Photobiology: the science of life and light
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
New York [u.a.]
Springer
2008
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXII, 684 S. zahlr. Ill., graph. Darst. |
ISBN: | 9780387726540 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022827577 | ||
003 | DE-604 | ||
005 | 20080702 | ||
007 | t | ||
008 | 070927s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780387726540 |9 978-0-387-72654-0 | ||
035 | |a (OCoLC)255669036 | ||
035 | |a (DE-599)BVBBV022827577 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 |a DE-29 |a DE-M49 |a DE-11 | ||
050 | 0 | |a QH515 | |
082 | 0 | |a 571.455 | |
084 | |a WD 2800 |0 (DE-625)148170: |2 rvk | ||
084 | |a BIO 148f |2 stub | ||
245 | 1 | 0 | |a Photobiology |b the science of life and light |c ed. by Lars Olof Björn |
250 | |a 2. ed. | ||
264 | 1 | |a New York [u.a.] |b Springer |c 2008 | |
300 | |a XXII, 684 S. |b zahlr. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Photobiology | |
650 | 0 | 7 | |a Photobiologie |0 (DE-588)4174474-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Photobiologie |0 (DE-588)4174474-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Björn, Lars Olof |d 1936- |e Sonstige |0 (DE-588)1082447927 |4 oth | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016032844&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-016032844 |
Datensatz im Suchindex
_version_ | 1810338820010278912 |
---|---|
adam_text |
Contents
Preface vii
Contributors xxi
1. The Nature of Light and Its Interaction with Matter 1
Lars Olof Björn
1.1. Introduction 1
1.2. Particle and Wave Properties of Light 1
1.3. Light as Particles and Light as Waves, and Some Definitions. 6
1.4. Diffraction 7
1.5. Polarization 8
1.6. Statistics of Photon Emission and Absorption 9
1.7. Heat Radiation 11
1.8. Refraction of Light 14
1.9. Reflection of Light 15
1.10. Scattering of Light 18
1.11. Propagation of Light in Absorbing and Scattering Media 19
1.12. Spectra of Isolated Atoms 22
1.13. Energy Levels in Diatomic and Polyatomic Molecules 23
1.14. Quantum Yield of Fluorescence 29
1.15. Relationship Between Absorption and Emission Spectra 30
1.16. Molecular Geometry of the Absorption Process 31
1.17. Transfer of Electronic Excitation Energy Between Molecules. 33
1.18. The Förster Mechanism for Energy Transfer 34
1.19. Triplet States 35
1.20. The Dioxygen Molecule 36
1.21. Singlet Oxygen 37
2. Principles and Nomenclature for the Quantification of Light 41
Lars Olof Björn
2.1. Introduction: Why This Chapter Is Necessary 41
2.2. The Wavelength Problem 42
2.3. The Problem of Direction and Shape 43
2.4. Biological Weighting Functions and Units 46
ix
x Contents
3. Generation and Control of Light 51
Lars Olof Björn
3.1. Introduction 51
3.2. Light Sources 51
3.2.1. The Sun 51
3.2.2. Incandescent Lamps 52
3.2.3. Electric Discharges in Gases of Low Pressure 53
3.2.4. Medium- and High-Pressure Gas Discharge Lamps 54
3.2.5. Flashlamps 55
3.2.6. Light-Emitting Diodes 55
3.2.7. Lasers 56
3.3. Selection of Light 57
3.3.1. Filters with Light-Absorbing Substances 58
3.3.2. Interference Filters 61
3.3.3. Monochromators 62
4. The Measurement of Light 69
Lars Olof Björn
4.1. Introduction 69
4.2. Photothermal Devices 69
4.2.1. The Bolometer 69
4.2.2. The Thermopile 71
4.2.3. Thermopneumatic Devices 72
4.3. Photoelectric Devices 73
4.3.1. A Device Based on the Outer Photoelectric Effect:
The Photomultiplier 73
4.3.2. Devices Based on Semiconductors (Inner
Photoelectric Effect) 75
4.4. Photochemical Devices: Actinometers and Dosimeters 76
4.5. Fluorescent Wavelength Converters ("Quantum Counters") 79
4.6. Spectroradiometry 80
4.6.1. General 80
4.6.2. Input Optics 80
4.6.3. Example of a Spectroradiometer 82
4.6.4. Calibration of Spectroradiometers 84
4.7. Special Methods for Measurement of Very Weak Light 87
4.7.1. Introduction 87
4.7.2. Direct Current Mode 87
4.7.3. Chopping of Light and Use of Lock-In Amplifier 88
4.7.4. Measurement of Shot Noise 88
4.7.5. Pulse Counting 88
4.8. A Sensor for Catching Images: The Charge-Coupled Device 89
5. Light as a Tool for Biologists: Recent Developments 93
Lars Olof Björn
5.1. Introduction 93
Contents xi
5.2. Optical Tweezers and Related Techniques 93
5.3. Use of Lasers for Ablation, Desorption, Ionization,
and Dissection 95
5.4. Fluorescent Labeling 96
5.5. Abbe's Diffraction Limit to Spatial Resolution
in Microscopy 97
5.6. Two-Photon Excitation Fluorescence Microscopy 99
5.7. Stimulated Emission Depletion 100
5.8. Near-Field Microscopy 101
5.9. Quantum Dots 103
5.10. Photochemical Internalization 108
5.11. Photogating of Membrane Channels 110
5.12. Photocrosslinking and Photolabeling 113
5.13. Fluorescence-Aided DNA Sequencing 115
6. Terrestrial Daylight 123
Lars Olof Björn
6.1. Introduction 123
6.2. Principles for the Modification of Sunlight by the
Earth's Atmosphere 123
6.3. The UV-A, Visible, and Infrared Components
of Daylight in the Open Terrestrial Environment Under
ClearSkies 124
6.4. CloudEffects 127
6.5. Effects of Ground and Vegetation 127
6.6. The UV-B Daylight Spectrum and Biological Action
ofUV-B 128
7. Underwater Light 131
Raymond C. Smith and Curtis D. Mobley
7.1. Introduction 131
7.2. Inherent Optical Properties 132
7.3. Apparent Optical Properties 133
7.4. Estimation of In-Water Radiant Energy 134
8. Action Spectroscopy in Biology 139
Lars Olof Björn
8.1. Introduction 139
