Inorganic chemistry:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Harlow [u.a.]
Pearson Prentice Hall
2008
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXVII, 1098 S. zahlr. Ill., graph. Darst. |
ISBN: | 9780131755536 0131755536 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022821709 | ||
003 | DE-604 | ||
005 | 20091127 | ||
007 | t | ||
008 | 070925s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780131755536 |9 978-0-13-175553-6 | ||
020 | |a 0131755536 |9 0-13-175553-6 | ||
035 | |a (OCoLC)228102552 | ||
035 | |a (DE-599)BSZ266876056 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-29T |a DE-634 |a DE-19 |a DE-91G | ||
050 | 0 | |a QD151.2 | |
082 | 0 | |a 546 |2 22 | |
084 | |a VH 5010 |0 (DE-625)147252: |2 rvk | ||
084 | |a CHE 300f |2 stub | ||
100 | 1 | |a Housecroft, Catherine E. |d 1955- |e Verfasser |0 (DE-588)114053138 |4 aut | |
245 | 1 | 0 | |a Inorganic chemistry |c Catherine E. Housecroft and Alan G. Sharpe |
250 | |a 3. ed. | ||
264 | 1 | |a Harlow [u.a.] |b Pearson Prentice Hall |c 2008 | |
300 | |a XXXVII, 1098 S. |b zahlr. Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Chimie inorganique - Manuels d'enseignement supérieur | |
650 | 4 | |a Chemistry, Inorganic / Textbooks | |
650 | 0 | 7 | |a Anorganische Chemie |0 (DE-588)4002145-2 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Anorganische Chemie |0 (DE-588)4002145-2 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sharpe, Alan G. |d 1921-2008 |e Verfasser |0 (DE-588)13084991X |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027053&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-016027053 |
Datensatz im Suchindex
_version_ | 1804137099724587008 |
---|---|
adam_text | Titel: Inorganic chemistry
Autor: Housecroft, Catherine E.
Jahr: 2008
Preface
Acknowledgements
1 Basic concepts: atoms
2 Basic concepts: molecules
3 Nuclear properties
4 An introduction to molecular symmetry
5 Bonding in polyatomic molecules
6 Structures and energetics of metallic and ionic solids
7 Acids, bases and ions in aqueous solution
8 Reduction and oxidation
9 Non-aqueous media
10 Hydrogen
11 Group 1: the alkali metals
12 The group 2 metals
13 The group 13 elements
14 The group 14 elements
15 The group 15 elements
16 The group 16 elements
17 The group 17 elements
18 The group 18 elements
19 Organometallic compounds of s- and p-block elements
XXXVI
xxx via
1
30
58
88
115
148
181
212
236
261
284
305
325
376
433
490
532
561
574
vi Summary of contents
20 d-Block metal chemistry: general considerations 611
21 cZ-Block metal chemistry: coordination complexes 637
22 c/-Block metal chemistry: the first row metals 686
23 c/-Block metal chemistry: the second and third row metals 744
24 Organometallic compounds of d-block elements 806
25 The /-block metals: lanthanoids and actinoids 854
26 c/-Block metal complexes: reaction mechanisms 880
27 Catalysis and some industrial processes 905
28 Some aspects of solid state chemistry 938
29 The trace metals of life 962
Appendices 999
Answers to non-descriptive problems 1024
Index 1042
Preface
Acknowledgements
xxx vi
xxxviii
liliSBasicfconceptsiatoms
1.1 Introduction
Inorganic chemistry: it is not an isolated branch of chemistry
The aims of Chapters 1 and 2
1.2 Fundamental particles of an atom
1.3 Atomic number, mass number and isotopes
Nuclides, atomic number and mass number
Relative atomic mass
Isotopes
1.4 Successes in early quantum theory
Some important successes of classical quantum theory
Bohr s theory of the atomic spectrum of hydrogen
1.5 An introduction to wave mechanics
The wave-nature of electrons
The uncertainty principle
The Schrödinger wave equation
1.6 Atomic orbitals
The quantum numbers n, I and m¡
The radial part of the wavefunction, R(r)
The radial distribution function, 4?rr2/?(r)2
The angular part of the wavefunction, A(6,(j )
Orbital energies in a hydrogen-like species
Size of orbitals
The spin quantum number and the magnetic spin quantum number
The ground state of the hydrogen atom
1.7 Many-electron atoms
