Outer circles: an introduction to hyperbolic 3-Manifolds
We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of th...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge Univ. Press
2007
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study. |
Beschreibung: | XVII, 427 S. Ill. |
ISBN: | 9780521839747 0521839742 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022824347 | ||
003 | DE-604 | ||
005 | 20071114 | ||
007 | t | ||
008 | 070926s2007 a||| |||| 00||| eng d | ||
020 | |a 9780521839747 |9 978-0-521-83974-7 | ||
020 | |a 0521839742 |9 0-521-83974-2 | ||
035 | |a (OCoLC)141379079 | ||
035 | |a (DE-599)BVBBV022824347 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-188 |a DE-83 |a DE-11 | ||
050 | 0 | |a QA613.2 | |
082 | 0 | |a 514.3 |2 22 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a 57N10 |2 msc | ||
084 | |a 20H10 |2 msc | ||
084 | |a 57M50 |2 msc | ||
100 | 1 | |a Marden, Albert |e Verfasser |0 (DE-588)133428737 |4 aut | |
245 | 1 | 0 | |a Outer circles |b an introduction to hyperbolic 3-Manifolds |c A. Marden |
250 | |a 1. publ. | ||
264 | 1 | |a Cambridge |b Cambridge Univ. Press |c 2007 | |
300 | |a XVII, 427 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study. | |
650 | 4 | |a Three-manifolds (Topology) | |
650 | 0 | 7 | |a Hyperbolische Geometrie |0 (DE-588)4161041-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 3 |0 (DE-588)4321722-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolische Mannigfaltigkeit |0 (DE-588)4161044-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Mannigfaltigkeit |0 (DE-588)4161044-1 |D s |
689 | 0 | 1 | |a Dimension 3 |0 (DE-588)4321722-9 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolische Geometrie |0 (DE-588)4161041-6 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016029653&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016029653 |
Datensatz im Suchindex
_version_ | 1804137104259678208 |
---|---|
adam_text | Contents
List of Illustrations page
xi
Preface
xiii
1
Hyperbolic space and its isometries
1
1.1
Möbius
transformations
1
1.2
Hyperbolic geometry
6
1.3
The circle or sphere at infinity
11
1.4
Gaussian curvature
15
1.5
Further properties of
Möbius
transformations
18
1.6
Exercises and explorations
23
2
Discrete groups
49
2.1
Convergence of
Möbius
transformations
49
2.2
Discreteness
51
2.3
Elementary discrete groups
55
2.4
Kleinian groups
58
2.5
Quotient manifolds and orbifolds
62
2.5.1
Two fundamental algebraic theorems
68
2.6
Introduction to Riemann surfaces and their uniformization
69
2.7
Fuchsian and Schottky groups
74
2.8
Riemannian metrics and quasiconformal mappings
78
2.9
Exercises and explorations
83
3
Properties of hyperbolic manifolds
105
3.1
The Ahlfors Finiteness Theorem
105
3.2
Tubes and horoballs
106
3.3
Universal properties
108
3.4
The thick/thin decomposition of a manifold
115
3.5
Fundamental polyhedra
116
3.6
Geometric finiteness
124
3.7
Three-manifold surgery
129
3.8
Quasifuchsian groups
134
3.9
Geodesic and measured geodesic laminations
136
viii
Contents
3.1
0
The convex hull of the limit set
144
3.11
The convex core
151
3.12
The compact and relative compact core
155
3.13
Rigidity
156
3.14
Exercises and explorations
161
4
Algebraic and geometric convergence
187
4.1
Algebraic convergence
187
4.2
Geometric convergence
193
4.3
Polyhedral convergence
194
4.4
The geometric limit
197
4.5
Convergence of limit sets and regions of discontinuity
200
4.6
New parabolics
203
4.7
Acylindrical manifolds
205
4.8 Dehn
surgery
207
4.9
The prototypical example
208
4.10
Manifolds of finite volume
211
4.11
The
Dehn
surgery theorems for finite volume manifolds
212
4.12
Exercises and explorations
218
5
Deformation spaces and the ends of manifolds
239
5.1
The representation variety
239
5.2
Homotopy equivalence
244
5.3
The quasiconformal deformation space boundary
. 248
5.4
The three great conjectures
250
5.5
Ends of hyperbolic manifolds
251
5.6
Tame manifolds
252
5.7
Quasifuchsian spaces
261
5.8
The quasifuchsian space boundary
265
5.9
Geometric limits at boundary points
271
5.10
Exercises and explorations
282
6
Hyperbolization
312
6.1
Hyperbolic manifolds that fiber over a circle
312
6.1.1
Automorphisms of surfaces
312
6.1.2
The Double Limit Theorem
314
6.1.3
Manifolds fibered over the circle
315
6.2
The Skinning Lemma
317
6.2.1
Hyperbolic manifolds with totally geodesic boundary
317
6.2.2
Skinning the manifold (Part II)
319
6.3
The Hyperbolization Theorem
322
6.3.1
Knots and links
325
6.4
Geometrization
327
6.5
The Orbifold Theorem
329
6.6
Exercises and Explorations
331
Com
ent
s
ix
7
Line geometry
348
7.1
Half-rotations
348
7.2
The Lie product
349
7.3
Square roots
353
7.4
Complex distance
353
7.5
Complex distance and line geometry
