Photonics: linear and nonlinear interactions of laser light and matter
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [635] - 996 |
Beschreibung: | XXIII, 1024 S. zahlr. Ill., graph. Darst. |
ISBN: | 9783540231608 3540231609 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022861904 | ||
003 | DE-604 | ||
005 | 20121203 | ||
007 | t | ||
008 | 071002s2007 gw ad|| |||| 00||| eng d | ||
015 | |a 06,N02,0998 |2 dnb | ||
015 | |a 07,A35,0997 |2 dnb | ||
016 | 7 | |a 97742748X |2 DE-101 | |
020 | |a 9783540231608 |9 978-3-540-23160-8 | ||
020 | |a 3540231609 |9 3-540-23160-9 | ||
024 | 3 | |a 9783540231608 | |
028 | 5 | 2 | |a 10980873 |
035 | |a (OCoLC)76365654 | ||
035 | |a (DE-599)DNB97742748X | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE |a xxu |c XD-US | ||
049 | |a DE-20 |a DE-703 |a DE-1050 |a DE-1102 |a DE-92 |a DE-355 |a DE-19 |a DE-83 |a DE-384 |a DE-B768 |a DE-526 | ||
050 | 0 | |a TA1520 | |
082 | 0 | |a 621.36 |2 22 | |
082 | 0 | |a 621.36 |2 22/ger | |
082 | 0 | |a 535 |2 22/ger | |
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
084 | |a UH 5500 |0 (DE-625)145663: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Menzel, Ralf |d 1975- |e Verfasser |0 (DE-588)132775115 |4 aut | |
245 | 1 | 0 | |a Photonics |b linear and nonlinear interactions of laser light and matter |c Ralf Menzel |
250 | |a 2. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XXIII, 1024 S. |b zahlr. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Literaturverz. S. [635] - 996 | ||
650 | 4 | |a Photonique | |
650 | 4 | |a Photonics | |
650 | 0 | 7 | |a Laser |0 (DE-588)4034610-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Photonik |0 (DE-588)4243979-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Photonik |0 (DE-588)4243979-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Laser |0 (DE-588)4034610-9 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Nichtlineare Optik |0 (DE-588)4042096-6 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2718279&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016067123&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016067123 |
Datensatz im Suchindex
_version_ | 1804137116098101248 |
---|---|
adam_text | Contents
1.
Topics
in
Photonics
....................................... 1
1.1
What Does Photonics Mean?
............................. 1
1.2
Scientific Topics
......................................... 2
1.3
Technical Topics
........................................ 4
1.4
Photonics and Technology
................................ 5
1.5
Applications
............................................ 6
1.6
Costs of Photons
........................................ 9
2.
Properties and Description of Light
....................... 11
2.1
Properties of Photons
.................................... 11
2.1.1
Energy, Frequency, Wavelength, Moments,
Mass, Timing
..................................... 12
2.1.2
Uncertainty Principle for Photons
................... 15
2.1.2.1
Uncertainty of Position and Momentum
..... 15
2.1.2.2
Uncertainty of Energy and Time
............ 16
2.1.3
Properties of a Light Beam
......................... 17
2.2
Plane Waves Monochromatic Light
........................ 19
2.2.1
Space- and Time Dependent Wave Equation
.......... 19
2.2.2
Complex Representation
........................... 22
2.2.3
Intensity and Energy Density as a Function
of the Electric Field
............................... 23
2.2.4
Uncertainty of Field Strengths
...................... 23
2.3
Geometrical Optics
...................................... 24
2.3.1
Preconditions: Fresnel Number
..................... 24
2.3.2
Theoretical Description
............................ 24
2.3.3
Ray Characteristics
............................... 26
2.3.4
Ray Propagation with Ray Matrices
................. 27
2.4
Gaussian Beams
......................................... 28
2.4.1
Preconditions
..................................... 28
2.4.2
Definition and Theoretical Description
............... 29
2.4.3
Beam Characteristics and Parameter
................ 30
2.4.3.1
Rayleigh Length zr
........................ 30
2.4.3.2
Beam Radius w{z)
........................ 30
2.4.3.3
Wave Front Radius R{z)
................... 31
XII Contents
2.4.3.4
Divergence Angle
θ........................
32
2.4.3.5
Complex Beam Parameter q(z)
............. 33
2.4.4
Beam Propagation with Ray-Matrices
............... 33
2.4.5
Determination of wq and z0
........................ 34
2.4.6
How to Use the Formalism
......................... 35
2.5
Ray Matrices
........................................... 35
2.5.1
Deriving Ray Matrices
............................. 36
2.5.2
Ray Matrices of Some Optical Elements
............. 36
2.5.3
Light Passing Through Many Optical Elements
....... 40
2.5.4
Examples
-
Lenses
................................ 41
2.5.4.1
Focusing with a Lens in Ray Optics
......... 41
2.5.4.2
Focusing a Gaussian Beam with a Lens
...... 42
2.5.4.3
Imaging with Two Lenses
.................. 43
2.5.4.4
Focal Length of Thin Spherical Lenses
....... 44
2.6
Describing Light Polarization
............................. 44
2.6.1
Jones Vectors Characterizing Polarized Light
......... 45
2.6.2
Jones Matrices of Some Optical Components
......... 48
2.6.3
Stokes Vectors Characterizing Partially Polarized Light
50
2.6.4
Mueller Matrices of Some Optical Components
....... 52
2.6.5
Using the Formalism
.............................. 53
2.7
Light Characteristics
..................................... 53
2.7.1
Power, Energy and Number of Photons
.............. 54
2.7.2
Average and Peak Power of a Light Pulse
............ 54
2.7.3
Intensity and Beam Radius
......................... 57
2.7.4
Divergence
....................................... 60
2.7.5
Beam Parameter Product
-
Beam Quality
........... 62
2.7.6
Diffraction Limit and Potential Beam Quality
........ 63
2.7.7
Brightness
....................................... 65
2.7.8
Brilliance
........................................ 65
2.7.9
Radiation Pressure and Optical
Lévitation
........... 66
2.8
Statistical Properties of Photon Fields
..................... 67
2.8.1
Uncertainty of Photon Number and Phase
........... 67
2.8.2
Description by Elementary Beams
................... 67
2.8.3
Fluctuations of the Electric Field
................... 69
2.8.4
Noise
............................................ 70
2.8.5
Zero Point Energy and Vacuum Polarization
.......... 71
2.8.6
Squeezed Light
................................... 71
2.9
Interference and Coherence of Light
....................... 73
2.9.1
General Aspects
.................................. 73
2.9.2
Coherence of Light
................................ 74
2.9.2.1
Coherence Length
......................... 74
2.9.2.2
Coherence Time
.......................... 75
2.9.2.3
Lateral Coherence
......................... 77
2.9.3
Two-Beam Interference
............................ 78
2.9.4
Superposition of Two Vertical Polarized Light Beams
.. 80
Contents XIII
2.9.5
One-Dimensional Multibeam Interference
............ 82
2.9.6
Fabry-Perot Interferometer
........................ 84
2.9.7
Light Beats: Heterodyne Technique
.................. 88
2.9.8
Frequency Spectrum of Light Pulses
................. 90
3.
Linear Interactions Between Light and Matter
............ 93
3.1
General Description
..................................... 93
3.2
Refraction and Dispersion
................................ 97
3.3
Absorption and Emission
.................................101
3.3.1
Theoretical Description of Absorption and Emission
... 101
3.3.2
Properties of Stimulated Emission
................... 107
3.3.3
Spontaneous Emission
............................. 107
3.3.4
Radiationless Transitions
.......................... 109
3.4
Measurement of Absorption
............................... 110
3.4.1
Lambert-Beer Law
................................110
3.4.2
Cross-Section and Extinction Coefficient
.............