The helium atom: two electrons
Ground state electronic configurations: experimental data
Penetration and shielding
2
2
2
2
4
5
6
6
6
6
9
9
11
12
13
15
15
15
17
17
17
18
18
1.8 The periodic table
20
in contents
1.9 The auf bau principle 22
Ground state electronic configurations 22
Valence and core electrons 23
Diagrammatic representations of electronic configurations 23
1.10 lonization energies and electron affinities 24
Ionization energies 24
Electron affinities 26
•fmolecüles
2.1 Bonding models: an introduction 30
A historical overview 30
Lewis structures 30
2.2 Homonudear diatomic molecules: valence bond (VB) theory 31
Uses of the term homonudear 31
Covalent bond distance, covalent radius and van der Waals radius 31
The valence bond (VB) model of bonding in H2 32
The valence bond (VB) model applied to F2 , O2 and N2 33
2.3 Homonudear diatomic molecules: molecular orbital (MO) theory 33
An overview of the MO model 33
Molecular orbital theory applied to the bonding in H2 33
The bonding in He2, Li2 and Be2 36
The bonding in F2 and O2 36
What happens if the s-p separation is small? 38
2.4 The octet rule and isoelectronic species 40
The octet rule: first row /»-block elements 40
Isoelectronic species 41
The octet rule: heavier p-block elements 41
2.5 Electronegativity values 42
Pauling electronegativity values, %P 42
Mulliken electronegativity values, %M 44
Allred-Rochow electronegativity values, xAR 44
Electronegativity: final remarks 44
2.6 Dipole moments 44
Polar diatomic molecules 44
Molecular dipole moments 45
2.7 MO theory: heteronuclear diatomic molecules 46
Which orbital interactions should be considered? 46
Hydrogen fluoride 47
Carbon monoxide 48
2.8 Molecular shape and the VSEPR model 48
Valence-shell electron-pair repulsion model 48
Structures derived from a trigonal bipyramid 53
Limitations of the VSEPR model 53
2.9 Molecular shape: stereoisomerism 54
Square planar species 54
Octahedral species 54
Contents ¡x
Trigonal bipyramidal species 55
High coordination numbers 55
Double bonds 55
3.1 Introduction 58
3.2 Nuclear binding energy 58
Mass defect and binding energy 58
The average binding energy per nucleón 59
3.3 Radioactivity 60
Nuclear emissions 60
Nuclear transformations 60
The kinetics of radioactive decay 61
Units of radioactivity 62
3.4 Artificial isotopes 62
Bombardment of nuclei by high-energy a-particles and neutrons 62
Bombardment of nuclei by slow neutrons 63
3.5 Nuclear fission 63
The fission of uranium-23 5 63
The production of energy by nuclear fission 64
Nuclear reprocessing 64
3.6 Syntheses of transuranium elements 64
3.7 The separation of radioactive isotopes 67
Chemical separation 67
The Szilard-Chalmers effect 67
3.8 Nuclear fusion 67
3.9 Applications of isotopes 69
Infrared (IR) spectroscopy 69
Kinetic isotope effects 70
Radiocarbon dating 70
Analytical applications 71
3.10 Sources of 2H and 13C 72
Deuterium: electrolytic separation of isotopes 72
Carbon-13: chemical enrichment 72
3.11 Multinuclear NMR spectroscopy in inorganic chemistry 72
Which nuclei are suitable for NMR spectroscopie studies? 72
Chemical shift ranges 73
Spin-spin coupling 73
Stereochemically non-rigid species 78
Exchange processes in solution 79
3.12 Mössbauer spectroscopy in inorganic chemistry 82
The technique of Mössbauer spectroscopy 82
What can isomer shift data tell us? 82
iiillPiïi^^
4.1 Introduction
4.2 Symmetry operations and symmetry elements
Rotation about an «-fold axis of symmetry
Reflection through a plane of symmetry (mirror plane)
Reflection through a centre of symmetry (inversion centre)
Rotation about an axis, followed by reflection through a plane perpendicular
to this axis
Identity operator
4.3 Successive operations
4.4 Point groups
C point group
Cœy point group
Dxii point group
T¿, Ob or 4 point groups
Determining the point group of a molecule or molecular ion
4.5 Character tables: an introduction
4.6 Why do we need to recognize symmetry elements?
4.7 Vibrational spectroscopy
How many vibrational modes are there for a given molecular species?