355
7.6
Exercises and explorations
356
8
Right hexagons and hyperbolic trigonometry
366
8.1
Generic right hexagons
366
8.2
The sine and cosine laws for generic right hexagons
368
8.3
Degenerate right hexagons
370
8.4
Formulas for triangles, quadrilaterals, and pentagons
372
8.5
Exercises and explorations
375
Bibliography
393
Index
■ 411
|
adam_txt |
Contents
List of Illustrations page
xi
Preface
xiii
1
Hyperbolic space and its isometries
1
1.1
Möbius
transformations
1
1.2
Hyperbolic geometry
6
1.3
The circle or sphere at infinity
11
1.4
Gaussian curvature
15
1.5
Further properties of
Möbius
transformations
18
1.6
Exercises and explorations
23
2
Discrete groups
49
2.1
Convergence of
Möbius
transformations
49
2.2
Discreteness
51
2.3
Elementary discrete groups
55
2.4
Kleinian groups
58
2.5
Quotient manifolds and orbifolds
62
2.5.1
Two fundamental algebraic theorems
68
2.6
Introduction to Riemann surfaces and their uniformization
69
2.7
Fuchsian and Schottky groups
74
2.8
Riemannian metrics and quasiconformal mappings
78
2.9
Exercises and explorations
83
3
Properties of hyperbolic manifolds
105
3.1
The Ahlfors Finiteness Theorem
105
3.2
Tubes and horoballs
106
3.3
Universal properties
108
3.4
The thick/thin decomposition of a manifold
115
3.5
Fundamental polyhedra
116
3.6
Geometric finiteness
124
3.7
Three-manifold surgery
129
3.8
Quasifuchsian groups
134
3.9
Geodesic and measured geodesic laminations
136
viii
Contents
3.1
0
The convex hull of the limit set
144
3.11
The convex core
151
3.12
The compact and relative compact core
155
3.13
Rigidity
156
3.14
Exercises and explorations
161
4
Algebraic and geometric convergence
187
4.1
Algebraic convergence
187
4.2
Geometric convergence
193
4.3
Polyhedral convergence
194
4.4
The geometric limit
197
4.5
Convergence of limit sets and regions of discontinuity
200
4.6
New parabolics
203
4.7
Acylindrical manifolds
205
4.8 Dehn
surgery
207
4.9
The prototypical example
208
4.10
Manifolds of finite volume
211
4.11
The
Dehn
surgery theorems for finite volume manifolds
212
4.12
Exercises and explorations
218
5
Deformation spaces and the ends of manifolds
239
5.1
The representation variety
239
5.2
Homotopy equivalence
244
5.3
The quasiconformal deformation space boundary
. 248
5.4
The three great conjectures
250
5.5
Ends of hyperbolic manifolds
251
5.6
Tame manifolds
252
5.7
Quasifuchsian spaces
261
5.8
The quasifuchsian space boundary
265
5.9
Geometric limits at boundary points
271
5.10
Exercises and explorations
282
6
Hyperbolization
312
6.1
Hyperbolic manifolds that fiber over a circle
312
6.1.1
Automorphisms of surfaces
312
6.1.2
The Double Limit Theorem
314
6.1.3
Manifolds fibered over the circle
315
6.2
The Skinning Lemma
317
6.2.1
Hyperbolic manifolds with totally geodesic boundary
317
6.2.2
Skinning the manifold (Part II)
319
6.3
The Hyperbolization Theorem
322
6.3.1
Knots and links
325
6.4
Geometrization
327
6.5
The Orbifold Theorem
329
6.6
Exercises and Explorations
331
Com
ent
s
ix
7
Line geometry
348
7.1
Half-rotations
348
7.2
The Lie product
349
7.3
Square roots
353
7.4
Complex distance
353
7.5
Complex distance and line geometry
355
7.6
Exercises and explorations
356
8
Right hexagons and hyperbolic trigonometry
366
8.1
Generic right hexagons
366
8.2
The sine and cosine laws for generic right hexagons
368
8.3
Degenerate right hexagons
370
8.4
Formulas for triangles, quadrilaterals, and pentagons
372
8.5
Exercises and explorations
375
Bibliography
393
Index
■ 411 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Marden, Albert |
author_GND | (DE-588)133428737 |
author_facet | Marden, Albert |
author_role | aut |
author_sort | Marden, Albert |
author_variant | a m am |
building | Verbundindex |
bvnumber | BV022824347 |
callnumber-first | Q - Science |
callnumber-label | QA613 |
callnumber-raw | QA613.2 |
callnumber-search | QA613.2 |
callnumber-sort | QA 3613.2 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 350 |
ctrlnum | (OCoLC)141379079 (DE-599)BVBBV022824347 |
dewey-full | 514.3 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.3 |
dewey-search | 514.3 |