Ill
3.4.3
Absorption Spectra of Some Optical Materials
and Filters
.......................................112
3.5
Polarization in Refraction and Reflection (Fresnel s Formula)
. 114
3.5.1
Fresnel s Formula
.................................114
3.5.1.1
General Formula
.......................... 115
3.5.1.2
Transition into Optically Denser Medium
.... 117
3.5.1.3
Transition into Optical Thinner Medium
..... 119
3.5.2
Brewster s Law
................................... 121
3.5.3
Total Reflection
................................... 122
3.6
Relation Between Reflection, Absorption and Refraction
...... 123
3.7
Birefringence
........................................... 125
3.8
Optical Activity (Polarization Rotation)
.................... 129
3.9
Diffraction
.............................................. 130
3.9.1
General Description: Fresnel s Diffraction Integral
.....131
3.9.2
Far Field Pattern:
Fraunhofer
Diffraction Integral
.....132
3.9.3
Diffraction in First Order Systems: Collins Integral
.... 133
3.9.4
Diffraction at a One-Dimensional Slit
................133
3.9.5
Diffraction at a Two-Dimensional Slit
...............136
3.9.6
Diffraction at a Circular Aperture
...................137
3.9.7
Diffraction at Small Objects (Babinet s Theorem)
.....140
3.9.8
Spot Size of Foci and Resolution of Optical Images
.... 140
3.9.9
Modulation Transfer Function (MTF)
...............143
3.9.10
Diffraction at a Double-Slit
........................144
3.9.11
Diffraction at One-Dimensional Slit Gratings
.........145
3.9.12
Diffraction at a Chain of Small Objects
..............146
3.9.13
Diffraction at Two-Dimensional Gratings
.............147
3.9.14
Diffraction at Three-Dimensional Gratings
...........149
3.9.15
Bragg Reflection
..................................149
3.9.16
Amplitude and Phase Gratings
.....................150
XIV Contents
3.9.17
Diffraction
at Optically Thin and Thick Gratings
.....152
3.10
Waveguiding
-
Optical Fibers
.............................156
3.11
Light Scattering Processes
................................160
3.11.1
Rayleigh and Rayleigh Wing Scattering
..............161
3.11.2
Mie
Scattering
....................................163
3.11.3
Brillouin Scattering
...............................163
3.11.4
Raman Scattering
.................................165
3.11.5
Thomson and Compton Scattering
..................168
3.12
Optical Materials
........................................170
4.
Nonlinear Interactions of Light and Matter
Without Absorption
......................................173
4.1
General Classification
....................................174
4.2
Nonresonant
Interactions
.................................176
4.3
Nonlinear Polarization of the Medium
......................178
4.4
Second-Order Effects
....................................180
4.4.1
Generation of the Second Harmonic
.................181
4.4.2
Phase Matching
..................................183
4.4.2.1
Phase Matching for
Second Harmonic Generation
...............183
4.4.2.2
Dispersion of Crystals: Sellmeier Coefficients
. 187
4.4.2.3
Walk-Off Angle
...........................188
4.4.2.4
Focusing and Crystal Length
...............189
4.4.2.5
Type I and Type II Phase Matching
.........190
4.4.2.6
Quasi-Phase
Matching (qpm)
...............190
4.4.3
Frequency Mixing of Two Monochromatic Fields
......192
4.4.4
Parametric Amplifiers and Oscillators
...............193
4.4.5
Spontaneous Parametric Down Conversion (SPDC)
-
Entangled Photons
................................196
4.4.6
Pockels Effect
....................................200
4.4.7
Electro-Optical Beam Deflection
....................204
4.4.8
Optical Rectification
..............................205
4.5
Third-Order Effects
......................................207
4.5.1
Generation of the Third Harmonic
..................208
4.5.2
Kerr Effect
.......................................209
4.5.3
Self-Focusing
.....................................212
4.5.4
Spatial
Solitons...................................215
4.5.5
Self-Diffraction
...................................217
4.5.6
Self-Focusing in Weakly Absorbing Samples
..........218
4.5.7
Self-Phase Modulation
.............................218
4.5.8
Generation of Temporal
Solitons: Soliton
Pulses
......222
4.5.9
Stimulated Brillouin Scattering (SBS)
...............224
4.5.10
Stimulated Thermal Brillouin Scattering (STBS)
......235
4.5.11
Stimulated Rayleigh (SRLS)
and Thermal Rayleigh (STRS) Scattering
............237
Contents
XV
4.5.12
Stimulated Rayleigh Wing (SRWS) Scattering
........238
4.5.13
Stimulated Raman Techniques
......................240
4.5.13.1
Stimulated Raman Scattering (SRS)
.........240
4.5.13.2
Inverse Raman Spectroscopy
(1RS)..........246
4.5.13.3
Stimulated Raman Gain Spectroscopy
(SRGS)
..................................246
4.5.13.4
Coherent Anti-Stokes Raman Scattering
(CARS)
.................................247
4.5.13.5
BOX CARS
..............................249
4.5.14
Optical Phase Conjugation via Stimulated Scattering
. . 250
4.6
Higher-Order Nonlinear Effects
............................258
4.7
Materials for
Nonresonant
Nonlinear Interactions
............259
4.7.1
Inorganic Crystals
................................259
4.7.2
Organic Materials
.................................260
4.7.3
Liquids
..........................................260
4.7.4
Liquid Crystals
...................................261
4.7.5
Gases
...........................................261
5.
Nonlinear Interactions of Light
and Matter with Absorption
..............................263
5.1
General Remarks
........................................264
5.2
Homogeneous and Inhomogeneous Broadening
..............265
5.3
Incoherent Interaction
...................................268
5.3.1
Bleaching
........................................269
5.3.2
Transient Absorption:
Excited State Absorption
(ESA)....................271
5.3.3
Nonlinear Transmission
............................272
5.3.4
Stimulated Emission: Superradiance: Laser Action
.... 274
5.3.5
Spectral Hole Burning
.............................275
5.3.6
Description with Rate Equations
....................277
5.3.6.1
Basic Equations
..........................277
5.3.6.2
Stationary Solutions of Rate Equations
......279
5.3.6.3
Stationary Two-Level Model
................280
5.3.6.4
Stationary Four-Level Model
...............283
5.3.6.5
Stationary Model with Two Absorptions
......284
5.3.6.6
General Stationary Models
.................287
5.3.6.7
Numerical Solution
........................288
5.3.6.8
Considering Spectral Hole Burning
with Rate Equations
.......................291
5.3.7
Coherent Light Fields
.............................294
5.3.8
Induced Transmission
and Excited State Absorption Gratings
..............295
5.3.9
Induced Inversion Gratings
.........................296
5.3.10
Spatial Hole Burning
..............................297
5.3.11
Induced Grating Spectroscopy
......................298
XVI Contents
5.4
Coherent Resonant Interaction
............................299
5.4.1
Dephasing Time T2
...............................300
5.4.2
Density Matrix Formalism
.........................301
5.4.3
Modeling Two-Level Scheme
.......................304
5.4.4
Feynman Diagrams for Nonlinear Optics
.............308
5.4.5
Damped
Rabi
Oscillation and Optical Nutation
.......313
5.4.6
Quantum Beat Spectroscopy
.......................314
5.4.7
Photon Echoes
...................................316
5.4.8
Self-Induced Transparency: 2ff Pulses
...............318
5.4.9
Superradiance (Superfiuorescence)
..................320
5.4.10
Amplification Without Inversion
....................320
5.5
Two-Photon and Multiphoton Absorption
..................321
5.6
Photoionization and Optical Breakdown (OBD)
.............326
5.7
Optical Damage
.........................................328
5.8
Laser Material Processing
................................330
5.9
Combined Interactions with Diffraction
and Absorption Changes
.................................332
5.9.1
Induced Amplitude and Phase Gratings
..............332
5.9.2
Four-Wave Mixing (FWM)
.........................335
5.9.3
Optical Bistabiiity
................................341
5.10
Materials in Resonant Nonlinear Optics
....................343
5.10.1
Organic Molecules
................................344
5.10.1.1
Structure and Optical Properties
............345
5.10.1.2
Preparation of the Samples
.................353
5.10.2
Anorganic Absorbing Crystals
......................353
5.10.3
Photorefractive Materials
..........................354
5.10.4
Semiconductors
...................................356
5.10.5
Nanometer Structures
.............................356
6.