Selection rules for an infrared or Raman active mode of vibration
Linear (D^ or Cœv) and bent (C2v) triatomic molecules
Bent molecules XY2: using the C2v character table
XY3 molecules with DJh symmetry
XY3 molecules with C3v symmetry
XY4 molecules with Td or Z 4h symmetry
XY6 molecules with Ob symmetry
Metal carbonyl complexes, M(CO)„
Metal carbonyl complexes M(CO)6_„X„
Observing IR spectroscopie absorptions: practical problems
4.8 Chiral molecules
88
88
89
89
91
91
91
93
94
94
94
95
95
95
98
99
100
100
101
101
103
104
106
107
108
108
109
110
no
5.1 Introduction
5.2
5.3
Valence bond theory: hybridization of atomic orbitals
What is orbital hybridization?
sp Hybridization: a scheme for linear species
sp Hybridization: a scheme for trigonal planar species
sp Hybridization: a scheme for tetrahedral and related species
Other hybridization schemes
Valence bond theory: multiple bonding in polyatomic molecules
C2H4
HCN
BF3
115
115
115
116
117
118
119
120
120
120
121
Contents
XI
5.4 Molecular orbital theory: the ligand group orbital approach
and application to triatomic molecules 122
Molecular orbital diagrams: moving from a diatomic to polyatomic species 122
MO approach to bonding in linear XH2: symmetry matching by inspection 122
MO approach to bonding in linear XH2: working from molecular symmetry 124
A bent triatomic: H2O 124
5.5 Molecular orbital theory applied to the polyatomic molecules BH3,
NH3andCH4 127
BH3 127
NH3 128
CH4 130
A comparison of the MO and VB bonding models 131
5.6 Molecular orbital theory: bonding analyses soon become complicated 133
5.7 Molecular orbital theory: learning to use the theory objectively 135
TT-Bonding in CO2 135
[NO3]- 137
SF6 138
Three-centre two-electron interactions 141
A more advanced problem: B2H6 141
L
6||Strü aúresiaridíen^
6.1 Introduction 148
6.2 Packing of spheres 148
Cubic and hexagonal close-packing 148
The unit cell: hexagonal and cubic close-packing 149
Interstitial holes: hexagonal and cubic close-packing 150
Non-close-packing: simple cubic and body-centred cubic arrays 151
6.3 The packing-of-spheres model applied to the structures of elements 151
Group 18 elements in the solid state 152
H2 and F2 in the solid state 152
Metallic elements in the solid state 152
6.4 Polymorphism in metals 153
Polymorphism: phase changes in the solid state 153
Phase diagrams 154
6.5 Metallic radii 154
6.6 Melting points and standard enthalpies of atomization of metals 155
6.7 Alloys and ¡ntermetallic compounds 155
Substitutional alloys 155
Interstitial alloys 155
Intermetallic compounds 158
6.8 Bonding in metals and semiconductors 158
Electrical conductivity and resistivity 158
Band theory of metals and insulators 158
The Fermi level 160
Band theory of semiconductors 161
6.9 Semiconductors 161
Intrinsic semiconductors 161
Extrinsic (n- and p-type) semiconductors 161
6.10 Sizes of ions 162
Ionic radii 163
Periodic trends in ionic radii 163
6.11 Ionic lattices 164
The rock salt (NaCl) structure type 165
The caesium chloride (CsCl) structure type 167
The fluorite (CaF2) structure type 168
The antifluorite structure type 168
The zinc blende (ZnS) structure type: a diamond-type network 169
The ß-cristobalite (SiO2) structure type 169
The wurtzite (ZnS) structure type 169
The rutile (TiO2) structure type 169
Cdl2 and CdCl2: layer structures 170
The perovskite (CaTiO3) structure type: a double oxide 170
6.12 Crystal structures of semiconductors 171
6.13 Lattice energy: estimates from an electrostatic model 171
Coulombic attraction within an isolated ion-pair 171
Coulombic interactions in an ionic lattice 172
Born forces 172
The Bom-Landé equation 173
Madelung constants 173
Refinements to the Born-Landé equation 173
Overview 174
