Multiphase flow dynamics: 2 Thermal and mechanical interactions
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 3. ed. |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 692 S. Ill., graph. Darst. |
ISBN: | 9783540221074 9783540698340 |
Internformat
MARC
LEADER | 00000nam a22000008cc4500 | ||
---|---|---|---|
001 | BV022822092 | ||
003 | DE-604 | ||
005 | 20071008 | ||
007 | t | ||
008 | 070925s2007 gw ad|| |||| 00||| eng d | ||
020 | |a 9783540221074 |9 978-3-540-22107-4 | ||
020 | |a 9783540698340 |9 978-3-540-69834-0 | ||
035 | |a (OCoLC)315376133 | ||
035 | |a (DE-599)BVBBV022822092 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-91G |a DE-703 |a DE-92 |a DE-20 |a DE-11 | ||
100 | 1 | |a Kolev, Nikolay Ivanov |d 1951- |e Verfasser |0 (DE-588)110653262 |4 aut | |
245 | 1 | 0 | |a Multiphase flow dynamics |n 2 |p Thermal and mechanical interactions |c Nikolay I. Kolev |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XXI, 692 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
773 | 0 | 8 | |w (DE-604)BV014569143 |g 2 |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016027435 |
Datensatz im Suchindex
_version_ | 1804137100455444480 |
---|---|
adam_text | NIKOLAY I. KOLEV MULTIPHASE FLOW DYNAMICS 2 THERMAL AND MECHANICAL
INTERACTIONS 3RD EDITION WITH 309 FIGURES 4U SPRINGER TABLE OF CONTENTS
CHAPTER 14 OF VOLUME 1 AND CHAPTER 26 OF VOLUME 2 ARE AVAILABLE IN PDF
FORMAT ON THE CD-ROM ATTACHED TO VOLUME 1. THE SYSTEM REQUIREMENTS ARE
WINDOWS 98 AND HIGHER. BOTH PDF FILES CONTAIN LINKS TO COMPUTER
ANIMATIONS. TO SEE THE ANIMA- TIONS, ONE DOUBLE CLICKS ON THE ACTIVE
LINKS CONTAINED INSIDE THE PDF DOCUMENTS. THE ANIMATIONS ARE THEN
DISPLAYED IN AN INTERNET BROWSER, SUCH MICROSOFT INTERNET EXPLORER OR
NETSCAPE. ALTERNATIVELY, GIF-FILE ANIMATIONS ARE ALSO PROVIDED. 1 FLOW
REGIME TRANSITION CRITERIA 1 1.1 INTRODUCTION 1 1.2 POOL FLOW 3 1.3
ADIABATIC FLOWS 6 1.3.1 TWO IMPORTANT VELOCITY SCALES 6 1.3.2 CHANNEL
FLOW - VERTICAL PIPES 9 1.3.3 CHANNEL FLOW - INCLINED PIPES 13 1.4
HEATED CHANNELS 20 1.5 POROUS MEDIA 21 1.6 PARTICLES IN FILM BOILING :
22 1.7 ROD BUNDLES 23 NOMENCLATURE 25 REFERENCES .* .- 28 2 DRAG, LIFT
AND VIRTUAL MASS FORCES 31 2.1 DRAG FORCES 31 2.1.1 INTRODUCTION 31
2.1.2 DRAG COEFFICIENT FOR SINGLE BUBBLE 32 2.1.3 FAMILY OF PARTICLES IN
CONTINUUM 35 2.1.4 DROPLETS-GAS 39 2.1.5 SOLID PARTICLES-GAS IN PRESENCE
OF LIGUID. SOLID PARTICLES-LIQUID IN PRESENCE OF A GAS 40 2.1.6 ANNULAR
FLOW 50 2.1.7 INVERTED ANNULAR FLOW 59 2.1.8 STRATIFIED FLOW IN
HORIZONTAL OR INCLINED RECTANGULAR CHANNELS 60 2.1.9 STRATIFIED FLOW IN
HORIZONTAL OR INCLINED PIPES 63 2.2 LIFT FORCE 68 2.3 VIRTUAL MASS FORCE
72 XIV TABLE OF CONTENTS NOMENCLATURE 75 REFERENCES 78 FRICTION PRESSURE
DROP 83 3.1 INTRODUCTION 83 3.2 SINGLE-PHASE FLOW ; 83 3.2.1 CIRCULAR
PIPES 83 3.2.2 ANNULAR CHANNELS : 86 3.2.3 ARBITRARY CHANNEL FORM 86
3.2.4 AXIAL FLOW IN ROD BUNDLES 87 3.2.5 CROSS FLOW IN ROD BUNDLES 91
3.2.6 PRESSURE DROP AT SPACER FOR BUNDLES OF NUCLEAR REACTORS 93 3.3
TWO-PHASE FLOW 95 3.4 HEATED CHANNELS 100 3.5 THREE-PHASE FLOW 102
NOMENCLATURE 105 REFERENCES 106 DIFFUSION VELOCITIES FOR ALGEBRAIC SLIP
MODELS 109 4.1 INTRODUCTION 109 4.2 DRAG AS A FUNCTION OF THE RELATIVE
VELOCITY 110 4.2.1 WALL FORCE NOT TAKEN INTO ACCOUNT 110 4.2.2 WALL
FORCES TAKEN INTO ACCOUNT 114 4.3 TWO VELOCITY FIELDS 115 4.3.1 SINGLE
BUBBLE TERMINAL VELOCITY 115 4.3.2 SINGLE PARTICLE TERMINAL VELOCITY 118
4.3.3 CROSS SECTION AVERAGED BUBBLE RISE VELOCITY IN PIPES - DRIFT FLUX
MODELS. 119 4.3.4 CROSS SECTION AVERAGED PARTICLE SINK VELOCITY IN PIPES
- DRIFT FLUX MODELS 136 4.4 SLIP MODELS 138 4.5 THREE VELOCITY FIELDS-
ANNULAR DISPERSED FLOW 140 4.6 THREE-PHASE FLOW 141 NOMENCLATURE 144
REFERENCES 146 ENTRAINMENT IN ANNULAR TWO-PHASE FLOW 149 5.1
INTRODUCTION 149 5.2 SOME BASICS 150 5.3 CORRELATIONS 151 5.4
ENTRAINMENT INCREASE IN BOILING CHANNELS 159 5.5 RESIDUAL FILM THICKNESS
AT DO? 160 5.6 ENTRAINMENT INCREASE DUE TO OBSTACLES 161 5.7 SIZE OF THE
ENTRAINED DROPLETS 161 TABLE OF CONTENTS XV NOMENCLATURE 162 REFERENCES
165 DEPOSITION IN ANNULAR TWO-PHASE FLOW 169 6.1 INTRODUCTION 169 6.2