Lasers
.....................................................359
6.1
Principle
...............................................359
6.2
Active Materials: Three- and Four-Level Schemes
-
Gain
.....362
6.3
Pump Mechanism: Quantum Defect and Efficiency
..........363
6.3.1
Pumping by Other Lasers
..........................365
6.3.2
Electrical Pumping in Diode Lasers
.................372
6.3.3
Electrical Discharge Pumping
.......................375
6.3.4
Lamp Pumping
...................................377
6.3.5
Chemical Pumping
................................378
6.3.6
Efficiencies
.......................................379
6.4
Side-Effects from the Pumped Active Material
..............381
6.4.1
Thermal Lensing
..................................381
6.4.2
Thermally Induced Birefringence
....................385
6.4.3
Thermal Stress Fracture Limit
......................387
6.5
Laser Resonators
........................................388
6.5.1
Stable Resonators: Resonator Modes
................389
Contents XVII
6.5.2
Unstable Resonators
..............................390
6.6
Transversal Modes of Laser Resonators
.....................391
6.6.1
Fundamental Mode
................................391
6.6.2
Empty Resonator
.................................392
6.6.3
g
Parameter and
g
Diagram
........................394
6.6.4
Selected Stable Empty Resonators
..................395
6.6.5
Higher Transversal Modes
..........................399
6.6.5.1
Circular Eigenmodes
or Gauss-Laguerre Modes
..................400
6.6.5.2
Rectangular or Gauss-Hermite Modes
.......401
6.6.5.3
Hybrid or
Donut
Modes
....................407
6.6.5.4
Coherent mode combining
..................408
6.6.6
Beam Radii of Higher Transversal Modes
and Power Content
................................409
6.6.7
Beam Divergence of Higher Transversal Modes
........411
6.6.8
Beam Quality of Higher Transversal Modes
...........412
6.6.9
Propagating Higher Transversal Modes
..............412
6.6.10
Fundamental Mode Operation: Mode Apertures
.......413
6.6.11
Large Mode Volumes: Lenses in the Resonator
........416
6.6.12
Transversal Modes of Lasers
with a Phase Conjugating Mirror
...................416
6.6.13
Misalignment Sensitivity: Stability Ranges
...........419
6.6.14
Dynamically Stable Resonators
.....................422
6.6.15
Measurement of the Thermally Induced
Refractive Power
..................................424
6.7
Longitudinal Modes
.....................................425
6.7.1
Mode Spacing
....................................426
6.7.2
Bandwidth of Single Longitudinal Modes
.............428
6.7.3
Spectral Broadening from the Active Material
........430
6.7.4
Methods for Decreasing the Spectral Bandwidth
of the Laser
......................................431
6.7.5
Single Mode Laser
................................432
6.7.6
Longitudinal Modes of Resonators
with an SBS Mirror
...............................435
6.8
Threshold, Gain and Power of Laser Beams
.................435
6.8.1
Gain from the Active Material: Parameters
...........435
6.8.2
Laser Threshold
..................................438
6.8.3
Laser Intensity and Power
..........................440
6.9
Spectral Linewidth and Position of Laser Emission
..........444
6.9.1
Minimal Spectral Bandwidth
.......................445
6.9.2
Frequency Pulling
.................................445
6.9.3
Broad Band Laser Emission
........................446
6.9.3.1
Broad-Band Emission
from Inhomogeneously Broadening
..........447
XVIII
Contents
6.9.3.2
Broad-Band Emission
from Short Pulse Generation
...............447
6.9.3.3
Broad-Band Emission from Gain Switching
. . 448
6.10
Intensity Modulation and Short Pulse Generation
...........451
6.10.1
Spiking Operation: Intensity Fluctuations
............451
6.10.2
Q
Switching (Generation of ns Pulses)
...............454
6.10.2.1
Active
Q
Switching and Cavity Dumping
..... 454
6.10.2.2
Passive
Q
Switching
....................... 456
6.10.2.3
Theoretical Description of
Q
Switching
...... 457
6.10.3
Mode Locking and Generation of ps and fs Pulses
..... 460
6.10.3.1
Theoretical Description:
Bandwidth-Limited Pulses
..................461
6.10.3.2
Passive Mode Locking
with Nonlinear Absorber
...................463
6.10.3.3
Colliding Pulse Mode Locking (CPM Laser)
. . 464
6.10.3.4
Kerr Lens Mode Locking
...................466
6.10.3.5
Additive Pulse Mode Locking
...............468
6.10.3.6
Soliton Laser
.............................469
6.10.3.7
Active Mode Locking with AOM
............470
6.10.3.8
Active Mode Locking by Gain Modulation
.... 471
6.10.4
Other Methods of Short Pulse Generation
............472
6.10.4.1
Distributed Feedback (DFB) Laser
..........472
6.10.4.2
Short Resonators
.........................473
6.10.4.3
Traveling Wave Excitation
.................474
6.10.5
Chaotic Behavior
.................................474
6.11
Laser Amplifier
.........................................476
6.11.1
Gain and Saturation
..............................476
6.11.2
Energy or Power Content: Efficiencies
...............479
6.11.3
Amplifier Schemes
................................480
6.11.3.1
Single Pass Amplifier
......................480
6.11.3.2
Double Pass Amplifier
.....................481
6.11.3.3
Multi
Pass Amplifier
......................482
6.11.3.4
Regenerative Amplifier
.....................483
6.11.3.5
Double Pass Amplifier
with Phase Conjugating Mirror
.............484
6.11.4
Quality Problems
.................................485
6.11.4.1
Noise
...................................485
6.11.4.2
Beam Quality
............................486
6.11.4.3
Pulse Duration
...........................486
6.12
Laser Classification
......................................487
6.12.1
Classification Parameters
..........................487
6.12.2
Laser Wavelengths
................................488
6.12.3
Laser Data Checklist
..............................488
6.12.3.1
Output Data
.............................490
Contents XIX
6.12.3.2 Installation
and Connection
to Other Devices
..........................490
6.12.3.3
Operation and Maintenance
................491
6.12.3.4
Prices and Safety
.........................491
6.13
Common Laser Parameters
...............................492
6.13.1
Semiconductor Lasers
.............................492
6.13.1.1
Single-Diode Lasers
.......................495
6.13.1.2
Diode Laser Bars, Arrays and Stacks
........496
6.13.1.3
Vertical Cavity Surface-Emitting Lasers
(VCSEL)
................................497
6.13.2
Solid-State Lasers
.................................498
6.13.2.1
Nd:YAG Lasers
........................... 499
6.13.2.2
Nd:YVO Lasers
.......................... 500
6.13.2.3
Nd Glass Laser
........................... 501
6.13.2.4
Yb:YAG Laser
........................... 502
6.13.2.5
Ttsapphire Laser
......................... 503
6.13.2.6
Cr.-LiCAF and CnLiSAF Lasers
............ 504
6.13.2.7
Alexandrite Laser
......................... 505
6.13.2.8
Erbium
(Er), Holmium
(Ho),
Thulium
(Tm)
Laser
......................506
6.13.2.9
Ruby Laser
..............................507
6.13.2.10 Er
fiber Lasers
...........................508
6.13.2.11
High power fiber lasers
....................509
6.13.3
Gas Lasers
.......................................510
6.13.3.1
XeCl, KrF and ArF Excimer Lasers
.........510
6.13.3.2
N2 Laser
................................511
6.13.3.3
Home Made N2 Laser
.....................511
6.13.3.4
Не
-Ne
Laser
.............................513
6.13.3.5
Не
-Cd
Laser
.............................514
6.13.3.6 Ar
and Kr Ion Lasers
.....................515
6.13.3.7
Cu (Au, Pb)
Vapor Lasers
.................516
6.13.3.8
CO2 Lasers
..............................517
6.13.4
Dye Lasers
.......................................518
6.13.4.1
cw and Quasi-cw (Mode-Locked) Dye Lasers
. . 519
6.13.4.2
Pulsed Dye Lasers
........................520
6.13.5
Other Lasers
.....................................520
6.14
Modification of Pulse Structure
...........................521
6.14.1
Single Pulse Selection
.............................522
6.14.2
Pulse Compression and Optical Gates
...............523
6.14.2.1
Pulse Compression of fs Pulses
.............523
6.14.2.2
Pulse compression of ns Pulses
.............523
6.14.2.3
Pulse Shortening by Nonlinear Effects
.......524
6.14-2.4
Pulse Shortening with Gates
................524
6.14.2.5
Optical Gating with Op-Conversion
.........524
6.15
Frequency Transformation
................................525
XX
Contents
6.15.1 Harmonie Generation (SHG, THG, FHG, XHG)......525
6.15.2 OPOs and OPAs..................................527
6.15.3
Raman Shifter....................................