dewey-sort | 3514.3 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02678nam a2200481 c 4500</leader><controlfield tag="001">BV022824347</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071114 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070926s2007 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521839747</subfield><subfield code="9">978-0-521-83974-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521839742</subfield><subfield code="9">0-521-83974-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)141379079</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022824347</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA613.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.3</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57N10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20H10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57M50</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Marden, Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133428737</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Outer circles</subfield><subfield code="b">an introduction to hyperbolic 3-Manifolds</subfield><subfield code="c">A. Marden</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 427 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-manifolds (Topology)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Geometrie</subfield><subfield code="0">(DE-588)4161041-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4161044-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4161044-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolische Geometrie</subfield><subfield code="0">(DE-588)4161041-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016029653&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016029653</subfield></datafield></record></collection> |
id | DE-604.BV022824347 |
illustrated | Illustrated |
index_date | 2024-07-02T18:41:10Z |
indexdate | 2024-07-09T21:06:59Z |
institution | BVB |
isbn | 9780521839747 0521839742 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016029653 |
oclc_num | 141379079 |
open_access_boolean | |
owner | DE-384 DE-703 DE-188 DE-83 DE-11 |
owner_facet | DE-384 DE-703 DE-188 DE-83 DE-11 |
physical | XVII, 427 S. Ill. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Marden, Albert Verfasser (DE-588)133428737 aut Outer circles an introduction to hyperbolic 3-Manifolds A. Marden 1. publ. Cambridge Cambridge Univ. Press 2007 XVII, 427 S. Ill. txt rdacontent n rdamedia nc rdacarrier We live in a three-dimensional space; what sort of space is it? Can we build it from simple geometric objects? The answers to such questions have been found in the last 30 years, and Outer Circles describes the basic mathematics needed for those answers as well as making clear the grand design of the subject of hyperbolic manifolds as a whole. The purpose of Outer Circles is to provide an account of the contemporary theory, accessible to those with minimal formal background in topology, hyperbolic geometry, and complex analysis. The text explains what is needed, and provides the expertise to use the primary tools to arrive at a thorough understanding of the big picture. This picture is further filled out by numerous exercises and expositions at the ends of the chapters and is complemented by a profusion of high quality illustrations. There is an extensive bibliography for further study. Three-manifolds (Topology) Hyperbolische Geometrie (DE-588)4161041-6 gnd rswk-swf Dimension 3 (DE-588)4321722-9 gnd rswk-swf Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd rswk-swf Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 s Dimension 3 (DE-588)4321722-9 s DE-604 Hyperbolische Geometrie (DE-588)4161041-6 s Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016029653&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Marden, Albert Outer circles an introduction to hyperbolic 3-Manifolds Three-manifolds (Topology) Hyperbolische Geometrie (DE-588)4161041-6 gnd Dimension 3 (DE-588)4321722-9 gnd Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd |
subject_GND | (DE-588)4161041-6 (DE-588)4321722-9 (DE-588)4161044-1 |
title | Outer circles an introduction to hyperbolic 3-Manifolds |
title_auth | Outer circles an introduction to hyperbolic 3-Manifolds |
title_exact_search | Outer circles an introduction to hyperbolic 3-Manifolds |
title_exact_search_txtP | Outer circles an introduction to hyperbolic 3-Manifolds |
title_full | Outer circles an introduction to hyperbolic 3-Manifolds A. Marden |
title_fullStr | Outer circles an introduction to hyperbolic 3-Manifolds A. Marden |
title_full_unstemmed | Outer circles an introduction to hyperbolic 3-Manifolds A. Marden |
title_short | Outer circles |
title_sort | outer circles an introduction to hyperbolic 3 manifolds |
title_sub | an introduction to hyperbolic 3-Manifolds |
topic | Three-manifolds (Topology) Hyperbolische Geometrie (DE-588)4161041-6 gnd Dimension 3 (DE-588)4321722-9 gnd Hyperbolische Mannigfaltigkeit (DE-588)4161044-1 gnd |
topic_facet | Three-manifolds (Topology) Hyperbolische Geometrie Dimension 3 Hyperbolische Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016029653&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mardenalbert outercirclesanintroductiontohyperbolic3manifolds |