ANALOGY BETWEEN HEAT AND MASS TRANSFER 169 6.3 FLUCTUATION MECHANISM IN
THE BOUNDARY LAYER 171 6.4 ZAICHIK S THEORY 176 6.5 DEPOSITION
CORRELATIONS 176 6.6 LEIDENFROST HEAT TRANSFER TO DROPLET BOUNCING HOT
WALL 180 NOMENCLATURE 180 REFERENCES 184 INTRODUCTION TO FRAGMENTATION
AND COALESCENCE 187 7.1 INTRODUCTION 187 7.2 GENERAL REMARKS ABOUT
FRAGMENTATION 189 7.3 GENERAL REMARKS ABOUT COALESCENCE 191 7.3.1
CONVERGING DISPERSE FIELD 191 7.3.2 ANALOGY TO THE MOLECULAR KINETIC
THEORY 192 7.4 SUPERPOSITION OF DIFFERENT DROPLET COALESCENCE MECHANISMS
196 7.5 SUPERPOSITION OF DIFFERENT BUBBLE COALESCENCE MECHANISMS 197 7.6
GENERAL REMARKS ABOUT PARTICLE SIZE FORMATION IN PIPES 198 NOMENCLATURE
201 REFERENCES 204 ACCELERATION INDUCED DROPLET AND BUBBLE FRAGMENTATION
207 8.1 CRITICAL WEBER NUMBER 207 8.2 FRAGMENTATION MODES 216 8.3
RELATIVE VELOCITY AFTER FRAGMENTATION 219 8.4 BREAKUP TIME . 222 8.5
PARTICLE PRODUCTION RATE CORRELATIONS 229 8.5.1 VIBRATION BREAKUP 229
8.5.2 BAG BREAKUP 229 8.5.3 BAG AND STAMEN BREAKUP 231 8.5.4 SHEET
STRIPPING AND WAVE CREST STRIPPING FOLLOWING BY CATASTROPHIC BREAKUP 231
8.6 DROPLETS PRODUCTION DUE TO HIGHLY ENERGETIC COLLISIONS 238 8.7
ACCELERATION INDUCED BUBBLE FRAGMENTATION...T. 240 NOMENCLATURE 243
REFERENCES 245 TURBULENCE INDUCED PARTICLE FRAGMENTATION AND COALESCENCE
249 9.1 HOMOGENEOUS TURBULENCE CHARACTERISTICS 249 9.2 REACTION OF A
PARTICLE TO THE ACCELERATION OF THE SURROUNDING CONTINUUM 253 XVI TABLE
OF CONTENTS 9.3 REACTION OF PARTICLE ENTRAINED INSIDE THE TURBULENT
VORTEX - INERTIAL RANGE 254 9.4 STABILITY CRITERION FOR BUBBLES IN
CONTINUUM 255 9.5 TURBULENCE ENERGY DISSIPATION DUE TO THE WALL FRICTION
259 9.6 TURBULENCE ENERGY DISSIPATION DUE TO THE RELATIVE MOTION 261 9.7
BUBBLE COALESCENCE PROBABILITY 262 9.8 COALESCENCE PROBABILITY OF SMALL
DROPLETS.... . 266 NOMENCLATURE 268 REFERENCES 270 10 LIQUID AND GAS JET
DISINTEGRATION 273 10.1 LIQUID JET DISINTEGRATION IN POOLS 273 10.2
BOUNDARY OF DIFFERENT FRAGMENTATION MECHANISMS 275 10.3 SIZE OF THE
LIGAMENTS 277 10.4 UNBOUNDED INSTABILITY CONTROLLING JET FRAGMENTATION
278 10.4.1 NO AMBIENT INFLUENCE 278 10.4.2 AMBIENT INFLUENCE 280 10.4.3
JETS PRODUCING FILM BOILING IN THE AMBIENT LIQUID 282 10.4.4 AN
ALTERNATIVE APPROACH 284 10.4.5 JETS PENETRATING TWO-PHASE MIXTURES 285
10.4.6 PARTICLE PRODUCTION RATE 285 10.5 JET EROSION BY HIGH VELOCITY
GAS ENVIRONMENT 285 10.6 JET FRAGMENTATION IN PIPES 287 10.7 LIQUID SPRY
PRODUCED IN NOZZLES 289 10.8 GAS JET DISINTEGRATION IN POOLS... 289
NOMENCLATURE 292 REFERENCES 295 11 FRAGMENTATION OF MELT IN COOLANT 297
11.1 INTRODUCTION 297 11.2 VAPOR THICKNESS IN FILM BOILING 299 11.3
AMOUNT OF MELT SURROUNDED BY CONTINUOUS WATER 300 11.4 THERMO-MECHANICAL
FRAGMENTATION OF LIQUID METAL IN WATER 301 11.4.1 EXTERNAL TRIGGERS 302
11.4.2 EXPERIMENTAL OBSERVATIONS 307 11.4.3 THE MECHANISM OF THE THERMAL
FRAGMENTATION 312 11.5 PARTICLE PRODUCTION RATE DURING THE THERMAL
FRAGMENTATION 326 11.6 TANG S THERMAL FRAGMENTATION MODEL 328 11.7
YUEN S THERMAL FRAGMENTATION MODEL 330 11.8 OXIDATION 331 11.9
SUPERPOSITION OF THERMAL FRAGMENTATION 332 11.9.1 INERT GASES 332 11.9.2
COOLANT VISCOSITY INCREASE 332 11.9.3 SURFACTANTS 333 11.9.4 MELT
VISCOSITY 334 TABLE OF CONTENTS XVII NOMENCLATURE 334 REFERENCES 337 12
NUCLEATION IN LIQUIDS 343 12.1 INTRODUCTION 343 12.2 NUCLEATION ENERGY,
EQUATION OF KELVIN AND LAPLACE 344 12.3 NUCLEUS CAPABLE TO GROW , 345
12.4 SOME USEFUL FORMS OF THE CLAUSIUS-CLAPEYRON EQUATION, MEASURES OF
SUPERHEATING 347 12.5 NUCLEATION KINETICS 350 12.5.1 HOMOGENEOUS
NUCLEATION 350 12.5.2 HETEROGENEOUS NUCLEATION 351 12.6 MAXIMUM
SUPERHEAT 357 12.7 CRITICAL MASS FLOW RATE IN SHORT PIPES, ORIFICES AND
NOZZLES 360 12.8 NUCLEATION IN THE PRESENCE OF NON-CONDENSABLE GASES 361
12.9 ACTIVATED NUCLEATION SITE DENSITY- STATE OF THE ART 362 12.10
CONCLUSIONS AND RECOMMENDATIONS 368 NOMENCLATURE 368 REFERENCES 370 13
BUBBLE GROWTH IN SUPERHEATED LIQUID 375 13.1 INTRODUCTION 375 13.2 THE
THERMALLY CONTROLLED BUBBLE GROWTH 376 13.3 THE MIKIC SOLUTION 378 13.4