528
6.16 Laser
Safety............................................
529
7.
Nonlinear Optical Spectroscopy
...........................533
7.1
General Procedure
.......................................534
7.1.1
Steps of Analysis
..................................535
7.1.2
Choice of Excitation Light Intensities
................535
7.1.3
Choice of Probe Light Intensities
....................539
7.1.4
Pump and Probe Light Overlap
.....................539
7.1.4.1
Spatial Overlap
...........................539
7.1.4.2
Temporal Overlap
.........................541
7.1.5
Light Beam Parameters
............................541
7.1.5.1
Polarization and Magic Angle
..............541
7.1.5.2
Pulse Width, Delay and Jitter
..............543
7.1.5.3
Spectral Width
............................545
7.1.5.4
Focus Size and Rayleigh Length
.............545
7.1.5.5
Coherence Lengths
........................545
7.1.6
Sample Parameters
................................546
7.1.6.1
Preparation, Host, Solvent
.................546
7.1.6.2
Concentration, Aggregation
.................547
7.1.6.3
Temperature
..............................547
7.1.6.4
Pressure
.................................547
7.1.7
Possible Measuring Errors
..........................548
7.2
Conventional Absorption Measurements
....................549
7.2.1
Determination of the Cross-Section
..................549
7.2.2
Reference Beam Method
...........................550
7.2.3
Cross-Section of
Anisotropie
Particles
...............551
7.2.4
Further Evaluation of Absorption Spectra
............552
7.2.4.1
Estimation of Excited State
Absorptions
(ESA)........................552
7.2.4.2
Band Shape Analysis
......................553
7.2.5
Using Polarized Light
.............................556
7.3
Conventional Emission Measurements
......................556
7.3.1
Geometry
........................................556
7.3.2
Emission Spectra
.................................557
7.3.2.1
Fluorescence Spectrum
.....................557
7.3.2.2
Phosphorescence Spectrum:
Triplet Quenching
.........................558
7.3.3
Excitation Spectrum: Kasha s Rule
..................559
7.3.4
Emission Decay Times, Quantum Yield, Cross-Section
. 559
7.3.4.1
Fluorescence Decay Time
..................560
7.3.4.2
Natural Lifetime
..........................560
7.3.4.3
Quantum Yield
...........................560
Contents XXI
7.3.4.4
Phosphorescence
Decay Time
...............561
7.3.4.5
Determination of the Emission Cross Section
. 562
7.3.5
Calibration of Spectral Sensitivity of Detection
.......562
7.4
Nonlinear Transmission Measurements (Bleaching Curves)
.... 564
7.4.1
Experimental Method
.............................564
7.4.2
Evaluation of the Nonlinear Absorption Measurement
. 566
7.4.2.1
Modeling
................................566
7.4.2.2
Bleaching or Darkening
....................567
7.4.2.3
Start of Nonlinearity:
Ground State Recovery Time
...............567
7.4.2.4
Slope, Plateaus, Minima and Maxima
.......571
7.4.3
Variation of Excitation Wavelength
..................573
7.4.4
Variation of Excitation Pulse Width
.................573
7.4.5
Variation of Spectral Width of Excitation Pulse
.......574
7.5
.г-Ѕсап
Measurements
....................................575
7.5.1
Experimental Method
.............................575
7.5.2
Theoretical Description
............................578
7.5.3
2-Scan with Absorbing Samples
.....................580
7.6
Nonlinear Emission Measurements
.........................580
7.6.1
Excitation Intensity Variation
......................580
7.6.2
Time-Resolved Measurements
......................582
7.6.3
Detection of Two-Photon Absorption
via Fluorescence
..................................582
7.6.4
Blue Fluorescence
...............................583
7.7
Pump and Probe Measurements
...........................584
7.7.1
Experimental Method
.............................584
7.7.2
Measurements of Transient Spectra
..................586
7.7.3
Coherence Effects in Pump and Probe Measurements
.. 587
7.7.4
Choice of the Excitation Light
......................588
7.7.5
Probe Light Sources and Detection
..................588
7.7.5.1
Probe Light Pulse Energy
..................589
7.7.5.2
Synchronized Lasers
and Frequency Transformations
.............589
7.7.5.3
White Light Generation with fs Duration
.....590
7.7.5.4
White Light Generation with ps Duration
.... 591
7.7.5.5
Fluorescence as Probe Light in the ns Range
.. 592
7.7.5.6
Flash Lamps
.............................593
7.7.5.7
Superluminescence
laser diodes
.............593
7.7.5.8
Spectral Calibration of Detection Systems
.... 593
7.7.6
Steady-State Measurement
.........................595
7.7.7
Polarization Conditions
............................596
7.7.8
Excited State Absorption
(ESA)
Measurements
.......596
7.7.8.1
Method
..................................596
7.7.8.2
Estimate of the Population Densities
........599
7.7.8.3
Differentiation of Singlet and Triplet Spectra
. 600
XXII Contents
7.7.9
Decay Time Measurements
.........................602
7.8
Special Pump and Probe Techniques
.......................602
7.8.1
Fractional Bleaching (FB) and Difference Spectra
.....602
7.8.2
Hole Burning (HB) Measurements
...................605
7.8.2.1
Method
..................................606
7.8.2.2
Low Temperature Hole Burning Measurements
608
7.8.2.3
Hole Burning Measurements
at Room Temperature
.....................609
7.8.3
Measurement with Induced Gratings:
Four-Wave Mixing
................................609
7.8.4
Nonlinear Polarization (NLP) Spectroscopy
..........611
7.8.5
Measurements with Multiple Excitation
..............613
7.8.6
Detection of Two-Photon Absorption via
ESA........615
7.9
Determination of Population Density
and Material Parameters
.................................616
7.9.1
Model Calculations
................................616
7.9.2
Determination of Time Constants for Modeling
.......618
7.9.2.1
Fluorescence Lifetime
.....................618
7.9.2.2
Triplet Life Time
.........................618
7.9.2.3
Ground State Absorption Recovery Time
.....619
7.9.3
Fluorescence Intensity Scaling
for Determining Population
........................619
7.10
Practical Hints for Determination
of Experimental Parameters
..............................621
7.10.1
Excitation Light Intensities
.........................621
7.10.2
Delay Time
......................................623
7.11
Examples for
Spectroscopie
Setups
........................624
7.11.1
ns Regime
.......................................624
7.11.2
ps and fs Regime
..................................625
7.12
Special Sample Conditions
................................627
7.12.1
Low Temperatures
................................627
7.12.2
High Pressures
...................................628
7.13
Quantum Chemical Calculations
..........................630
7.13.1 Orbitals
and Energy States of Molecules
.............630
7.13.2
Scheme of Common Approximations
.................631
7.13.3 Ab Initio
and Semi-Empirical Calculations
...........633
Bibliography
..................................................635
Further Reading
............................................635
References
..................................................638
1.
Topics in Photonics
...............................638
2.
Properties and Description of Light
.................671
3.
Linear Interactions Between Light and Matter
........683
4.
Nonlinear Interactions of Light and Matter
Without Absorption
...............................693
Contents XXIII
5.
Nonlinear Interactions
of Light and Matter with Absorption
................736
6.
Lasers
...........................................797
7.
Nonlinear Optical Spectroscopy
.....................957
List of Tables
.................................................997
Subject Index
................................................1001
|
adam_txt |
Contents
1.
Topics
in
Photonics
. 1
1.1
What Does Photonics Mean?
. 1
1.2
Scientific Topics
. 2
1.3
Technical Topics
. 4
1.4
Photonics and Technology
. 5
1.5
Applications
. 6
1.6
Costs of Photons
. 9
2.