8.2. The Oldest History: Investigation of Photosynthesis by
Means of Action Spectroscopy 141
8.3. Investigation of Respiration Using Action Spectroscopy 143
8.4. The DNA That Was Forgotten 144
8.5. Plant Vision 147
8.6. Protochlorophyllide Photoreduction to Chlorophyllide a 151
xii Contents
8.7. Limitations of Action Spectroscopy: The Elusive Blue
Light Receptor 152
8.8. Another Use for Action Spectra 153
9. Spectral Tuning in Biology 155
Lars Olof Björn and Helen Ghiradella
9.1. Introduction 155
9.2. Why Are Plants Green? 156
9.3. What Determines Spectra of Pigments? 157
9.4. Relation Between the Absorption and Molecular Structure
of Chlorophylls 159
9.5. Tuning of Chlorophyll a and b Absorption Peaks
by the Molecular Environment 161
9.6. Phycobiliproteins and Phycobilisomes 162
9.7. Chromatic Adaptation of Cyanobacterial Phycobilisomes 165
9.8. Visual Tuning 166
9.9. Tuning of Anthocyanins 171
9.10. Living Mirrors and the Tuning of Structural Color 177
9.10.1. Introduction 177
9.10.2. Reflection in a Single Thin Layer 178
9.10.3. Reflection by Multilayer Stacks 183
9.11. The Interplay of Spectra in the Living World 188
10. Photochemical Reactions in Biological Light Perception
and Regulation 197
Lars Olof Björn
10.1. Introduction 197
10.2. Cis-Trans and Trans-Cis Isomerization 198
10.2.1. Urocanic Acid 199
10.2.2. Eukaryotic Rhodopsin 200
10.2.3. Archaean Rhodopsins 203
10.2.4. Photoactive Yellow Proteins (PYPs, Xanthopsins) 205
10.2.5. Phytochrome 207
10.2.6. Photosensor for Chromatic Adaptation
of Cyanobacteria 209
10.2.7. Violaxanthin as a Blue-light Sensor in
Stomatal Regulation 210
10.3. Other Types of Photosensors 211
10.3.1. Cryptochromes 211
10.3.2. Phototropin 212
10.3.3. The Plant UV-B Receptor 215
11. The Diversity of Eye Optics 223
Lars Olof Björn
11.1. Introduction 223
Contents xiii
11.2. The Human Eye 223
11.3. An Eye in Water: The Problem 227
11.4. An Eye in Water: The Solution 228
11.5. Another Problem: Chromatic Aberration 230
11.6. Problems and Solutions for Amphibious Animals 231
11.7. Feedback Regulation During Eye Development 234
11.8. Eyes with Extreme Light Sensitivity 234
11.9. Compound Eyes 235
11.10. Nipple Arrays on InsectEyes 240
11.11. Eyes with Mirror Optics 241
11.12. ScanningEyes 242
11.13. Evolution of Eyes 246
12. The Evolution of Photosynthesis and Its Environmental Impact. 255
Lars Olof Björn and Govindjee
12.1. Introduction 256
12.2. A Short Review of Plant Photosynthesis 257
12.3. The Domains of Life 258
12.4. Predecessors of the First Photosynthetic Organisms 259
12.5. The First Photosynthesis 260
12.6. Appearance of Oxygenic Photosynthesis 262
12.7. From Cyanobacteria to Chloroplasts 265
12.8. Evolution of Photosynthetic Pigments and
Chloroplast Structure 267
12.9. Many Systems for the Assimilation of Carbon Dioxide
Have Been Tried in the Course of Evolution 270
12.10. C4 Metabolism 272
12.11. Crassulacean Acid Metabolism 274
12.12. Evolution of ATP-Synthesizing Enzymes 275
12.13. The Journey onto Land 275
12.14. Impact of Photosynthesis on the Biospheric Environment 277
12.15. Conclusion 280
13. Photosynthetic Light Harvesting, Charge Separation, and
Photoprotection: The Primary Steps 289
Villy Sundström
13.1. Introduction 289
13.2. Photosynthetic Antennas: Light-Harvesting and Energy
Transfer 293
13.2.1. Theoretical Considerations for Energy Transfer
and Spectroscopy 294
13.2.2. Energy Transfer Between Weakly Dipole-Coupled
Chromophores: B800-B800 and B8OO-B85O
Transfer in LH2 295
xiv Contents
13.2.3. Energy Transfer Between Strongly Coupled
Chromophores: B850 of LH2 296
13.2.4. The Photosynthetic Unit: Intercomplex
Excitation Transfer 298
13.3. Photosynthetic Charge Separation: The Photosynthetic
Reaction Center 300
13.3.1. The Structure and Function of the Bacterial
Reaction Center 300
13.3.2. The Mechanism of Primary Electron Transfer 301
13.4. Carotenoid Photophysics and Excited State Dynamics:
The Basis of Carotenoid Light-Harvesting and
Non-Photochemical Quenching 303
13.4.1. Excited States of Carotenoids 305
13.5. Energy Transfer from Carotenoids to (Bacterio)Chlorophyll 309
13.6. Quenching of Chlorophyll Excited States by Carotenoids:
Non-Photochemical Quenching 313
14. The Biological Clock and Its Resetting by Light 321
Anders Johnsson and Wolfgang Engelmann
14.1. Biological Clocks 321
14.1.1. Spectrum of Rhythms 322
14.1.2. Function of Clocks 322
14.1.3. Current Concepts and Caveats 323
14.1.4. Adaptive Significance and Evolutionary Aspects
of Circadian Clocks 324
14.1.5. Properties and Formal Structures of the Circadian
System 324
14.2. Synchronization of Clocks 325
14.3. Clocks and Light in Cyanobacteria 328
14.3.1. Photoreceptors and Zeitgeber 328
14.3.2. Molecular Clock Model and Temporal
Orchestration of Gene Expression 330
14.4. Clocks in the Dinoflagellate Lingulodinium 331
14.5. Light Effects on Circadian Clocks in Plants: Arabidopsis 332
14.5.1. Light as the Most Important Zeitgeber 333
14.5.2. Photoreceptors 334
14.5.3. Clock Mechanism and Clock-Controlled Genes 336
14.5.4. Photoperiodism 337
14.6. Fungal Clocks and Light Resetting: Neurospora 338
14.6.1. The Circadian System of Neurospora 338
14.6.2. Entrainment of the Circadian System 341
14.6.3. Photoreceptors of the Circadian System 342
14.6.4. Outputs of the Circadian System and
Photoperiodism 343
14.7. How Light Affects Drosophila's Circadian System 344
Contents xv