HOW TO COMPUTE THE MASS SOURCE TERMS FOR THE AVERAGED CONSERVATION
EQUATIONS? ...: 381 13.4.1 NON-AVERAGED MASS SOURCE TERMS 381 13.4.2 THE
AVERAGED MASS SOURCE TERMS 382 13.5 SUPERHEATED STEAM...... .:-. 384
13.6 DIFFUSION CONTROLLED EVAPORATION INTO MIXTURE OF GASES INSIDE THE
BUBBLE 385 13.7 CONCLUSIONS 386 APPENDIX 13.1 RADIUS OF A SINGLE BUBBLE
IN A SUPERHEATED LIQUID AS A FUNCTION OF TIME 386 NOMENCLATURE 391
REFERENCES 394 14 CONDENSATION OF A PURE STEAM BUBBLE IN A SUBCOOLED
LIQUID 397 14.1 INTRODUCTION 397 14.2 STAGNANT BUBBLE 397 14.3 MOVING
BUBBLE 399 14.4 NON-AVERAGED SOURCE TERMS 404 14.5 AVERAGED SOURCE TERMS
405 14.6 CHANGE.OF THE BUBBLE NUMBER DENSITY DUE TO CONDENSATION 406
14.7 PURE STEAM BUBBLE DRIFTING IN TURBULENT CONTINUOUS LIQUID 407 XVIII
TABLE OF CONTENTS 14.8 CONDENSATION FROM A GAS MIXTURE IN BUBBLES
SURROUNDED BY SUBCOOLED LIQUID 409 14.8.1 THERMALLY CONTROLLED COLLAPSE
410 14.8.2 DIFFUSION CONTROLLED COLLAPSE 410 NOMENCLATURE 411 REFERENCES
415 15 BUBBLE DEPARTURE DIAMETER 417 15.1 HOW ACCURATELY CAN WE PREDICT
BUBBLE DEPARTURE DIAMETER FOR BOILING? 417 15.2 MODEL DEVELOPMENT 420
15.3 COMPARISON WITH EXPERIMENTAL DATA 425 15.4 SIGNIFICANCE 429 15.5
SUMMARY AND CONCLUSIONS 429 15.6 EXTENSION OF THE THEORY TO SUB-COOLED
LIQUIDS 430 15.7 INFLUENCE OF THE WALL MATERIAL 433 NOMENCLATURE 434
REFERENCES 435 16 HOW ACCURATELY CAN WE PREDICT NUCLEATE BOILING? 439
16.1 INTRODUCTION 439 16.2 NEW PHENOMENOLOGICAL MODEL FOR NUCLEATE POOL
BOILING 446 16.2.1 BASIC ASSUMPTIONS 446 16.2.2 PROPOSED MODEL 448 16.3
DATA COMPARISON 450 16.3.1 NUCLEATION SITE DENSITY AT HIGH PRESSURES 453
16.4 SYSTEMATIC INSPECTION OF ALL THE USED HYPOTHESES 455 16.5
SIGNIFICANCE 456 16.6 CONCLUSIONS . *. . . 456 16.7 EXTENSION TO FORCED
CONVECTION WITH NUCLEATE BOILING 457 APPENDIX 16.1 STATE OF THE ART OF
NUCLEATE POOL BOILING MODELING 460 NOMENCLATURE 465 REFERENCES 467 17
HETEROGENEOUS NUCLEATION AND FLASHING IN ADIABATIC PIPES 471 17.1
INTRODUCTION 471 17.2 BUBBLES GENERATED DUE TO NUCLEATION AT THE WALK
472 17.3 BUBBLE GROWTH IN THE BULK 473 17.4 BUBBLE FRAGMENTATION AND
COALESCENCE 473 17.5 FILM FLASHING BUBBLE GENERATION IN ADIABATIC PIPE
FLOW 475 17.6 VERIFICATION OF THE MODEL 476 17.9 SIGNIFICANCE AND
CONCLUSIONS 481 NOMENCLATURE 482 REFERENCES -. 484 TABLE OF CONTENTS XIX
18 BOILING OF SUBCOOLED LIQUID 487 18.1 INTRODUCTION 487 18.2 INITIATION
OF VISIBLE BOILING ON THE HEATED SURFACE 487 18.3 LOCAL EVAPORATION AND
CONDENSATION 490 18.3.1 RELAXATION THEORY 490 18.3.2 BOUNDARY LAYER
TREATMENT 492 NOMENCLATURE 495 REFERENCES 496 19 NATURAL CONVECTION FILM
BOILING 499 19.1 MINIMUM FILM BOILING TEMPERATURE 499 19.2 FILM BOILING
IN HORIZONTAL UPWARDS-ORIENTED PLATES 500 19.3 HORIZONTAL CYLINDER 501
19.4 SPHERE 502 NOMENCLATURE 502 REFERENCES 504 20 FORCED CONVECTION
BOILING 505 20.1 CONVECTIVE BOILING OF SATURATED LIQUID 505 20.2 FORCED
CONVECTION FILM BOILING 507 20.2.1 TUBES 507 20.2.2 ANNULAR CHANNEL 509
20.2.3 TUBES AND ANNULAR CHANNELS 510 20.2.4 VERTICAL FLOW AROUND ROD
BUNDLES 510 20.3 TRANSITION BOILING 511 20.4 CRITICAL HEAT FLUX : 512
20.4.1 THE HYDRODYNAMIC STABILITY THEORY OF FREE CONVECTION DNB 513
20.4.2 FORCED CONVECTION DNB AND DO CORRELATIONS 515 20.4.3 THE 1995 AND
2005 LOOK-UP TABLES 519 NOMENCLATURE 524 REFERENCES 526 21 FILM BOILING
ON VERTICAL PLATES AND SPHERES 529 21.1 PLATE 529 21.1.1
INTRODUCTION.... 529 21.1.2 STATE OF THE ARTL. 530 21.1.3 PROBLEM
DEFINITION ^ 531 21.1.4 SIMPLIFYING ASSUMPTIONS 532 21.1.5 ENERGY
BALANCE AT THE VAPOR-LIQUID INTERFACE, VAPOR FILM THICKNESS, AVERAGE
HEAT TRANSFER COEFFICIENT 535 21.1.6 ENERGY BALANCE OF THE LIQUID
BOUNDARY LAYER, LAYER THICKNESS RATIO 538 21.1.7 AVERAGED HEAT FLUXES
541 21.1.8 EFFECT OF THE INTERFACIAL DISTURBANCES 542 21.1.9 COMPARISON
OF THE THEORY WITH THE RESULTS OF OTHER AUTHORS 543 XX TABLE OF CONTENTS
21.1.10 VERIFICATION USING THE EXPERIMENTAL DATA 545 21.1.11 CONCLUSIONS
546 21.1.12 PRACTICAL SIGNIFICANCE 546 21.2 SPHERE 547 21.2.1
INTRODUCTION 547 21.2.2 PROBLEM DEFINITION 547 21.2.3 SOLUTION METHOD
. . 547 21.2.4 MODEL . 54 7 21.2.5 DATA COMPARISON 556 21.2.6