Properties and Description of Light
. 11
2.1
Properties of Photons
. 11
2.1.1
Energy, Frequency, Wavelength, Moments,
Mass, Timing
. 12
2.1.2
Uncertainty Principle for Photons
. 15
2.1.2.1
Uncertainty of Position and Momentum
. 15
2.1.2.2
Uncertainty of Energy and Time
. 16
2.1.3
Properties of a Light Beam
. 17
2.2
Plane Waves Monochromatic Light
. 19
2.2.1
Space- and Time Dependent Wave Equation
. 19
2.2.2
Complex Representation
. 22
2.2.3
Intensity and Energy Density as a Function
of the Electric Field
. 23
2.2.4
Uncertainty of Field Strengths
. 23
2.3
Geometrical Optics
. 24
2.3.1
Preconditions: Fresnel Number
. 24
2.3.2
Theoretical Description
. 24
2.3.3
Ray Characteristics
. 26
2.3.4
Ray Propagation with Ray Matrices
. 27
2.4
Gaussian Beams
. 28
2.4.1
Preconditions
. 28
2.4.2
Definition and Theoretical Description
. 29
2.4.3
Beam Characteristics and Parameter
. 30
2.4.3.1
Rayleigh Length zr
. 30
2.4.3.2
Beam Radius w{z)
. 30
2.4.3.3
Wave Front Radius R{z)
. 31
XII Contents
2.4.3.4
Divergence Angle
θ.
32
2.4.3.5
Complex Beam Parameter q(z)
. 33
2.4.4
Beam Propagation with Ray-Matrices
. 33
2.4.5
Determination of wq and z0
. 34
2.4.6
How to Use the Formalism
. 35
2.5
Ray Matrices
. 35
2.5.1
Deriving Ray Matrices
. 36
2.5.2
Ray Matrices of Some Optical Elements
. 36
2.5.3
Light Passing Through Many Optical Elements
. 40
2.5.4
Examples
-
Lenses
. 41
2.5.4.1
Focusing with a Lens in Ray Optics
. 41
2.5.4.2
Focusing a Gaussian Beam with a Lens
. 42
2.5.4.3
Imaging with Two Lenses
. 43
2.5.4.4
Focal Length of Thin Spherical Lenses
. 44
2.6
Describing Light Polarization
. 44
2.6.1
Jones Vectors Characterizing Polarized Light
. 45
2.6.2
Jones Matrices of Some Optical Components
. 48
2.6.3
Stokes Vectors Characterizing Partially Polarized Light
50
2.6.4
Mueller Matrices of Some Optical Components
. 52
2.6.5
Using the Formalism
. 53
2.7
Light Characteristics
. 53
2.7.1
Power, Energy and Number of Photons
. 54
2.7.2
Average and Peak Power of a Light Pulse
. 54
2.7.3
Intensity and Beam Radius
. 57
2.7.4
Divergence
. 60
2.7.5
Beam Parameter Product
-
Beam Quality
. 62
2.7.6
Diffraction Limit and Potential Beam Quality
. 63
2.7.7
Brightness
. 65
2.7.8
Brilliance
. 65
2.7.9
Radiation Pressure and Optical
Lévitation
. 66
2.8
Statistical Properties of Photon Fields
. 67
2.8.1
Uncertainty of Photon Number and Phase
. 67
2.8.2
Description by Elementary Beams
. 67
2.8.3
Fluctuations of the Electric Field
. 69
2.8.4
Noise
. 70
2.8.5
Zero Point Energy and Vacuum Polarization
. 71
2.8.6
Squeezed Light
. 71
2.9
Interference and Coherence of Light
. 73
2.9.1
General Aspects
. 73
2.9.2
Coherence of Light
. 74
2.9.2.1
Coherence Length
. 74
2.9.2.2
Coherence Time
. 75
2.9.2.3
Lateral Coherence
. 77
2.9.3
Two-Beam Interference
. 78
2.9.4
Superposition of Two Vertical Polarized Light Beams
. 80
Contents XIII
2.9.5
One-Dimensional Multibeam Interference
. 82
2.9.6
Fabry-Perot Interferometer
. 84
2.9.7
Light Beats: Heterodyne Technique
. 88
2.9.8
Frequency Spectrum of Light Pulses
. 90
3.
Linear Interactions Between Light and Matter
. 93
3.1
General Description
. 93
3.2
Refraction and Dispersion
. 97
3.3
Absorption and Emission
.101
3.3.1
Theoretical Description of Absorption and Emission
. 101
3.3.2
Properties of Stimulated Emission
. 107
3.3.3
Spontaneous Emission
. 107
3.3.4
Radiationless Transitions
. 109
3.4
Measurement of Absorption
. 110
3.4.1
Lambert-Beer Law
.110
3.4.2
Cross-Section and Extinction Coefficient
.
Ill
3.4.3
Absorption Spectra of Some Optical Materials
and Filters
.112
3.5
Polarization in Refraction and Reflection (Fresnel's Formula)
. 114
3.5.1
Fresnel's Formula
.114
3.5.1.1
General Formula
. 115
3.5.1.2
Transition into Optically Denser Medium
. 117
3.5.1.3
Transition into Optical Thinner Medium
. 119
3.5.2
Brewster's Law
. 121
3.5.3
Total Reflection
. 122
3.6
Relation Between Reflection, Absorption and Refraction
. 123
3.7
Birefringence
. 125
3.8
Optical Activity (Polarization Rotation)
. 129
3.9
Diffraction
. 130
3.9.1
General Description: Fresnel's Diffraction Integral
.131
3.9.2
Far Field Pattern:
Fraunhofer
Diffraction Integral
.132
3.9.3
Diffraction in First Order Systems: Collins Integral
. 133
3.9.4
Diffraction at a One-Dimensional Slit
.133
3.9.5
Diffraction at a Two-Dimensional Slit
.136
3.9.6
Diffraction at a Circular Aperture
.137
3.9.7
Diffraction at Small Objects (Babinet's Theorem)
.140
3.9.8
Spot Size of Foci and Resolution of Optical Images
. 140
3.9.9
Modulation Transfer Function (MTF)
.143
3.9.10
Diffraction at a Double-Slit
.144
3.9.11
Diffraction at One-Dimensional Slit Gratings
.145
3.9.12
Diffraction at a Chain of Small Objects
.146
3.9.13
Diffraction at Two-Dimensional Gratings
.147
3.9.14
Diffraction at Three-Dimensional Gratings
.149
3.9.15
Bragg Reflection
.149
3.9.16
Amplitude and Phase Gratings
.150
XIV Contents
3.9.17
Diffraction
at Optically Thin and Thick Gratings
.152
3.10
Waveguiding
-
Optical Fibers
.156
3.11
Light Scattering Processes
.160
3.11.1
Rayleigh and Rayleigh Wing Scattering
.161
3.11.2
Mie
Scattering
.163
3.11.3
Brillouin Scattering
.163
3.11.4
Raman Scattering
.165
3.11.5
Thomson and Compton Scattering
.168
3.12
Optical Materials
.170
4.
