | Illustrated |
index_date | 2024-07-02T18:47:43Z |
indexdate | 2024-07-09T21:07:25Z |
institution | BVB |
isbn | 9780199205530 0199205531 0198500912 9780198500919 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016077397 |
oclc_num | 475491530 |
open_access_boolean | |
owner | DE-703 DE-19 DE-BY-UBM |
owner_facet | DE-703 DE-19 DE-BY-UBM |
physical | XIX, 337 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Oxford Univ. Press |
record_format | marc |
series | IUCr monographs on crystallography |
series2 | IUCr monographs on crystallography |
spelling | Structure determination from powder diffraction data ed. by W. I. F. David ... 1. publ. in paperback Oxford [u.a.] Oxford Univ. Press 2006 XIX, 337 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier IUCr monographs on crystallography 13 Crystal optics Pulvermethode (DE-588)4176353-1 gnd rswk-swf Pulvermethode (DE-588)4176353-1 s DE-604 David, William I. F. edt IUCr monographs on crystallography 13 (DE-604)BV005455767 13 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016077397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Structure determination from powder diffraction data IUCr monographs on crystallography Crystal optics Pulvermethode (DE-588)4176353-1 gnd |
subject_GND | (DE-588)4176353-1 |
title | Structure determination from powder diffraction data |
title_auth | Structure determination from powder diffraction data |
title_exact_search | Structure determination from powder diffraction data |
title_exact_search_txtP | Structure determination from powder diffraction data |
title_full | Structure determination from powder diffraction data ed. by W. I. F. David ... |
title_fullStr | Structure determination from powder diffraction data ed. by W. I. F. David ... |
title_full_unstemmed | Structure determination from powder diffraction data ed. by W. I. F. David ... |
title_short | Structure determination from powder diffraction data |
title_sort | structure determination from powder diffraction data |
topic | Crystal optics Pulvermethode (DE-588)4176353-1 gnd |
topic_facet | Crystal optics Pulvermethode |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016077397&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV005455767 |
work_keys_str_mv | AT davidwilliamif structuredeterminationfrompowderdiffractiondata |