CONCLUSIONS 559 APPENDIX 21.1 NATURAL CONVECTION AT VERTICAL PLATE 559
APPENDIX 21.2 PREDOMINANT FORCED CONVECTION ONLY AT VERTICAL PLATE 560
NOMENCLATURE 561 REFERENCES 564 22 LIQUID DROPLETS 567 22.1 SPONTANEOUS
CONDENSATION OF PURE SUBCOOLED STEAM - NUCLEATION 567 22.1.1 CRITICAL
NUCLEATION SIZE 568 22.1.2 NUCLEATION KINETICS, HOMOGENEOUS NUCLEATION
570 22.1.3 DROPLET GROWTH 572 22.1.4 SELF-CONDENSATION STOP 574 22.2
HEAT TRANSFER ACROSS DROPLET INTERFACE WITHOUT MASS TRANSFER 575 22.3
DIRECT CONTACT CONDENSATION OF PURE STEAM ON SUBCOOLED DROPLET 581 22.4
SPONTANEOUS FLASHING OF SUPERHEATED DROPLET 583 22.5 EVAPORATION OF
SATURATED DROPLETS IN SUPERHEATED GAS 587 22.6 DROPLET EVAPORATION IN
GAS MIXTURE 589 NOMENCLATURE 594 REFERENCES 596 23 HEAT AND MASS
TRANSFER AT THE FILM-GAS INTERFACE 599 23.1 GEOMETRICAL FILM-GAS
CHARACTERISTICS 599 23.2 CONVECTIVE HEAT TRANSFER..... 601 23.2.1 GAS
SIDE HEAT TRANSFER 601 23.2.2 LIQUID SIDE HEAT TRANSFER DUE TO
CONDUCTION 604 23.2.3 LIQUID SIDE HEAT CONDUCTION DUE TO TURBULENCE 606
23.3 SPONTANEOUS FLASHING OF SUPERHEATED FILM 613 23.4 EVAPORATION OF
SATURATED FILM IN SUPERHEATED GA? 613 23.5 CONDENSATION OF PURE STEAM ON
SUBCOOLED FILM 614 23.6 EVAPORATION OR CONDENSATION IN PRESENCE OF
NON-CONDENSABLE GASES 615 NOMENCLATURE 617 REFERENCES 620 24
CONDENSATION AT COOLED WALLS 623 24.1 PURE STEAM CONDENSATION 623 24.1.1
ONSET OF THE CONDENSATION 623 24.1.2 GRAVITATION FILMS ON PLATES 623
TABLE OF CONTENTS XXI 24.1.2 GRAVITATION FILMS ON PIPES 631 24.2
CONDENSATION FROM FORCED CONVECTION TWO-PHASE FLOW AT LIQUID FILM 632
24.2.1 DOWN FLOW OF VAPOR ACROSS HORIZONTAL TUBES 632 24.2.2 COLLIER
CORRELATION 632 24.2.3 BOYKO AND KRUJILIN APPROACH 633 24.2.4 THE SHAH
MODIFICATION OF THE BOYKO AND KRUJILIN APPROACH 634 24.3 STEAM
CONDENSATION FROM MIXTURE CONTAINING NON-CONDENSING GASES 634 24.3.1
COMPUTATION OF THE 7 MASS TRANSFER COEFFICIENT 636 NOMENCLATURE 638
REFERENCES 640 25 DISCRETE ORDINATE METHOD FOR RADIATION TRANSPORT IN
MULTI-PHASE COMPUTER CODES 643 25.1 INTRODUCTION 643 25.1.1 DIMENSIONS
OF THE PROBLEM 643 25.1.2 MICRO- VERSUS MACRO-INTERACTIONS 644 25.1.3
THE RADIATION TRANSPORT EQUATION (RTE) 644 25.2 DISCRETE ORDINATE METHOD
645 25.2.1 DISCRETIZATION OF THE COMPUTATIONAL DOMAIN FOR THE
DESCRIPTION OF THE FLOW 647 25.2.2 FINITE VOLUME REPRESENTATION OF THE
RADIATION TRANSPORT EQUATION 648 25.2.3 BOUNDARY CONDITIONS 653 25.3
MATERIAL PROPERTIES 655 25.3.1 SOURCE TERMS - EMISSION FROM HOT SURFACES
WITH KNOWN TEMPERATURE .-. 655 25.3.2 SPECTRAL ABSORPTION COEFFICIENT OF
WATER 655 25.3.3 SPECTRAL ABSORPTION COEFFICIENT OF WATER VAPOR AND
OTHER GASES 660 25.4 AVERAGED PROPERTIES FOR SOME PARTICULAR CASES
OCCURRING IN MELT-WATER INTERACTION 660 25.4.1 SPHERICAL CAVITY OF GAS
INSIDE A MOLTEN MATERIAL 660 25.4.2 CONCENTRIC SPHERES OF WATER
DROPLETS, SURROUNDED BY VAPOR, SURROUNDED BY MOLTEN MATERIAL 661 25.4.3
CLOUDS OF SPHERICAL PARTICLES OF RADIATING MATERIAL SURROUNDED BY A
LAYER OF VAPOR SURROUNDED BY WATER *LANZENBERGER S SOLUTION 665 25.4.4
CHAIN OF INFINITE NUMBER OF WIGNER CELLS 678 25.4.5 APPLICATION OF
LANZENBERGERS S SOLUTION 679 NOMENCLATURE 681 REFERENCES 682 INDEX 685
|
adam_txt |
NIKOLAY I. KOLEV MULTIPHASE FLOW DYNAMICS 2 THERMAL AND MECHANICAL
INTERACTIONS 3RD EDITION WITH 309 FIGURES 4U SPRINGER TABLE OF CONTENTS
CHAPTER 14 OF VOLUME 1 AND CHAPTER 26 OF VOLUME 2 ARE AVAILABLE IN PDF
FORMAT ON THE CD-ROM ATTACHED TO VOLUME 1. THE SYSTEM REQUIREMENTS ARE
WINDOWS 98 AND HIGHER. BOTH PDF FILES CONTAIN LINKS TO COMPUTER
ANIMATIONS. TO SEE THE ANIMA- TIONS, ONE DOUBLE CLICKS ON THE ACTIVE
LINKS CONTAINED INSIDE THE PDF DOCUMENTS. THE ANIMATIONS ARE THEN
DISPLAYED IN AN INTERNET BROWSER, SUCH MICROSOFT INTERNET EXPLORER OR
NETSCAPE. ALTERNATIVELY, GIF-FILE ANIMATIONS ARE ALSO PROVIDED. 1 FLOW
REGIME TRANSITION CRITERIA 1 1.1 INTRODUCTION 1 1.2 POOL FLOW 3 1.3
ADIABATIC FLOWS 6 1.3.1 TWO IMPORTANT VELOCITY SCALES 6 1.3.2 CHANNEL
FLOW - VERTICAL PIPES 9 1.3.3 CHANNEL FLOW - INCLINED PIPES 13 1.4
HEATED CHANNELS 20 1.5 POROUS MEDIA 21 1.6 PARTICLES IN FILM BOILING :