Nonlinear Interactions of Light and Matter
Without Absorption
.173
4.1
General Classification
.174
4.2
Nonresonant
Interactions
.176
4.3
Nonlinear Polarization of the Medium
.178
4.4
Second-Order Effects
.180
4.4.1
Generation of the Second Harmonic
.181
4.4.2
Phase Matching
.183
4.4.2.1
Phase Matching for
Second Harmonic Generation
.183
4.4.2.2
Dispersion of Crystals: Sellmeier Coefficients
. 187
4.4.2.3
Walk-Off Angle
.188
4.4.2.4
Focusing and Crystal Length
.189
4.4.2.5
Type I and Type II Phase Matching
.190
4.4.2.6
Quasi-Phase
Matching (qpm)
.190
4.4.3
Frequency Mixing of Two Monochromatic Fields
.192
4.4.4
Parametric Amplifiers and Oscillators
.193
4.4.5
Spontaneous Parametric Down Conversion (SPDC)
-
Entangled Photons
.196
4.4.6
Pockels' Effect
.200
4.4.7
Electro-Optical Beam Deflection
.204
4.4.8
Optical Rectification
.205
4.5
Third-Order Effects
.207
4.5.1
Generation of the Third Harmonic
.208
4.5.2
Kerr Effect
.209
4.5.3
Self-Focusing
.212
4.5.4
Spatial
Solitons.215
4.5.5
Self-Diffraction
.217
4.5.6
Self-Focusing in Weakly Absorbing Samples
.218
4.5.7
Self-Phase Modulation
.218
4.5.8
Generation of Temporal
Solitons: Soliton
Pulses
.222
4.5.9
Stimulated Brillouin Scattering (SBS)
.224
4.5.10
Stimulated Thermal Brillouin Scattering (STBS)
.235
4.5.11
Stimulated Rayleigh (SRLS)
and Thermal Rayleigh (STRS) Scattering
.237
Contents
XV
4.5.12
Stimulated Rayleigh Wing (SRWS) Scattering
.238
4.5.13
Stimulated Raman Techniques
.240
4.5.13.1
Stimulated Raman Scattering (SRS)
.240
4.5.13.2
Inverse Raman Spectroscopy
(1RS).246
4.5.13.3
Stimulated Raman Gain Spectroscopy
(SRGS)
.246
4.5.13.4
Coherent Anti-Stokes Raman Scattering
(CARS)
.247
4.5.13.5
BOX CARS
.249
4.5.14
Optical Phase Conjugation via Stimulated Scattering
. . 250
4.6
Higher-Order Nonlinear Effects
.258
4.7
Materials for
Nonresonant
Nonlinear Interactions
.259
4.7.1
Inorganic Crystals
.259
4.7.2
Organic Materials
.260
4.7.3
Liquids
.260
4.7.4
Liquid Crystals
.261
4.7.5
Gases
.261
5.
Nonlinear Interactions of Light
and Matter with Absorption
.263
5.1
General Remarks
.264
5.2
Homogeneous and Inhomogeneous Broadening
.265
5.3
Incoherent Interaction
.268
5.3.1
Bleaching
.269
5.3.2
Transient Absorption:
Excited State Absorption
(ESA).271
5.3.3
Nonlinear Transmission
.272
5.3.4
Stimulated Emission: Superradiance: Laser Action
. 274
5.3.5
Spectral Hole Burning
.275
5.3.6
Description with Rate Equations
.277
5.3.6.1
Basic Equations
.277
5.3.6.2
Stationary Solutions of Rate Equations
.279
5.3.6.3
Stationary Two-Level Model
.280
5.3.6.4
Stationary Four-Level Model
.283
5.3.6.5
Stationary Model with Two Absorptions
.284
5.3.6.6
General Stationary Models
.287
5.3.6.7
Numerical Solution
.288
5.3.6.8
Considering Spectral Hole Burning
with Rate Equations
.291
5.3.7
Coherent Light Fields
.294
5.3.8
Induced Transmission
and Excited State Absorption Gratings
.295
5.3.9
Induced Inversion Gratings
.296
5.3.10
Spatial Hole Burning
.297
5.3.11
Induced Grating Spectroscopy
.298
XVI Contents
5.4
Coherent Resonant Interaction
.299
5.4.1
Dephasing Time T2
.300
5.4.2
Density Matrix Formalism
.301
5.4.3
Modeling Two-Level Scheme
.304
5.4.4
Feynman Diagrams for Nonlinear Optics
.308
5.4.5
Damped
Rabi
Oscillation and Optical Nutation
.313
5.4.6
Quantum Beat Spectroscopy
.314
5.4.7
Photon Echoes
.316
5.4.8
Self-Induced Transparency: 2ff Pulses
.318
5.4.9
Superradiance (Superfiuorescence)
.320
5.4.10
Amplification Without Inversion
.320
5.5
Two-Photon and Multiphoton Absorption
.321
5.6
Photoionization and Optical Breakdown (OBD)
.326
5.7
Optical Damage
.328
5.8
Laser Material Processing
.330
5.9
Combined Interactions with Diffraction
and Absorption Changes
.332
5.9.1
Induced Amplitude and Phase Gratings
.332
5.9.2
Four-Wave Mixing (FWM)
.335
5.9.3
Optical Bistabiiity
.341
5.10
Materials in Resonant Nonlinear Optics
.343
5.10.1
Organic Molecules
.344
5.10.1.1
Structure and Optical Properties
.345
5.10.1.2
Preparation of the Samples
.353
5.10.2
Anorganic Absorbing Crystals
.353
5.10.3
Photorefractive Materials
.354
5.10.4
Semiconductors
.356
5.10.5
Nanometer Structures
.356
6.
Lasers
.359
6.1
Principle
.359
6.2
Active Materials: Three- and Four-Level Schemes
-
Gain
.362
6.3
Pump Mechanism: Quantum Defect and Efficiency
.363
6.3.1
Pumping by Other Lasers
.365
6.3.2
Electrical Pumping in Diode Lasers
.372
6.3.3
Electrical Discharge Pumping
.375
6.3.4
Lamp Pumping
.377
6.3.5
Chemical Pumping
.378
6.3.6
Efficiencies
.379
6.4
Side-Effects from the Pumped Active Material
.381
6.4.1
Thermal Lensing
.381
6.4.2
Thermally Induced Birefringence
.385
6.4.3
Thermal Stress Fracture Limit
.387
6.5
Laser Resonators
.388
6.5.1
Stable Resonators: Resonator Modes
.389
Contents XVII
6.5.2
Unstable Resonators
.390
6.6
Transversal Modes of Laser Resonators
.391
6.6.1
Fundamental Mode
.391
6.6.2
Empty Resonator
.392
6.6.3
g
Parameter and
g
Diagram
.394
6.6.4
Selected Stable Empty Resonators
.395
6.6.5
Higher Transversal Modes
.399
6.6.5.1
Circular Eigenmodes
or Gauss-Laguerre Modes
.400
6.6.5.2
Rectangular or Gauss-Hermite Modes
.401
6.6.5.3
Hybrid or
Donut
Modes
.407
6.6.5.4
Coherent mode combining
.408
6.6.6
Beam Radii of Higher Transversal Modes
and Power Content
.409
6.6.7
Beam Divergence of Higher Transversal Modes
.411
6.6.8
Beam Quality of Higher Transversal Modes
.412
6.6.9
Propagating Higher Transversal Modes
.412
6.6.10
Fundamental Mode Operation: Mode Apertures
.413
6.6.11
Large Mode Volumes: Lenses in the Resonator
.416
6.6.12
Transversal Modes of Lasers
with a Phase Conjugating Mirror
.416
6.6.13
Misalignment Sensitivity: Stability Ranges
.419
6.6.14
Dynamically Stable Resonators
.422
6.6.15
Measurement of the Thermally Induced
Refractive Power
.424
6.7
Longitudinal Modes
.425
6.7.1
Mode Spacing
.426
6.7.2
Bandwidth of Single Longitudinal Modes
.428
6.7.3
Spectral Broadening from the Active Material
.430
6.7.4
Methods for Decreasing the Spectral Bandwidth
of the Laser
.431
6.7.5
Single Mode Laser
.432
6.7.6
Longitudinal Modes of Resonators
with an SBS Mirror
.435
6.8
Threshold, Gain and Power of Laser Beams
.435
6.8.1
Gain from the Active Material: Parameters
.435
6.8.2
Laser Threshold
.438
6.8.3
Laser Intensity and Power
.440
6.9
Spectral Linewidth and Position of Laser Emission
.444
6.9.1
Minimal Spectral Bandwidth
.445
6.9.2
Frequency Pulling
.445
6.9.3
Broad Band Laser Emission
.446
6.9.3.1
Broad-Band Emission
from Inhomogeneously Broadening
.447
XVIII
Contents
6.9.3.2
Broad-Band Emission
from Short Pulse Generation
.447
6.9.3.3
Broad-Band Emission from Gain Switching
. . 448
6.10
Intensity Modulation and Short Pulse Generation
.451
6.10.1
Spiking Operation: Intensity Fluctuations
.451
6.10.2
Q
Switching (Generation of ns Pulses)
.454
6.10.2.1
Active
Q
Switching and Cavity Dumping
. 454
6.10.2.2
Passive
Q
Switching
. 456
6.10.2.3
Theoretical Description of
Q
Switching
. 457
6.10.3
Mode Locking and Generation of ps and fs Pulses
. 460
6.10.3.1
Theoretical Description:
Bandwidth-Limited Pulses
.461
6.10.3.2
Passive Mode Locking
with Nonlinear Absorber
.463
6.10.3.3
Colliding Pulse Mode Locking (CPM Laser)
. . 464
6.10.3.4