14.7.1. Circadian Eclosion 344
14.7.2. Locomotor Activity Controlled by Several
Circadian Oscillators 345
14.7.3. Mechanism of Circadian Clock 347
14.7.4. Photoreceptors for the Entrainment
of the Locomotion Clock 347
14.8. Light and Circadian Clocks in Mammals 351
14.8.1. SCN and Its Incoming and Outgoing Pathways 351
14.8.2. Circadian Photoreceptors in the Retina 353
14.8.3. Pineal Organ, Melatonin, and Photoperiodism 355
14.8.4. Clocks Outside the SCN 357
14.9. Light and the Human Circadian System 358
14.9.1. Light Synchronizes the Human Circadian System 359
14.9.2. Significance of Light in Shift Work and Jetlag 360
14.9.3. Light Treatment in Sleep Disorders 361
14.9.4. Seasonal Affective Disorders and Endogenous
Depressions 362
14.10. Models 363
14.10.1. Simple Model Description 363
14.10.2. Some Mathematical Properties of Circadian Models. 365
14.10.3. Single Versus Multioscillator Models—Outlook 366
15. Photoperiodism in Insects and Other Animals 389
David Saunders
15.1. Introduction 389
15.2. Photoperiodic Regulation of Diapause and Seasonal
Morphs in Insects 391
15.3. Models for Photoperiodism 393
15.4. Evidence for the Involvement of the Circadian System in
Photoperiodic Time Measurement 396
15.4.1. Nanda-Hamner Experiments 396
15.4.2. Night Interruption Experiments and the Bünsow
Protocol 397
15.4.3. Skeleton Photoperiods and Bistability Phenomenon 400
15.4.4. The Effects of Transient or Non-Steady-State
Entrainment on Diapause Induction 401
15.5. Using Overt "Indicator" Rhythms as "Hands of the Clock" 403
15.6. The "Hourglass" Alternative: Damping Oscillations 404
15.7. Photoreception and Clock Location 405
15.8. Diapause Induction in Drosophila melanogaster and the
Potential Molecular Analysis of Photoperiodic Induction 408
16. Photomorphogenesis and Photoperiodism in Plants 417
James L. Weller and Richard E. Kendrick
16.1. Introduction 417
xvi Contents
16.2. Photomorphogenic Photoreceptors 418
16.2.1. Phytochromes 418
16.2.2. Cryptochromes 423
16.2.3. Phototropins 424
16.2.4. Other Photoreceptors 425
16.3. Physiological Roles of Photoreceptors 425
16.3.1. Gemination 426
16.3.2. Seedling Establishment 427
16.3.3. Phototropism 429
16.3.4. Shade Avoidance 430
16.4. Photoreceptor Signal Transduction 431
16.4.1. Primary Reactions of Photoreceptors 431
16.4.2. Mutants and Interacting Factors 432
16.4.3. Expression Profiling 436
16.4.4. Pharmacological Approaches 437
16.5. Photoperiodism 438
16.5.1. Light and the Circadian Clock 438
16.5.2. Signaling in Photoperiodism 445
16.6. Photomorphogenesis and Photoperiodism in the Natural
Environment 447
16.6.1. Improving Energy Capture 448
16.6.2. Light and the Seed Habit 449
16.6.3. Avoidance or Survival of Unfavorable Conditions 450
16.7. Concluding Remarks 451
17. The Light-Dependent Magnetic Compass 465
Rachel Muheim
17.1. The Involvement of Light in the Magnetic Compass
Orientation in Animals 465
17.1.1. The Magnetic Inclination Compass 466
17.2. Light-Dependent Effects on Orientation at Different
Wavelengths and Irradiances 467
17.2.1. Evidence for an Antagonistic Spectral Mechanism
Mediating Magnetic Compass Orientation in Newts 467
17.2.2. Magnetic Compass Orientation of Birds Depends
on Wavelength and Irradiance 468
17.3. Localization of the Light-Dependent Magnetoreceptor 469
17.4. Mechanisms of Light-Dependent Magnetoreception 470
17.4.1. Chemical Magnetoreception Based on a Radical
Pair Mechanism 471
17.4.2. Involvement of Cryptochromes
as Magneto-Sensitive Photoreceptors? 471
17.4.3. RF Fields as Diagnostic Tool for Testing
the Radical Pair Mechanism 473
17.5. Outlook 474
Contents xvii
18. Phototoxicity 479
Lars Olof Björn and Pirjo Huovinen
18.1. Introduction 479
18.2. Phototoxicity in Plant Defense 482
18.3. Phototoxins of Fungal Plant Parasites 484
18.4. Phototoxic Drugs and Cosmetics 485
18.5. Metabolie Disturbances Leading to Phototoxic Effects of
Porphyrins or Related Compounds 487
18.6. Polycyclic Aromatic Hydrocarbons as Phototoxic
Contaminants in Aquatic Environments 489
18.6.1. Nature and Occurrence of PAHs 489
18.6.2. Mechanisms of PAH Phototoxicity 490
18.6.3. Factors Affecting Exposure to Phototoxicity
of PAHs in Aquatic Systems 492
18.6.4. Phototoxicity of PAHs to Aquatic Biota 493
19. Ozone Depletion and the Effects of Ultraviolet Radiation 503
Lars Olof Björn and Richard L. McKenzie
19.1. Introduction 503
19.2. The Ozone Layer 504
19.3. Ozone Depletion 506
19.4. Molecular Effects of UV-B Radiation 508
19.4.1. Effects of Ultraviolet Radiation on DNA 511
19.4.2. Photolyases and Photoreactivation 513
19.4.3. Formation and Effects of Reactive Oxygen Species 515
19.4.4. Effects of Ultraviolet Radiation on Lipids 517
19.4.5. Photodestruction of Proteins 518
19.4.6. UV Absorption Affecting Regulative Processes 518
19.4.7. UV-Induced Apoptosis 519
19.5. Ultraviolet Effects on Inanimate Matter of Biological
Relevance 519
19.6. UV-B Radiation in an Ecological Context 520
19.6.1. Aquatic Life 520
19.6.2. Terrestrial Life 522
19.7. Effects on Human Eyes 523
20. Vitamin D: Photobiological and Ecological Aspects 531
Lars Olof Björn
20.1. Introduction 531
20.2. Chemistry and Photochemistry of Provitamin and Vitamin D. 532
20.3. Transport and Transformation of Vitamin D in the
Human Body 536
20.4. Physiological Roles of 1,25-Dihydroxyvitamin D in
Vertebrates 536
xviii Contents
20.5. Cellular Effects and the Vitamin D Receptor: Two Basic