22 1.7 ROD BUNDLES 23 NOMENCLATURE 25 REFERENCES .* .- 28 2 DRAG, LIFT
AND VIRTUAL MASS FORCES 31 2.1 DRAG FORCES 31 2.1.1 INTRODUCTION 31
2.1.2 DRAG COEFFICIENT FOR SINGLE BUBBLE 32 2.1.3 FAMILY OF PARTICLES IN
CONTINUUM 35 2.1.4 DROPLETS-GAS 39 2.1.5 SOLID PARTICLES-GAS IN PRESENCE
OF LIGUID. SOLID PARTICLES-LIQUID IN PRESENCE OF A GAS 40 2.1.6 ANNULAR
FLOW 50 2.1.7 INVERTED ANNULAR FLOW 59 2.1.8 STRATIFIED FLOW IN
HORIZONTAL OR INCLINED RECTANGULAR CHANNELS 60 2.1.9 STRATIFIED FLOW IN
HORIZONTAL OR INCLINED PIPES 63 2.2 LIFT FORCE 68 2.3 VIRTUAL MASS FORCE
72 XIV TABLE OF CONTENTS NOMENCLATURE 75 REFERENCES 78 FRICTION PRESSURE
DROP 83 3.1 INTRODUCTION 83 3.2 SINGLE-PHASE FLOW ; 83 3.2.1 CIRCULAR
PIPES 83 3.2.2 ANNULAR CHANNELS : 86 3.2.3 ARBITRARY CHANNEL FORM 86
3.2.4 AXIAL FLOW IN ROD BUNDLES 87 3.2.5 CROSS FLOW IN ROD BUNDLES 91
3.2.6 PRESSURE DROP AT SPACER FOR BUNDLES OF NUCLEAR REACTORS 93 3.3
TWO-PHASE FLOW 95 3.4 HEATED CHANNELS 100 3.5 THREE-PHASE FLOW 102
NOMENCLATURE 105 REFERENCES 106 DIFFUSION VELOCITIES FOR ALGEBRAIC SLIP
MODELS 109 4.1 INTRODUCTION 109 4.2 DRAG AS A FUNCTION OF THE RELATIVE
VELOCITY 110 4.2.1 WALL FORCE NOT TAKEN INTO ACCOUNT 110 4.2.2 WALL
FORCES TAKEN INTO ACCOUNT 114 4.3 TWO VELOCITY FIELDS 115 4.3.1 SINGLE
BUBBLE TERMINAL VELOCITY 115 4.3.2 SINGLE PARTICLE TERMINAL VELOCITY 118
4.3.3 CROSS SECTION AVERAGED BUBBLE RISE VELOCITY IN PIPES - DRIFT FLUX
MODELS. 119 4.3.4 CROSS SECTION AVERAGED PARTICLE SINK VELOCITY IN PIPES
- DRIFT FLUX MODELS 136 4.4 SLIP MODELS 138 4.5 THREE VELOCITY FIELDS-
ANNULAR DISPERSED FLOW 140 4.6 THREE-PHASE FLOW 141 NOMENCLATURE 144
REFERENCES 146 ENTRAINMENT IN ANNULAR TWO-PHASE FLOW 149 5.1
INTRODUCTION 149 5.2 SOME BASICS 150 5.3 CORRELATIONS 151 5.4
ENTRAINMENT INCREASE IN BOILING CHANNELS 159 5.5 RESIDUAL FILM THICKNESS
AT DO? 160 5.6 ENTRAINMENT INCREASE DUE TO OBSTACLES 161 5.7 SIZE OF THE
ENTRAINED DROPLETS 161 TABLE OF CONTENTS XV NOMENCLATURE 162 REFERENCES
165 DEPOSITION IN ANNULAR TWO-PHASE FLOW 169 6.1 INTRODUCTION 169 6.2
ANALOGY BETWEEN HEAT AND MASS TRANSFER 169 6.3 FLUCTUATION MECHANISM IN
THE BOUNDARY LAYER 171 6.4 ZAICHIK'S THEORY ' 176 6.5 DEPOSITION
CORRELATIONS 176 6.6 LEIDENFROST HEAT TRANSFER TO DROPLET BOUNCING HOT
WALL 180 NOMENCLATURE 180 REFERENCES 184 INTRODUCTION TO FRAGMENTATION
AND COALESCENCE 187 7.1 INTRODUCTION 187 7.2 GENERAL REMARKS ABOUT
FRAGMENTATION 189 7.3 GENERAL REMARKS ABOUT COALESCENCE 191 7.3.1
CONVERGING DISPERSE FIELD 191 7.3.2 ANALOGY TO THE MOLECULAR KINETIC
THEORY 192 7.4 SUPERPOSITION OF DIFFERENT DROPLET COALESCENCE MECHANISMS
196 7.5 SUPERPOSITION OF DIFFERENT BUBBLE COALESCENCE MECHANISMS 197 7.6
GENERAL REMARKS ABOUT PARTICLE SIZE FORMATION IN PIPES 198 NOMENCLATURE
201 REFERENCES 204 ACCELERATION INDUCED DROPLET AND BUBBLE FRAGMENTATION
207 8.1 CRITICAL WEBER NUMBER 207 8.2 FRAGMENTATION MODES 216 8.3
RELATIVE VELOCITY AFTER FRAGMENTATION 219 8.4 BREAKUP TIME '. 222 8.5
PARTICLE PRODUCTION RATE CORRELATIONS 229 8.5.1 VIBRATION BREAKUP 229
8.5.2 BAG BREAKUP 229 8.5.3 BAG AND STAMEN BREAKUP 231 8.5.4 SHEET
STRIPPING AND WAVE CREST STRIPPING FOLLOWING BY CATASTROPHIC BREAKUP 231
8.6 DROPLETS PRODUCTION DUE TO HIGHLY ENERGETIC COLLISIONS 238 8.7
ACCELERATION INDUCED BUBBLE FRAGMENTATION.T. 240 NOMENCLATURE 243
REFERENCES 245 TURBULENCE INDUCED PARTICLE FRAGMENTATION AND COALESCENCE
249 9.1 HOMOGENEOUS TURBULENCE CHARACTERISTICS 249 9.2 REACTION OF A
PARTICLE TO THE ACCELERATION OF THE SURROUNDING CONTINUUM 253 XVI TABLE
OF CONTENTS 9.3 REACTION OF PARTICLE ENTRAINED INSIDE THE TURBULENT
VORTEX - INERTIAL RANGE 254 9.4 STABILITY CRITERION FOR BUBBLES IN
CONTINUUM 255 9.5 TURBULENCE ENERGY DISSIPATION DUE TO THE WALL FRICTION
259 9.6 TURBULENCE ENERGY DISSIPATION DUE TO THE RELATIVE MOTION 261 9.7
BUBBLE COALESCENCE PROBABILITY 262 9.8 COALESCENCE PROBABILITY OF SMALL
DROPLETS.'. 266 NOMENCLATURE 268 REFERENCES 270 10 LIQUID AND GAS JET
DISINTEGRATION 273 10.1 LIQUID JET DISINTEGRATION IN POOLS 273 10.2
BOUNDARY OF DIFFERENT FRAGMENTATION MECHANISMS 275 10.3 SIZE OF THE
LIGAMENTS 277 10.4 UNBOUNDED INSTABILITY CONTROLLING JET FRAGMENTATION