Kerr Lens Mode Locking
.466
6.10.3.5
Additive Pulse Mode Locking
.468
6.10.3.6
Soliton Laser
.469
6.10.3.7
Active Mode Locking with AOM
.470
6.10.3.8
Active Mode Locking by Gain Modulation
. 471
6.10.4
Other Methods of Short Pulse Generation
.472
6.10.4.1
Distributed Feedback (DFB) Laser
.472
6.10.4.2
Short Resonators
.473
6.10.4.3
Traveling Wave Excitation
.474
6.10.5
Chaotic Behavior
.474
6.11
Laser Amplifier
.476
6.11.1
Gain and Saturation
.476
6.11.2
Energy or Power Content: Efficiencies
.479
6.11.3
Amplifier Schemes
.480
6.11.3.1
Single Pass Amplifier
.480
6.11.3.2
Double Pass Amplifier
.481
6.11.3.3
Multi
Pass Amplifier
.482
6.11.3.4
Regenerative Amplifier
.483
6.11.3.5
Double Pass Amplifier
with Phase Conjugating Mirror
.484
6.11.4
Quality Problems
.485
6.11.4.1
Noise
.485
6.11.4.2
Beam Quality
.486
6.11.4.3
Pulse Duration
.486
6.12
Laser Classification
.487
6.12.1
Classification Parameters
.487
6.12.2
Laser Wavelengths
.488
6.12.3
Laser Data Checklist
.488
6.12.3.1
Output Data
.490
Contents XIX
6.12.3.2 Installation
and Connection
to Other Devices
.490
6.12.3.3
Operation and Maintenance
.491
6.12.3.4
Prices and Safety
.491
6.13
Common Laser Parameters
.492
6.13.1
Semiconductor Lasers
.492
6.13.1.1
Single-Diode Lasers
.495
6.13.1.2
Diode Laser Bars, Arrays and Stacks
.496
6.13.1.3
Vertical Cavity Surface-Emitting Lasers
(VCSEL)
.497
6.13.2
Solid-State Lasers
.498
6.13.2.1
Nd:YAG Lasers
. 499
6.13.2.2
Nd:YVO Lasers
. 500
6.13.2.3
Nd Glass Laser
. 501
6.13.2.4
Yb:YAG Laser
. 502
6.13.2.5
Ttsapphire Laser
. 503
6.13.2.6
Cr.-LiCAF and CnLiSAF Lasers
. 504
6.13.2.7
Alexandrite Laser
. 505
6.13.2.8
Erbium
(Er), Holmium
(Ho),
Thulium
(Tm)
Laser
.506
6.13.2.9
Ruby Laser
.507
6.13.2.10 Er
fiber Lasers
.508
6.13.2.11
High power fiber lasers
.509
6.13.3
Gas Lasers
.510
6.13.3.1
XeCl, KrF and ArF Excimer Lasers
.510
6.13.3.2
N2 Laser
.511
6.13.3.3
Home Made N2 Laser
.511
6.13.3.4
Не
-Ne
Laser
.513
6.13.3.5
Не
-Cd
Laser
.514
6.13.3.6 Ar
and Kr Ion Lasers
.515
6.13.3.7
Cu (Au, Pb)
Vapor Lasers
.516
6.13.3.8
CO2 Lasers
.517
6.13.4
Dye Lasers
.518
6.13.4.1
cw and Quasi-cw (Mode-Locked) Dye Lasers
. . 519
6.13.4.2
Pulsed Dye Lasers
.520
6.13.5
Other Lasers
.520
6.14
Modification of Pulse Structure
.521
6.14.1
Single Pulse Selection
.522
6.14.2
Pulse Compression and Optical Gates
.523
6.14.2.1
Pulse Compression of fs Pulses
.523
6.14.2.2
Pulse compression of ns Pulses
.523
6.14.2.3
Pulse Shortening by Nonlinear Effects
.524
6.14-2.4
Pulse Shortening with Gates
.524
6.14.2.5
Optical Gating with Op-Conversion
.524
6.15
Frequency Transformation
.525
XX
Contents
6.15.1 Harmonie Generation (SHG, THG, FHG, XHG).525
6.15.2 OPOs and OPAs.527
6.15.3
Raman Shifter.
528
6.16 Laser
Safety.
529
7.
Nonlinear Optical Spectroscopy
.533
7.1
General Procedure
.534
7.1.1
Steps of Analysis
.535
7.1.2
Choice of Excitation Light Intensities
.535
7.1.3
Choice of Probe Light Intensities
.539
7.1.4
Pump and Probe Light Overlap
.539
7.1.4.1
Spatial Overlap
.539
7.1.4.2
Temporal Overlap
.541
7.1.5
Light Beam Parameters
.541
7.1.5.1
Polarization and Magic Angle
.541
7.1.5.2
Pulse Width, Delay and Jitter
.543
7.1.5.3
Spectral Width
.545
7.1.5.4
Focus Size and Rayleigh Length
.545
7.1.5.5
Coherence Lengths
.545
7.1.6
Sample Parameters
.546
7.1.6.1
Preparation, Host, Solvent
.546
7.1.6.2
Concentration, Aggregation
.547
7.1.6.3
Temperature
.547
7.1.6.4
Pressure
.547
7.1.7
Possible Measuring Errors
.548
7.2
Conventional Absorption Measurements
.549
7.2.1
Determination of the Cross-Section
.549
7.2.2
Reference Beam Method
.550
7.2.3
Cross-Section of
Anisotropie
Particles
.551
7.2.4
Further Evaluation of Absorption Spectra
.552
7.2.4.1
Estimation of Excited State
Absorptions
(ESA).552
7.2.4.2
Band Shape Analysis
.553
7.2.5
Using Polarized Light
.556
7.3
Conventional Emission Measurements
.556
7.3.1
Geometry
.556
7.3.2
Emission Spectra
.557
7.3.2.1
Fluorescence Spectrum
.557
7.3.2.2
Phosphorescence Spectrum:
Triplet Quenching
.558
7.3.3
Excitation Spectrum: Kasha's Rule
.559
7.3.4
Emission Decay Times, Quantum Yield, Cross-Section
. 559
7.3.4.1
Fluorescence Decay Time
.560
7.3.4.2
Natural Lifetime
.560
7.3.4.3
Quantum Yield
.560
Contents XXI
7.3.4.4
Phosphorescence
Decay Time
.561
7.3.4.5
Determination of the Emission Cross Section
. 562
7.3.5
Calibration of Spectral Sensitivity of Detection
.562
7.4
Nonlinear Transmission Measurements (Bleaching Curves)
. 564
7.4.1
Experimental Method
.564
7.4.2
Evaluation of the Nonlinear Absorption Measurement
. 566
7.4.2.1
Modeling
.566
7.4.2.2
Bleaching or Darkening
.567
7.4.2.3
Start of Nonlinearity:
Ground State Recovery Time
.567
7.4.2.4
Slope, Plateaus, Minima and Maxima
.571
7.4.3
Variation of Excitation Wavelength
.573
7.4.4
Variation of Excitation Pulse Width
.573
7.4.5
Variation of Spectral Width of Excitation Pulse
.574
7.5
.г-Ѕсап
Measurements
.575
7.5.1
Experimental Method
.575
7.5.2
Theoretical Description
.578
7.5.3
2-Scan with Absorbing Samples
.580
7.6
Nonlinear Emission Measurements
.580
7.6.1
Excitation Intensity Variation
.580
7.6.2
Time-Resolved Measurements
.582
7.6.3
Detection of Two-Photon Absorption
via Fluorescence
.582
7.6.4
"Blue" Fluorescence
.583
7.7
Pump and Probe Measurements
.584
7.7.1
Experimental Method
.584
7.7.2
Measurements of Transient Spectra
.586
7.7.3
Coherence Effects in Pump and Probe Measurements
. 587
7.7.4
Choice of the Excitation Light
.588
7.7.5
Probe Light Sources and Detection
.588
7.7.5.1
Probe Light Pulse Energy
.589
7.7.5.2
Synchronized Lasers
and Frequency Transformations
.589
7.7.5.3
White Light Generation with fs Duration
.590
7.7.5.4
White Light Generation with ps Duration
. 591
7.7.5.5
Fluorescence as Probe Light in the ns Range
. 592
7.7.5.6
Flash Lamps
.593
7.7.5.7
Superluminescence
laser diodes
.593
7.7.5.8
Spectral Calibration of Detection Systems
. 593
7.7.6
Steady-State Measurement
.595
7.7.7
Polarization Conditions
.596
7.7.8
Excited State Absorption
(ESA)
Measurements
.596
7.7.8.1
Method
.596
7.7.8.2
Estimate of the Population Densities
.599
7.7.8.3
Differentiation of Singlet and Triplet Spectra
. 600
XXII Contents
7.7.9
Decay Time Measurements
.602
7.8
Special Pump and Probe Techniques
.602
7.8.1
Fractional Bleaching (FB) and Difference Spectra
.602
7.8.2
Hole Burning (HB) Measurements
.605
7.8.2.1
Method
.606
7.8.2.2
Low Temperature Hole Burning Measurements
608
7.8.2.3
Hole Burning Measurements
at Room Temperature
.609
7.8.3
Measurement with Induced Gratings:
Four-Wave Mixing
.609
7.8.4
Nonlinear Polarization (NLP) Spectroscopy
.611
7.8.5
Measurements with Multiple Excitation
.613
7.8.6
Detection of Two-Photon Absorption via
ESA.615
7.9
Determination of Population Density
and Material Parameters
.616
7.9.1
Model Calculations
.616
7.9.2
Determination of Time Constants for Modeling
.618
7.9.2.1
Fluorescence Lifetime
.618
7.9.2.2
Triplet Life Time
.618
7.9.2.3
Ground State Absorption Recovery Time
.619
7.9.3
Fluorescence Intensity Scaling
for Determining Population
.619
7.10
Practical Hints for Determination
of Experimental Parameters
.621
7.10.1
Excitation Light Intensities
.621
7.10.2