Modes of Action 537
20.6. Evolutionary Aspects 538
20.7. Distribution of Provitamin and Vitamin D in the
Plant Kingdom 540
20.8. Physiological Effects of Provitamin and Vitamin D in
Plants and Algae 541
20.9. Roles of Provitamin and Vitamin D in Plants 541
20.10. Biogeographical Aspects 542
20.11. The Bright and Dark Sides of Sunlight 545
20.12. Non-Photochemical Production of Vitamin D 546
21. The Photobiology of Human Skin 553
Mary Norval
21.1. Introduction 553
21.2. The Structure of Skin and the Skin Immune System 554
21.2.1. Skin Structure 554
21.2.2. The Skin Immune System 555
21.2.3. Contact and Delayed-Type Hypersensitivity 556
21.2.4. Effect of Solar UV Radiation on the Skin: Action
Spectra 557
21.3. Pigmentation and Sunburn 557
21.3.1. Pigmentation and Phototypes 557
21.3.2. Sunburn and Minimal Erythema Dose 558
21.4. Photoageing 559
21.5. Photocarcinogenesis 560
21.5.1. Nonmelanoma Skin Cancer 561
21.5.2. Malignant Melanoma 563
21.5.3. Animal Studies of Skin Cancer 564
21.6. Immunosuppression 565
21.6.1. UV-Induced Immunosuppression 565
21.6.2. UV-Induced Immunosuppression and Tumors 568
21.6.3. UV-Induced Immunosuppression and Microbial
Infection Including Vaccination 568
21.7. Photodermatoses 570
21.7.1. Genodermatoses: Xeroderma Pigmentosum 570
21.7.2. Idiopathic Photodermatoses: Polymorphic
Light Eruption 571
21.7.3. Cutaneous Porphyrias 571
21.7.4. Photoallergic Contact Dermatitis 572
22. Light Treatment in Mediane 577
Theresa Jurkowitsch and Robert Knobler
22.1. Introduction 577
Contents xix
22.2. Phototherapy (Use of Light Without Applied
Photosensitizer) 578
22.2.1. UV-B 578
22.2.2. Long-Wave ( 340 nm) UV-A ("UV-AI") 580
22.2.3. Visible Light 580
22.3. Photochemotherapy 581
22.3.1. PUVA (Photochemotherapy Mediated
by UV-A Radiation with a Psoralen Derivative
as Photosensitizer) 581
22.3.2. Implementation of Phototherapy
and Photochemotherapy 582
22.3.3. Extracorporeal Photochemotherapy 582
22.3.4. Photodynamic Therapy (PDT) with Porphyrins
or Chlorins as Photosensitizers 584
23. Bioluminescence 591
Lars Olof Björn and Helen Ghiradella
23.1. Introduction 591
23.2. Evolution and Occurrence Among Organisms 592
23.3. Biological Roles: What Is Bioluminescence Good for? 593
23.3.1. Reproduction 593
23.3.2. Protection from Predation 594
23.3.3. Food Acquisition 595
23.3.4. Protection from Reactive Oxygen Species 596
23.3.5. DNA Repair 596
23.4. Mechanisms of Light Production 597
23.5. Dragonfishes: Long-Wave Bioluminescence
and Long-Wave Vision 601
23.6. Control of Bioluminescence 603
23.7. Human Exploitation of Bioluminescence 607
23.8. Photosynthetic Afterglow 608
23.9. Ultraweak Light Emission 609
24. Hints for Teaching Experiments and Demonstrations 617
Lars Olof Björn
24.1. Introduction 617
24.2. A Good Start 618
24.3. The Wave Nature of Light 619
24.4. Singlet Oxygen 620
24.5. Complementary Chromatic Adaptation of Cyanobacteria 620
24.6. What Is Color? The Benham Disk 622
24.7. Photoconversion of Rhodopsin 623
24.8. Photosynthesis of Previtamin D 624
24.9. Photoconversion of Protochlorophyllide 625
24.10. Separation of Chloroplast Pigments 627
xx Contents
24.11. Light Acclimation of Leaves: The Xanthophyll Cycle 629
24.11.1. Introduction to the Xanthophyll Cycle 630
24.11.2. Experiment 633
24.12. Ultraviolet Radiation Damage and Its Photoreactivation 635
24.13. Ultraviolet Damage to Microorganisms 637
24.14. Photomorphogenesis in Plants and Related Topics 638
24.14.1. Photomorphogenesis of Bean Plants 638
24.14.2. Regulation of Seed Germination by Phytochrome 639
24.14.3. Effects of Blue and Red Light on Development
of Fern Prothallia 640
24.15. Spectrophotometric Studies of Phytochrome In Vivo 640
24.16. Bioluminescence 642
24.16.1. Fireflies 642
24.16.2. Bacteria 642
24.17. Miscellaneous Teaching Experiments and Demonstrations 643
25. The Amateur Scientist's Spectrophotometer 647
Lars Olof Björn
25.1. Introduction 647
25.2. Construction 648
25.3. Calibration of Wavelength Scale 648
25.4. Measurement and Manipulation of Spectra 652
25.5. Suggestions for Further Experimentation 656
Index 659 |
adam_txt |
Contents
Preface vii
Contributors xxi
1. The Nature of Light and Its Interaction with Matter 1
Lars Olof Björn
1.1. Introduction 1
1.2. Particle and Wave Properties of Light 1
1.3. Light as Particles and Light as Waves, and Some Definitions. 6
1.4. Diffraction 7
1.5. Polarization 8
1.6. Statistics of Photon Emission and Absorption 9
1.7. Heat Radiation 11
1.8. Refraction of Light 14
1.9. Reflection of Light 15
1.10. Scattering of Light 18
1.11. Propagation of Light in Absorbing and Scattering Media 19
1.12. Spectra of Isolated Atoms 22
1.13. Energy Levels in Diatomic and Polyatomic Molecules 23
1.14. Quantum Yield of Fluorescence 29
1.15. Relationship Between Absorption and Emission Spectra 30
1.16. Molecular Geometry of the Absorption Process 31
1.17. Transfer of Electronic Excitation Energy Between Molecules. 33
1.18. The Förster Mechanism for Energy Transfer 34
1.19. Triplet States 35
1.20. The Dioxygen Molecule 36
1.21. Singlet Oxygen 37
2. Principles and Nomenclature for the Quantification of Light 41
Lars Olof Björn
2.1. Introduction: Why This Chapter Is Necessary 41
2.2. The Wavelength Problem 42
2.3. The Problem of Direction and Shape 43
2.4. Biological Weighting Functions and Units 46
ix
x Contents
3. Generation and Control of Light 51
Lars Olof Björn
3.1. Introduction 51