278 10.4.1 NO AMBIENT INFLUENCE 278 10.4.2 AMBIENT INFLUENCE 280 10.4.3
JETS PRODUCING FILM BOILING IN THE AMBIENT LIQUID 282 10.4.4 AN
ALTERNATIVE APPROACH 284 10.4.5 JETS PENETRATING TWO-PHASE MIXTURES 285
10.4.6 PARTICLE PRODUCTION RATE 285 10.5 JET EROSION BY HIGH VELOCITY
GAS ENVIRONMENT 285 10.6 JET FRAGMENTATION IN PIPES 287 10.7 LIQUID SPRY
PRODUCED IN NOZZLES 289 10.8 GAS JET DISINTEGRATION IN POOLS. 289
NOMENCLATURE 292 REFERENCES 295 11 FRAGMENTATION OF MELT IN COOLANT 297
11.1 INTRODUCTION 297 11.2 VAPOR THICKNESS IN FILM BOILING 299 11.3
AMOUNT OF MELT SURROUNDED BY CONTINUOUS WATER 300 11.4 THERMO-MECHANICAL
FRAGMENTATION OF LIQUID METAL IN WATER 301 11.4.1 EXTERNAL TRIGGERS 302
11.4.2 EXPERIMENTAL OBSERVATIONS 307 11.4.3 THE MECHANISM OF THE THERMAL
FRAGMENTATION 312 11.5 PARTICLE PRODUCTION RATE DURING THE THERMAL
FRAGMENTATION 326 11.6 TANG'S THERMAL FRAGMENTATION MODEL 328 11.7
YUEN'S THERMAL FRAGMENTATION MODEL 330 11.8 OXIDATION 331 11.9
SUPERPOSITION OF THERMAL FRAGMENTATION 332 11.9.1 INERT GASES 332 11.9.2
COOLANT VISCOSITY INCREASE 332 11.9.3 SURFACTANTS 333 11.9.4 MELT
VISCOSITY 334 TABLE OF CONTENTS XVII NOMENCLATURE 334 REFERENCES 337 12
NUCLEATION IN LIQUIDS 343 12.1 INTRODUCTION 343 12.2 NUCLEATION ENERGY,
EQUATION OF KELVIN AND LAPLACE 344 12.3 NUCLEUS CAPABLE TO GROW , 345
12.4 SOME USEFUL FORMS OF THE CLAUSIUS-CLAPEYRON EQUATION, MEASURES OF
SUPERHEATING 347 12.5 NUCLEATION KINETICS 350 12.5.1 HOMOGENEOUS
NUCLEATION 350 12.5.2 HETEROGENEOUS NUCLEATION 351 12.6 MAXIMUM
SUPERHEAT 357 12.7 CRITICAL MASS FLOW RATE IN SHORT PIPES, ORIFICES AND
NOZZLES 360 12.8 NUCLEATION IN THE PRESENCE OF NON-CONDENSABLE GASES 361
12.9 ACTIVATED NUCLEATION SITE DENSITY- STATE OF THE ART 362 12.10
CONCLUSIONS AND RECOMMENDATIONS 368 NOMENCLATURE 368 REFERENCES 370 13
BUBBLE GROWTH IN SUPERHEATED LIQUID 375 13.1 INTRODUCTION 375 13.2 THE
THERMALLY CONTROLLED BUBBLE GROWTH 376 13.3 THE MIKIC SOLUTION 378 13.4
HOW TO COMPUTE THE MASS SOURCE TERMS FOR THE AVERAGED CONSERVATION
EQUATIONS? .: 381 13.4.1 NON-AVERAGED MASS SOURCE TERMS 381 13.4.2 THE
AVERAGED MASS SOURCE TERMS 382 13.5 SUPERHEATED STEAM. .:-. 384
13.6 DIFFUSION CONTROLLED EVAPORATION INTO MIXTURE OF GASES INSIDE THE
BUBBLE 385 13.7 CONCLUSIONS 386 APPENDIX 13.1 RADIUS OF A SINGLE BUBBLE
IN A SUPERHEATED LIQUID AS A FUNCTION OF TIME 386 NOMENCLATURE 391
REFERENCES 394 14 CONDENSATION OF A PURE STEAM BUBBLE IN A SUBCOOLED
LIQUID 397 14.1 INTRODUCTION 397 14.2 STAGNANT BUBBLE 397 14.3 MOVING
BUBBLE 399 14.4 NON-AVERAGED SOURCE TERMS 404 14.5 AVERAGED SOURCE TERMS
405 14.6 CHANGE.OF THE BUBBLE NUMBER DENSITY DUE TO CONDENSATION 406
14.7 PURE STEAM BUBBLE DRIFTING IN TURBULENT CONTINUOUS LIQUID 407 XVIII
TABLE OF CONTENTS 14.8 CONDENSATION FROM A GAS MIXTURE IN BUBBLES
SURROUNDED BY SUBCOOLED LIQUID 409 14.8.1 THERMALLY CONTROLLED COLLAPSE
410 14.8.2 DIFFUSION CONTROLLED COLLAPSE 410 NOMENCLATURE 411 REFERENCES
415 15 BUBBLE DEPARTURE DIAMETER 417 15.1 HOW ACCURATELY CAN WE PREDICT
BUBBLE DEPARTURE DIAMETER FOR BOILING? 417 15.2 MODEL DEVELOPMENT 420
15.3 COMPARISON WITH EXPERIMENTAL DATA 425 15.4 SIGNIFICANCE 429 15.5
SUMMARY AND CONCLUSIONS 429 15.6 EXTENSION OF THE THEORY TO SUB-COOLED
LIQUIDS 430 15.7 INFLUENCE OF THE WALL MATERIAL 433 NOMENCLATURE 434
REFERENCES 435 16 HOW ACCURATELY CAN WE PREDICT NUCLEATE BOILING? 439
16.1 INTRODUCTION 439 16.2 NEW PHENOMENOLOGICAL MODEL FOR NUCLEATE POOL
BOILING 446 16.2.1 BASIC ASSUMPTIONS 446 16.2.2 PROPOSED MODEL 448 16.3
DATA COMPARISON 450 16.3.1 NUCLEATION SITE DENSITY AT HIGH PRESSURES 453
16.4 SYSTEMATIC INSPECTION OF ALL THE USED HYPOTHESES 455 16.5
SIGNIFICANCE 456 16.6 CONCLUSIONS '. *.'.'. 456 16.7 EXTENSION TO FORCED
CONVECTION WITH NUCLEATE BOILING 457 APPENDIX 16.1 STATE OF THE ART OF
NUCLEATE POOL BOILING MODELING 460 NOMENCLATURE 465 REFERENCES 467 17
HETEROGENEOUS NUCLEATION AND FLASHING IN ADIABATIC PIPES 471 17.1
INTRODUCTION 471 17.2 BUBBLES GENERATED DUE TO NUCLEATION AT THE WALK
472 17.3 BUBBLE GROWTH IN THE BULK 473 17.4 BUBBLE FRAGMENTATION AND
COALESCENCE 473 17.5 FILM FLASHING BUBBLE GENERATION IN ADIABATIC PIPE