Delay Time
.623
7.11
Examples for
Spectroscopie
Setups
.624
7.11.1
ns Regime
.624
7.11.2
ps and fs Regime
.625
7.12
Special Sample Conditions
.627
7.12.1
Low Temperatures
.627
7.12.2
High Pressures
.628
7.13
Quantum Chemical Calculations
.630
7.13.1 Orbitals
and Energy States of Molecules
.630
7.13.2
Scheme of Common Approximations
.631
7.13.3 Ab Initio
and Semi-Empirical Calculations
.633
Bibliography
.635
Further Reading
.635
References
.638
1.
Topics in Photonics
.638
2.
Properties and Description of Light
.671
3.
Linear Interactions Between Light and Matter
.683
4.
Nonlinear Interactions of Light and Matter
Without Absorption
.693
Contents XXIII
5.
Nonlinear Interactions
of Light and Matter with Absorption
.736
6.
Lasers
.797
7.
Nonlinear Optical Spectroscopy
.957
List of Tables
.997
Subject Index
.1001 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Menzel, Ralf 1975- |
author_GND | (DE-588)132775115 |
author_facet | Menzel, Ralf 1975- |
author_role | aut |
author_sort | Menzel, Ralf 1975- |
author_variant | r m rm |
building | Verbundindex |
bvnumber | BV022861904 |
callnumber-first | T - Technology |
callnumber-label | TA1520 |
callnumber-raw | TA1520 |
callnumber-search | TA1520 |
callnumber-sort | TA 41520 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | UH 5000 UH 5500 |
ctrlnum | (OCoLC)76365654 (DE-599)DNB97742748X |
dewey-full | 621.36 535 |
dewey-hundreds | 600 - Technology (Applied sciences) 500 - Natural sciences and mathematics |
dewey-ones | 621 - Applied physics 535 - Light and related radiation |
dewey-raw | 621.36 535 |
dewey-search | 621.36 535 |
dewey-sort | 3621.36 |
dewey-tens | 620 - Engineering and allied operations 530 - Physics |
discipline | Maschinenbau / Maschinenwesen Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Maschinenbau / Maschinenwesen Physik Elektrotechnik / Elektronik / Nachrichtentechnik |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02246nam a2200613 c 4500</leader><controlfield tag="001">BV022861904</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20121203 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">071002s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N02,0998</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,A35,0997</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">97742748X</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540231608</subfield><subfield code="9">978-3-540-23160-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540231609</subfield><subfield code="9">3-540-23160-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540231608</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">10980873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76365654</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB97742748X</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-B768</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA1520</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.36</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5500</subfield><subfield code="0">(DE-625)145663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Menzel, Ralf</subfield><subfield code="d">1975-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132775115</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photonics</subfield><subfield code="b">linear and nonlinear interactions of laser light and matter</subfield><subfield code="c">Ralf Menzel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXIII, 1024 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [635] - 996</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photonics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Photonik</subfield><subfield code="0">(DE-588)4243979-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Laser</subfield><subfield code="0">(DE-588)4034610-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Optik</subfield><subfield code="0">(DE-588)4042096-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2718279&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016067123&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016067123</subfield></datafield></record></collection> |
id | DE-604.BV022861904 |
illustrated | Illustrated |
index_date | 2024-07-02T18:43:55Z |
indexdate | 2024-07-09T21:07:10Z |
institution | BVB |
isbn | 9783540231608 3540231609 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016067123 |
oclc_num | 76365654 |
open_access_boolean | |
owner | DE-20 DE-703 DE-1050 DE-1102 DE-92 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-384 DE-B768 DE-526 |
owner_facet | DE-20 DE-703 DE-1050 DE-1102 DE-92 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-83 DE-384 DE-B768 DE-526 |
physical | XXIII, 1024 S. zahlr. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Menzel, Ralf 1975- Verfasser (DE-588)132775115 aut Photonics linear and nonlinear interactions of laser light and matter Ralf Menzel 2. ed. Berlin [u.a.] Springer 2007 XXIII, 1024 S. zahlr. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Literaturverz. S. [635] - 996 Photonique Photonics Laser (DE-588)4034610-9 gnd rswk-swf Nichtlineare Optik (DE-588)4042096-6 gnd rswk-swf Photonik (DE-588)4243979-6 gnd rswk-swf Photonik (DE-588)4243979-6 s DE-604 Laser (DE-588)4034610-9 s Nichtlineare Optik (DE-588)4042096-6 s text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2718279&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016067123&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Menzel, Ralf 1975- Photonics linear and nonlinear interactions of laser light and matter Photonique Photonics Laser (DE-588)4034610-9 gnd Nichtlineare Optik (DE-588)4042096-6 gnd Photonik (DE-588)4243979-6 gnd |
subject_GND | (DE-588)4034610-9 (DE-588)4042096-6 (DE-588)4243979-6 |
title | Photonics linear and nonlinear interactions of laser light and matter |
title_auth | Photonics linear and nonlinear interactions of laser light and matter |
title_exact_search | Photonics linear and nonlinear interactions of laser light and matter |
title_exact_search_txtP | Photonics linear and nonlinear interactions of laser light and matter |
title_full | Photonics linear and nonlinear interactions of laser light and matter Ralf Menzel |
title_fullStr | Photonics linear and nonlinear interactions of laser light and matter Ralf Menzel |
title_full_unstemmed | Photonics linear and nonlinear interactions of laser light and matter Ralf Menzel |
title_short | Photonics |
title_sort | photonics linear and nonlinear interactions of laser light and matter |
title_sub | linear and nonlinear interactions of laser light and matter |
topic | Photonique Photonics Laser (DE-588)4034610-9 gnd Nichtlineare Optik (DE-588)4042096-6 gnd Photonik (DE-588)4243979-6 gnd |
topic_facet | Photonique Photonics Laser Nichtlineare Optik Photonik |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2718279&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016067123&sequence=000004&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT menzelralf photonicslinearandnonlinearinteractionsoflaserlightandmatter |