3.2. Light Sources 51
3.2.1. The Sun 51
3.2.2. Incandescent Lamps 52
3.2.3. Electric Discharges in Gases of Low Pressure 53
3.2.4. Medium- and High-Pressure Gas Discharge Lamps 54
3.2.5. Flashlamps 55
3.2.6. Light-Emitting Diodes 55
3.2.7. Lasers 56
3.3. Selection of Light 57
3.3.1. Filters with Light-Absorbing Substances 58
3.3.2. Interference Filters 61
3.3.3. Monochromators 62
4. The Measurement of Light 69
Lars Olof Björn
4.1. Introduction 69
4.2. Photothermal Devices 69
4.2.1. The Bolometer 69
4.2.2. The Thermopile 71
4.2.3. Thermopneumatic Devices 72
4.3. Photoelectric Devices 73
4.3.1. A Device Based on the Outer Photoelectric Effect:
The Photomultiplier 73
4.3.2. Devices Based on Semiconductors (Inner
Photoelectric Effect) 75
4.4. Photochemical Devices: Actinometers and Dosimeters 76
4.5. Fluorescent Wavelength Converters ("Quantum Counters") 79
4.6. Spectroradiometry 80
4.6.1. General 80
4.6.2. Input Optics 80
4.6.3. Example of a Spectroradiometer 82
4.6.4. Calibration of Spectroradiometers 84
4.7. Special Methods for Measurement of Very Weak Light 87
4.7.1. Introduction 87
4.7.2. Direct Current Mode 87
4.7.3. Chopping of Light and Use of Lock-In Amplifier 88
4.7.4. Measurement of Shot Noise 88
4.7.5. Pulse Counting 88
4.8. A Sensor for Catching Images: The Charge-Coupled Device 89
5. Light as a Tool for Biologists: Recent Developments 93
Lars Olof Björn
5.1. Introduction 93
Contents xi
5.2. Optical Tweezers and Related Techniques 93
5.3. Use of Lasers for Ablation, Desorption, Ionization,
and Dissection 95
5.4. Fluorescent Labeling 96
5.5. Abbe's Diffraction Limit to Spatial Resolution
in Microscopy 97
5.6. Two-Photon Excitation Fluorescence Microscopy 99
5.7. Stimulated Emission Depletion 100
5.8. Near-Field Microscopy 101
5.9. Quantum Dots 103
5.10. Photochemical Internalization 108
5.11. Photogating of Membrane Channels 110
5.12. Photocrosslinking and Photolabeling 113
5.13. Fluorescence-Aided DNA Sequencing 115
6. Terrestrial Daylight 123
Lars Olof Björn
6.1. Introduction 123
6.2. Principles for the Modification of Sunlight by the
Earth's Atmosphere 123
6.3. The UV-A, Visible, and Infrared Components
of Daylight in the Open Terrestrial Environment Under
ClearSkies 124
6.4. CloudEffects 127
6.5. Effects of Ground and Vegetation 127
6.6. The UV-B Daylight Spectrum and Biological Action
ofUV-B 128
7. Underwater Light 131
Raymond C. Smith and Curtis D. Mobley
7.1. Introduction 131
7.2. Inherent Optical Properties 132
7.3. Apparent Optical Properties 133
7.4. Estimation of In-Water Radiant Energy 134
8. Action Spectroscopy in Biology 139
Lars Olof Björn
8.1. Introduction 139
8.2. The Oldest History: Investigation of Photosynthesis by
Means of Action Spectroscopy 141
8.3. Investigation of Respiration Using Action Spectroscopy 143
8.4. The DNA That Was Forgotten 144
8.5. Plant Vision 147
8.6. Protochlorophyllide Photoreduction to Chlorophyllide a 151
xii Contents
8.7. Limitations of Action Spectroscopy: The Elusive Blue
Light Receptor 152
8.8. Another Use for Action Spectra 153
9. Spectral Tuning in Biology 155
Lars Olof Björn and Helen Ghiradella
9.1. Introduction 155
9.2. Why Are Plants Green? 156
9.3. What Determines Spectra of Pigments? 157
9.4. Relation Between the Absorption and Molecular Structure
of Chlorophylls 159
9.5. Tuning of Chlorophyll a and b Absorption Peaks
by the Molecular Environment 161
9.6. Phycobiliproteins and Phycobilisomes 162
9.7. Chromatic Adaptation of Cyanobacterial Phycobilisomes 165
9.8. Visual Tuning 166
9.9. Tuning of Anthocyanins 171
9.10. Living Mirrors and the Tuning of Structural Color 177
9.10.1. Introduction 177
9.10.2. Reflection in a Single Thin Layer 178
9.10.3. Reflection by Multilayer Stacks 183
9.11. The Interplay of Spectra in the Living World 188
10. Photochemical Reactions in Biological Light Perception
and Regulation 197
Lars Olof Björn
10.1. Introduction 197
10.2. Cis-Trans and Trans-Cis Isomerization 198
10.2.1. Urocanic Acid 199
10.2.2. Eukaryotic Rhodopsin 200
10.2.3. Archaean Rhodopsins 203
10.2.4. Photoactive Yellow Proteins (PYPs, Xanthopsins) 205
10.2.5. Phytochrome 207
10.2.6. Photosensor for Chromatic Adaptation
of Cyanobacteria 209
10.2.7. Violaxanthin as a Blue-light Sensor in
Stomatal Regulation 210
10.3. Other Types of Photosensors 211
10.3.1. Cryptochromes 211
10.3.2. Phototropin 212
10.3.3. The Plant UV-B Receptor 215
11. The Diversity of Eye Optics 223
Lars Olof Björn
11.1. Introduction 223
Contents xiii
11.2. The Human Eye 223
11.3. An Eye in Water: The Problem 227
11.4. An Eye in Water: The Solution 228
11.5. Another Problem: Chromatic Aberration 230
11.6. Problems and Solutions for Amphibious Animals 231
11.7. Feedback Regulation During Eye Development 234
11.8. Eyes with Extreme Light Sensitivity 234
11.9. Compound Eyes 235
11.10. Nipple Arrays on InsectEyes 240
11.11. Eyes with Mirror Optics 241
11.12. ScanningEyes 242
11.13. Evolution of Eyes 246
12. The Evolution of Photosynthesis and Its Environmental Impact. 255
Lars Olof Björn and Govindjee
12.1. Introduction 256
12.2. A Short Review of Plant Photosynthesis 257
12.3. The Domains of Life 258
12.4. Predecessors of the First Photosynthetic Organisms 259
12.5. The First Photosynthesis 260
12.6. Appearance of Oxygenic Photosynthesis 262
12.7. From Cyanobacteria to Chloroplasts 265
12.8. Evolution of Photosynthetic Pigments and
Chloroplast Structure 267