FLOW 475 17.6 VERIFICATION OF THE MODEL 476 17.9 SIGNIFICANCE AND
CONCLUSIONS 481 NOMENCLATURE 482 REFERENCES -. 484 TABLE OF CONTENTS XIX
18 BOILING OF SUBCOOLED LIQUID 487 18.1 INTRODUCTION 487 18.2 INITIATION
OF VISIBLE BOILING ON THE HEATED SURFACE 487 18.3 LOCAL EVAPORATION AND
CONDENSATION 490 18.3.1 RELAXATION THEORY 490 18.3.2 BOUNDARY LAYER
TREATMENT 492 NOMENCLATURE 495 REFERENCES 496 19 NATURAL CONVECTION FILM
BOILING 499 19.1 MINIMUM FILM BOILING TEMPERATURE 499 19.2 FILM BOILING
IN HORIZONTAL UPWARDS-ORIENTED PLATES 500 19.3 HORIZONTAL CYLINDER 501
19.4 SPHERE 502 NOMENCLATURE 502 REFERENCES 504 20 FORCED CONVECTION
BOILING 505 20.1 CONVECTIVE BOILING OF SATURATED LIQUID 505 20.2 FORCED
CONVECTION FILM BOILING 507 20.2.1 TUBES 507 20.2.2 ANNULAR CHANNEL 509
20.2.3 TUBES AND ANNULAR CHANNELS 510 20.2.4 VERTICAL FLOW AROUND ROD
BUNDLES 510 20.3 TRANSITION BOILING 511 20.4 CRITICAL HEAT FLUX : 512
20.4.1 THE HYDRODYNAMIC STABILITY THEORY OF FREE CONVECTION DNB 513
20.4.2 FORCED CONVECTION DNB AND DO CORRELATIONS 515 20.4.3 THE 1995 AND
2005 LOOK-UP TABLES 519 NOMENCLATURE 524 REFERENCES 526 21 FILM BOILING
ON VERTICAL PLATES AND SPHERES 529 21.1 PLATE 529 21.1.1
INTRODUCTION. 529 21.1.2 STATE OF THE ARTL. 530 21.1.3 PROBLEM
DEFINITION ^ 531 21.1.4 SIMPLIFYING ASSUMPTIONS 532 21.1.5 ENERGY
BALANCE AT THE VAPOR-LIQUID INTERFACE, VAPOR FILM THICKNESS, AVERAGE
HEAT TRANSFER COEFFICIENT 535 21.1.6 ENERGY BALANCE OF THE LIQUID
BOUNDARY LAYER, LAYER THICKNESS RATIO 538 21.1.7 AVERAGED HEAT FLUXES
541 21.1.8 EFFECT OF THE INTERFACIAL DISTURBANCES 542 21.1.9 COMPARISON
OF THE THEORY WITH THE RESULTS OF OTHER AUTHORS 543 XX TABLE OF CONTENTS
21.1.10 VERIFICATION USING THE EXPERIMENTAL DATA 545 21.1.11 CONCLUSIONS
546 21.1.12 PRACTICAL SIGNIFICANCE 546 21.2 SPHERE 547 21.2.1
INTRODUCTION 547 21.2.2 PROBLEM DEFINITION 547 21.2.3 SOLUTION METHOD
.'. 547 21.2.4 MODEL . 54 7 21.2.5 DATA COMPARISON 556 21.2.6
CONCLUSIONS 559 APPENDIX 21.1 NATURAL CONVECTION AT VERTICAL PLATE 559
APPENDIX 21.2 PREDOMINANT FORCED CONVECTION ONLY AT VERTICAL PLATE 560
NOMENCLATURE 561 REFERENCES 564 22 LIQUID DROPLETS 567 22.1 SPONTANEOUS
CONDENSATION OF PURE SUBCOOLED STEAM - NUCLEATION 567 22.1.1 CRITICAL
NUCLEATION SIZE 568 22.1.2 NUCLEATION KINETICS, HOMOGENEOUS NUCLEATION
570 22.1.3 DROPLET GROWTH 572 22.1.4 SELF-CONDENSATION STOP 574 22.2
HEAT TRANSFER ACROSS DROPLET INTERFACE WITHOUT MASS TRANSFER 575 22.3
DIRECT CONTACT CONDENSATION OF PURE STEAM ON SUBCOOLED DROPLET 581 22.4
SPONTANEOUS FLASHING OF SUPERHEATED DROPLET 583 22.5 EVAPORATION OF
SATURATED DROPLETS IN SUPERHEATED GAS 587 22.6 DROPLET EVAPORATION IN
GAS MIXTURE 589 NOMENCLATURE 594 REFERENCES 596 23 HEAT AND MASS
TRANSFER AT THE FILM-GAS INTERFACE 599 23.1 GEOMETRICAL FILM-GAS
CHARACTERISTICS 599 23.2 CONVECTIVE HEAT TRANSFER. 601 23.2.1 GAS
SIDE HEAT TRANSFER 601 23.2.2 LIQUID SIDE HEAT TRANSFER DUE TO
CONDUCTION 604 23.2.3 LIQUID SIDE HEAT CONDUCTION DUE TO TURBULENCE 606
23.3 SPONTANEOUS FLASHING OF SUPERHEATED FILM 613 23.4 EVAPORATION OF
SATURATED FILM IN SUPERHEATED GA? 613 23.5 CONDENSATION OF PURE STEAM ON
SUBCOOLED FILM 614 23.6 EVAPORATION OR CONDENSATION IN PRESENCE OF
NON-CONDENSABLE GASES 615 NOMENCLATURE 617 REFERENCES 620 24
CONDENSATION AT COOLED WALLS 623 24.1 PURE STEAM CONDENSATION 623 24.1.1
ONSET OF THE CONDENSATION 623 24.1.2 GRAVITATION FILMS ON PLATES 623
TABLE OF CONTENTS XXI 24.1.2 GRAVITATION FILMS ON PIPES 631 24.2
CONDENSATION FROM FORCED CONVECTION TWO-PHASE FLOW AT LIQUID FILM 632
24.2.1 DOWN FLOW OF VAPOR ACROSS HORIZONTAL TUBES 632 24.2.2 COLLIER
CORRELATION 632 24.2.3 BOYKO AND KRUJILIN APPROACH 633 24.2.4 THE SHAH
MODIFICATION OF THE BOYKO AND KRUJILIN APPROACH 634 24.3 STEAM
CONDENSATION FROM MIXTURE CONTAINING NON-CONDENSING GASES 634 24.3.1
COMPUTATION OF THE 7 MASS TRANSFER COEFFICIENT 636 NOMENCLATURE 638
REFERENCES 640 25 DISCRETE ORDINATE METHOD FOR RADIATION TRANSPORT IN
MULTI-PHASE COMPUTER CODES 643 25.1 INTRODUCTION 643 25.1.1 DIMENSIONS
OF THE PROBLEM 643 25.1.2 MICRO- VERSUS MACRO-INTERACTIONS 644 25.1.3
THE RADIATION TRANSPORT EQUATION (RTE) 644 25.2 DISCRETE ORDINATE METHOD
645 25.2.1 DISCRETIZATION OF THE COMPUTATIONAL DOMAIN FOR THE
DESCRIPTION OF THE FLOW 647 25.2.2 FINITE VOLUME REPRESENTATION OF THE
RADIATION TRANSPORT EQUATION 648 25.2.3 BOUNDARY CONDITIONS 653 25.3
MATERIAL PROPERTIES 655 25.3.1 SOURCE TERMS - EMISSION FROM HOT SURFACES
WITH KNOWN TEMPERATURE .-. 655 25.3.2 SPECTRAL ABSORPTION COEFFICIENT OF
WATER 655 25.3.3 SPECTRAL ABSORPTION COEFFICIENT OF WATER VAPOR AND
OTHER GASES 660 25.4 AVERAGED PROPERTIES FOR SOME PARTICULAR CASES
OCCURRING IN MELT-WATER INTERACTION 660 25.4.1 SPHERICAL CAVITY OF GAS
INSIDE A MOLTEN MATERIAL 660 25.4.2 CONCENTRIC SPHERES OF WATER
DROPLETS, SURROUNDED BY VAPOR, SURROUNDED BY MOLTEN MATERIAL 661 25.4.3
CLOUDS OF SPHERICAL PARTICLES OF RADIATING MATERIAL SURROUNDED BY A
LAYER OF VAPOR SURROUNDED BY WATER *LANZENBERGER 'S SOLUTION 665 25.4.4
CHAIN OF INFINITE NUMBER OF WIGNER CELLS 678 25.4.5 APPLICATION OF
LANZENBERGERS'S SOLUTION 679 NOMENCLATURE 681 REFERENCES 682 INDEX 685 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Kolev, Nikolay Ivanov 1951- |
author_GND | (DE-588)110653262 |
author_facet | Kolev, Nikolay Ivanov 1951- |
author_role | aut |
author_sort | Kolev, Nikolay Ivanov 1951- |
author_variant | n i k ni nik |
building | Verbundindex |
bvnumber | BV022822092 |
ctrlnum | (OCoLC)315376133 (DE-599)BVBBV022822092 |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01203nam a22003138cc4500</leader><controlfield tag="001">BV022822092</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071008 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070925s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540221074</subfield><subfield code="9">978-3-540-22107-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540698340</subfield><subfield code="9">978-3-540-69834-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315376133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022822092</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kolev, Nikolay Ivanov</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)110653262</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiphase flow dynamics</subfield><subfield code="n">2</subfield><subfield code="p">Thermal and mechanical interactions</subfield><subfield code="c">Nikolay I. Kolev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 692 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV014569143</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016027435</subfield></datafield></record></collection> |
id | DE-604.BV022822092 |
illustrated | Illustrated |
index_date | 2024-07-02T18:40:29Z |
indexdate | 2024-07-09T21:06:55Z |
institution | BVB |
isbn | 9783540221074 9783540698340 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016027435 |
oclc_num | 315376133 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-703 DE-92 DE-20 DE-11 |
owner_facet | DE-91G DE-BY-TUM DE-703 DE-92 DE-20 DE-11 |
physical | XXI, 692 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Kolev, Nikolay Ivanov 1951- Verfasser (DE-588)110653262 aut Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev 3. ed. Berlin [u.a.] Springer 2007 XXI, 692 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier (DE-604)BV014569143 2 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Kolev, Nikolay Ivanov 1951- Multiphase flow dynamics |
title | Multiphase flow dynamics |
title_auth | Multiphase flow dynamics |
title_exact_search | Multiphase flow dynamics |
title_exact_search_txtP | Multiphase flow dynamics |
title_full | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_fullStr | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_full_unstemmed | Multiphase flow dynamics 2 Thermal and mechanical interactions Nikolay I. Kolev |
title_short | Multiphase flow dynamics |
title_sort | multiphase flow dynamics thermal and mechanical interactions |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027435&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV014569143 |
work_keys_str_mv | AT kolevnikolayivanov multiphaseflowdynamics2 |