12.9. Many Systems for the Assimilation of Carbon Dioxide
Have Been Tried in the Course of Evolution 270
12.10. C4 Metabolism 272
12.11. Crassulacean Acid Metabolism 274
12.12. Evolution of ATP-Synthesizing Enzymes 275
12.13. The Journey onto Land 275
12.14. Impact of Photosynthesis on the Biospheric Environment 277
12.15. Conclusion 280
13. Photosynthetic Light Harvesting, Charge Separation, and
Photoprotection: The Primary Steps 289
Villy Sundström
13.1. Introduction 289
13.2. Photosynthetic Antennas: Light-Harvesting and Energy
Transfer 293
13.2.1. Theoretical Considerations for Energy Transfer
and Spectroscopy 294
13.2.2. Energy Transfer Between Weakly Dipole-Coupled
Chromophores: B800-B800 and B8OO-B85O
Transfer in LH2 295
xiv Contents
13.2.3. Energy Transfer Between Strongly Coupled
Chromophores: B850 of LH2 296
13.2.4. The Photosynthetic Unit: Intercomplex
Excitation Transfer 298
13.3. Photosynthetic Charge Separation: The Photosynthetic
Reaction Center 300
13.3.1. The Structure and Function of the Bacterial
Reaction Center 300
13.3.2. The Mechanism of Primary Electron Transfer 301
13.4. Carotenoid Photophysics and Excited State Dynamics:
The Basis of Carotenoid Light-Harvesting and
Non-Photochemical Quenching 303
13.4.1. Excited States of Carotenoids 305
13.5. Energy Transfer from Carotenoids to (Bacterio)Chlorophyll 309
13.6. Quenching of Chlorophyll Excited States by Carotenoids:
Non-Photochemical Quenching 313
14. The Biological Clock and Its Resetting by Light 321
Anders Johnsson and Wolfgang Engelmann
14.1. Biological Clocks 321
14.1.1. Spectrum of Rhythms 322
14.1.2. Function of Clocks 322
14.1.3. Current Concepts and Caveats 323
14.1.4. Adaptive Significance and Evolutionary Aspects
of Circadian Clocks 324
14.1.5. Properties and Formal Structures of the Circadian
System 324
14.2. Synchronization of Clocks 325
14.3. Clocks and Light in Cyanobacteria 328
14.3.1. Photoreceptors and Zeitgeber 328
14.3.2. Molecular Clock Model and Temporal
Orchestration of Gene Expression 330
14.4. Clocks in the Dinoflagellate Lingulodinium 331
14.5. Light Effects on Circadian Clocks in Plants: Arabidopsis 332
14.5.1. Light as the Most Important Zeitgeber 333
14.5.2. Photoreceptors 334
14.5.3. Clock Mechanism and Clock-Controlled Genes 336
14.5.4. Photoperiodism 337
14.6. Fungal Clocks and Light Resetting: Neurospora 338
14.6.1. The Circadian System of Neurospora 338
14.6.2. Entrainment of the Circadian System 341
14.6.3. Photoreceptors of the Circadian System 342
14.6.4. Outputs of the Circadian System and
Photoperiodism 343
14.7. How Light Affects Drosophila's Circadian System 344
Contents xv
14.7.1. Circadian Eclosion 344
14.7.2. Locomotor Activity Controlled by Several
Circadian Oscillators 345
14.7.3. Mechanism of Circadian Clock 347
14.7.4. Photoreceptors for the Entrainment
of the Locomotion Clock 347
14.8. Light and Circadian Clocks in Mammals 351
14.8.1. SCN and Its Incoming and Outgoing Pathways 351
14.8.2. Circadian Photoreceptors in the Retina 353
14.8.3. Pineal Organ, Melatonin, and Photoperiodism 355
14.8.4. Clocks Outside the SCN 357
14.9. Light and the Human Circadian System 358
14.9.1. Light Synchronizes the Human Circadian System 359
14.9.2. Significance of Light in Shift Work and Jetlag 360
14.9.3. Light Treatment in Sleep Disorders 361
14.9.4. Seasonal Affective Disorders and Endogenous
Depressions 362
14.10. Models 363
14.10.1. Simple Model Description 363
14.10.2. Some Mathematical Properties of Circadian Models. 365
14.10.3. Single Versus Multioscillator Models—Outlook 366
15. Photoperiodism in Insects and Other Animals 389
David Saunders
15.1. Introduction 389
15.2. Photoperiodic Regulation of Diapause and Seasonal
Morphs in Insects 391
15.3. Models for Photoperiodism 393
15.4. Evidence for the Involvement of the Circadian System in
Photoperiodic Time Measurement 396
15.4.1. Nanda-Hamner Experiments 396
15.4.2. Night Interruption Experiments and the Bünsow
Protocol 397
15.4.3. Skeleton Photoperiods and Bistability Phenomenon 400
15.4.4. The Effects of Transient or Non-Steady-State
Entrainment on Diapause Induction 401
15.5. Using Overt "Indicator" Rhythms as "Hands of the Clock" 403
15.6. The "Hourglass" Alternative: Damping Oscillations 404
15.7. Photoreception and Clock Location 405
15.8. Diapause Induction in Drosophila melanogaster and the
Potential Molecular Analysis of Photoperiodic Induction 408
16. Photomorphogenesis and Photoperiodism in Plants 417
James L. Weller and Richard E. Kendrick
16.1. Introduction 417
xvi Contents
16.2. Photomorphogenic Photoreceptors 418
16.2.1. Phytochromes 418
16.2.2. Cryptochromes 423
16.2.3. Phototropins 424
16.2.4. Other Photoreceptors 425
16.3. Physiological Roles of Photoreceptors 425
16.3.1. Gemination 426
16.3.2. Seedling Establishment 427
16.3.3. Phototropism 429
16.3.4. Shade Avoidance 430
16.4. Photoreceptor Signal Transduction 431
16.4.1. Primary Reactions of Photoreceptors 431
16.4.2. Mutants and Interacting Factors 432
16.4.3. Expression Profiling 436
16.4.4. Pharmacological Approaches 437
16.5. Photoperiodism 438
16.5.1. Light and the Circadian Clock 438
16.5.2. Signaling in Photoperiodism 445
16.6. Photomorphogenesis and Photoperiodism in the Natural
Environment 447
16.6.1. Improving Energy Capture 448
16.6.2. Light and the Seed Habit 449
16.6.3. Avoidance or Survival of Unfavorable Conditions 450
16.7. Concluding Remarks 451
17. The Light-Dependent Magnetic Compass 465
Rachel Muheim
17.1. The Involvement of Light in the Magnetic Compass
Orientation in Animals 465
17.1.1. The Magnetic Inclination Compass 466
17.2. Light-Dependent Effects on Orientation at Different
Wavelengths and Irradiances 467
17.2.1. Evidence for an Antagonistic Spectral Mechanism
Mediating Magnetic Compass Orientation in Newts 467
17.2.2. Magnetic Compass Orientation of Birds Depends
on Wavelength and Irradiance 468
17.3. Localization of the Light-Dependent Magnetoreceptor 469
17.4. Mechanisms of Light-Dependent Magnetoreception 470
17.4.1. Chemical Magnetoreception Based on a Radical
Pair Mechanism 471
17.4.2. Involvement of Cryptochromes
as Magneto-Sensitive Photoreceptors? 471
17.4.3. RF Fields as Diagnostic Tool for Testing
the Radical Pair Mechanism 473
17.5. Outlook 474
Contents xvii
18. Phototoxicity 479
Lars Olof Björn and Pirjo Huovinen
18.1. Introduction 479
18.2. Phototoxicity in Plant Defense 482
18.3. Phototoxins of Fungal Plant Parasites 484
18.4. Phototoxic Drugs and Cosmetics 485
18.5. Metabolie Disturbances Leading to Phototoxic Effects of
Porphyrins or Related Compounds 487
18.6. Polycyclic Aromatic Hydrocarbons as Phototoxic
Contaminants in Aquatic Environments 489
18.6.1. Nature and Occurrence of PAHs 489
18.6.2. Mechanisms of PAH Phototoxicity 490
18.6.3. Factors Affecting Exposure to Phototoxicity
of PAHs in Aquatic Systems 492
18.6.4. Phototoxicity of PAHs to Aquatic Biota 493
19. Ozone Depletion and the Effects of Ultraviolet Radiation 503
Lars Olof Björn and Richard L. McKenzie
19.1. Introduction 503
19.2. The Ozone Layer 504
19.3. Ozone Depletion 506
19.4. Molecular Effects of UV-B Radiation 508
19.4.1. Effects of Ultraviolet Radiation on DNA 511
19.4.2. Photolyases and Photoreactivation 513
19.4.3. Formation and Effects of Reactive Oxygen Species 515
19.4.4. Effects of Ultraviolet Radiation on Lipids 517
19.4.5. Photodestruction of Proteins 518
19.4.6. UV Absorption Affecting Regulative Processes 518
19.4.7. UV-Induced Apoptosis 519
19.5. Ultraviolet Effects on Inanimate Matter of Biological
Relevance 519
19.6. UV-B Radiation in an Ecological Context 520
19.6.1. Aquatic Life 520
19.6.2. Terrestrial Life 522
19.7. Effects on Human Eyes 523
20. Vitamin D: Photobiological and Ecological Aspects 531
Lars Olof Björn
20.1. Introduction 531
20.2. Chemistry and Photochemistry of Provitamin and Vitamin D. 532
20.3. Transport and Transformation of Vitamin D in the
Human Body 536
20.4. Physiological Roles of 1,25-Dihydroxyvitamin D in
Vertebrates 536
xviii Contents
20.5. Cellular Effects and the Vitamin D Receptor: Two Basic
Modes of Action 537
20.6. Evolutionary Aspects 538
20.7. Distribution of Provitamin and Vitamin D in the
Plant Kingdom 540
20.8. Physiological Effects of Provitamin and Vitamin D in
Plants and Algae 541
20.9. Roles of Provitamin and Vitamin D in Plants 541
20.10. Biogeographical Aspects 542
20.11. The Bright and Dark Sides of Sunlight 545
20.12. Non-Photochemical Production of Vitamin D 546
21. The Photobiology of Human Skin 553
Mary Norval
21.1. Introduction 553
21.2. The Structure of Skin and the Skin Immune System 554
21.2.1. Skin Structure 554
21.2.2. The Skin Immune System 555
21.2.3. Contact and Delayed-Type Hypersensitivity 556
21.2.4. Effect of Solar UV Radiation on the Skin: Action
Spectra 557
21.3. Pigmentation and Sunburn 557
21.3.1. Pigmentation and Phototypes 557
21.3.2. Sunburn and Minimal Erythema Dose 558
21.4. Photoageing 559
21.5. Photocarcinogenesis 560
21.5.1. Nonmelanoma Skin Cancer 561
21.5.2. Malignant Melanoma 563
21.5.3. Animal Studies of Skin Cancer 564
21.6. Immunosuppression 565
21.6.1. UV-Induced Immunosuppression 565
21.6.2. UV-Induced Immunosuppression and Tumors 568
21.6.3. UV-Induced Immunosuppression and Microbial
Infection Including Vaccination 568
21.7. Photodermatoses 570
21.7.1. Genodermatoses: Xeroderma Pigmentosum 570
21.7.2. Idiopathic Photodermatoses: Polymorphic
Light Eruption 571
21.7.3. Cutaneous Porphyrias 571
21.7.4. Photoallergic Contact Dermatitis 572
22. Light Treatment in Mediane 577
Theresa Jurkowitsch and Robert Knobler
22.1. Introduction 577
Contents xix
22.2. Phototherapy (Use of Light Without Applied
Photosensitizer) 578
22.2.1. UV-B 578
22.2.2. Long-Wave ( 340 nm) UV-A ("UV-AI") 580
22.2.3. Visible Light 580
22.3. Photochemotherapy 581
22.3.1. PUVA (Photochemotherapy Mediated
by UV-A Radiation with a Psoralen Derivative
as Photosensitizer) 581
22.3.2. Implementation of Phototherapy
and Photochemotherapy 582
22.3.3. Extracorporeal Photochemotherapy 582
22.3.4. Photodynamic Therapy (PDT) with Porphyrins
or Chlorins as Photosensitizers 584
23. Bioluminescence 591
Lars Olof Björn and Helen Ghiradella
23.1. Introduction 591
23.2. Evolution and Occurrence Among Organisms 592
23.3. Biological Roles: What Is Bioluminescence Good for? 593
23.3.1. Reproduction 593
23.3.2. Protection from Predation 594
23.3.3. Food Acquisition 595
23.3.4. Protection from Reactive Oxygen Species 596
23.3.5. DNA Repair 596
23.4. Mechanisms of Light Production 597
23.5. Dragonfishes: Long-Wave Bioluminescence
and Long-Wave Vision 601
23.6. Control of Bioluminescence 603
23.7. Human Exploitation of Bioluminescence 607
23.8. Photosynthetic Afterglow 608
23.9. Ultraweak Light Emission 609
24. Hints for Teaching Experiments and Demonstrations 617
Lars Olof Björn
24.1. Introduction 617
24.2. A Good Start 618
24.3. The Wave Nature of Light 619
24.4. Singlet Oxygen 620
24.5. Complementary Chromatic Adaptation of Cyanobacteria 620
24.6. What Is Color? The Benham Disk 622
24.7. Photoconversion of Rhodopsin 623
24.8. Photosynthesis of Previtamin D 624
24.9. Photoconversion of Protochlorophyllide 625
24.10. Separation of Chloroplast Pigments 627
xx Contents
24.11. Light Acclimation of Leaves: The Xanthophyll Cycle 629
24.11.1. Introduction to the Xanthophyll Cycle 630
24.11.2. Experiment 633
24.12. Ultraviolet Radiation Damage and Its Photoreactivation 635
24.13. Ultraviolet Damage to Microorganisms 637
24.14. Photomorphogenesis in Plants and Related Topics 638
24.14.1. Photomorphogenesis of Bean Plants 638
24.14.2. Regulation of Seed Germination by Phytochrome 639
24.14.3. Effects of Blue and Red Light on Development
of Fern Prothallia 640
24.15. Spectrophotometric Studies of Phytochrome In Vivo 640
24.16. Bioluminescence 642
24.16.1. Fireflies 642
24.16.2. Bacteria 642
24.17. Miscellaneous Teaching Experiments and Demonstrations 643
25. The Amateur Scientist's Spectrophotometer 647
Lars Olof Björn
25.1. Introduction 647
25.2. Construction 648
25.3. Calibration of Wavelength Scale 648
25.4. Measurement and Manipulation of Spectra 652
25.5. Suggestions for Further Experimentation 656
Index 659 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1082447927 |
building | Verbundindex |
bvnumber | BV022827577 |
callnumber-first | Q - Science |
callnumber-label | QH515 |
callnumber-raw | QH515 |
callnumber-search | QH515 |
callnumber-sort | QH 3515 |
callnumber-subject | QH - Natural History and Biology |
classification_rvk | WD 2800 |
classification_tum | BIO 148f |
ctrlnum | (OCoLC)255669036 (DE-599)BVBBV022827577 |
dewey-full | 571.455 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.455 |
dewey-search | 571.455 |
dewey-sort | 3571.455 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022827577</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080702</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070927s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387726540</subfield><subfield code="9">978-0-387-72654-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255669036</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022827577</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QH515</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.455</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2800</subfield><subfield code="0">(DE-625)148170:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 148f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photobiology</subfield><subfield code="b">the science of life and light</subfield><subfield code="c">ed. by Lars Olof Björn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXII, 684 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photobiology</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Photobiologie</subfield><subfield code="0">(DE-588)4174474-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Photobiologie</subfield><subfield code="0">(DE-588)4174474-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Björn, Lars Olof</subfield><subfield code="d">1936-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1082447927</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016032844&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016032844</subfield></datafield></record></collection> |
id | DE-604.BV022827577 |
illustrated | Illustrated |
index_date | 2024-07-02T18:42:24Z |
indexdate | 2024-09-16T08:00:36Z |
institution | BVB |
isbn | 9780387726540 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016032844 |
oclc_num | 255669036 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-29 DE-M49 DE-BY-TUM DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-29 DE-M49 DE-BY-TUM DE-11 |
physical | XXII, 684 S. zahlr. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
spelling | Photobiology the science of life and light ed. by Lars Olof Björn 2. ed. New York [u.a.] Springer 2008 XXII, 684 S. zahlr. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Photobiology Photobiologie (DE-588)4174474-3 gnd rswk-swf Photobiologie (DE-588)4174474-3 s DE-604 Björn, Lars Olof 1936- Sonstige (DE-588)1082447927 oth HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016032844&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Photobiology the science of life and light Photobiology Photobiologie (DE-588)4174474-3 gnd |
subject_GND | (DE-588)4174474-3 |
title | Photobiology the science of life and light |
title_auth | Photobiology the science of life and light |
title_exact_search | Photobiology the science of life and light |
title_exact_search_txtP | Photobiology the science of life and light |
title_full | Photobiology the science of life and light ed. by Lars Olof Björn |
title_fullStr | Photobiology the science of life and light ed. by Lars Olof Björn |
title_full_unstemmed | Photobiology the science of life and light ed. by Lars Olof Björn |
title_short | Photobiology |
title_sort | photobiology the science of life and light |
title_sub | the science of life and light |
topic | Photobiology Photobiologie (DE-588)4174474-3 gnd |
topic_facet | Photobiology Photobiologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016032844&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bjornlarsolof photobiologythescienceoflifeandlight |