6.14 Lattice energy: the Born-Haber cycle 174
6.15 Lattice energy: calculated versus experimental values 175
6.16 Applications of lattice energies 175
Estimation of electron affinities 176
Fluoride affinities 176
Estimation of standard enthalpies of formation and disproportionation 176
The Kapustinskii equation 177
6.17 Defects in solid state lattices: an introduction 177
Schottky defect 177
Frenkel defect ¡77
Experimental observation of Schottky and Frenkel defects 178
7.1 Introduction 13!
7.2 Properties of water 181
Structure and hydrogen bonding Igl
The self-ionization of water 183
Water as a Bransted acid or base 183
Contents xiü
7.3 Definitions and units in aqueous solution 184
Molarity and molality 184
Standard state 184
Activity 184
7.4 Some Bronsted acids and bases 185
Carboxylic acids: examples of mono-, di- and polybasic acids 185
Inorganic acids 186
Inorganic bases: hydroxides 186
Inorganic bases: nitrogen bases 187
7.5 The energetics of acid dissociation in aqueous solution 187
Hydrogen halides 187
H2S, H2Se and H2Te 190
7.6 Trends within a series of oxoacids EOn(OH)m 190
7.7 Aquated cations: formation and acidic properties 191
Water as a Lewis base 191
Aquated cations as Bronsted acids 191
7.8 Amphoteric oxides and hydroxides 193
Amphoteric behaviour 193
Periodic trends in amphoteric properties 193
7.9 Solubilities of ionic salts 193
Solubility and saturated solutions 193
Sparingly soluble salts and solubility products 194
The energetics of the dissolution of an ionic salt: AsoiG° 195
The energetics of the dissolution of an ionic salt: hydration of ions 196
Solubilities: some concluding remarks 197
7.10 Common-ion effect 197
7.11 Coordination complexes: an introduction 198
Definitions and terminology 198
Investigating coordination complex formation 199
7.12 Stability constants of coordination complexes 201
Determination of stability constants 202
Trends in stepwise stability constants 202
Thermodynamic considerations of complex formation: an introduction 202
7.13 Factors affecting the stabilities of complexes containing only
monodentate ligands 206
Ionic size and charge 206
Hard and soft metal centres and ligands 206
8.1 Introduction 212
Oxidation and reduction 212
Oxidation states 212
Stock nomenclature 213
Contents
8.2 Standard reduction potentials, E°, and relationships between £°,
AC0 and K 213
Half-cells and galvanic cells 213
Defining and using standard reduction potentials, E° 215
Dependence of reduction potentials on cell conditions 217
8.3 The effect of complex formation or precipitation on Mz+/M reduction
potentials 221
Half-cells involving silver halides 221
Modifying the relative stabilities of different oxidation states of a metal 222
8.4 Disproportionation reactions 225
Disproportionation 225
Stabilizing species against disproportionation 225
8.5 Potential diagrams 226
8.6 Frost-Ebsworth diagrams 227
Frost-Ebsworth diagrams and their relationship to potential diagrams 227
Interpretation of Frost-Ebsworth diagrams 228
8.7 The relationships between standard reduction potentials and some
other quantities 230
Factors influencing the magnitudes of standard reduction potentials 230
Values of AfG° for aqueous ions 231
8.8 Applications of redox reactions to the extraction of elements
from their ores 232
Ellingham diagrams 232
|NÖn!aqueoü#ned i.
9.1 Introduction
9.2 Relative permittivity
9.3 Energetics of ionic salt transfer from water to an organic solvent
9.4 Acid-base behaviour in non-aqueous solvents
Strengths of acids and bases
Levelling and differentiating effects
Acids in acidic solvents
Acids and bases: a solvent-oriented definition
9.5 Self-ionizing and non-ionizing non-aqueous solvents
9.6 Liquid ammonia
Physical properties
Self-ionization
Reactions in liquid NH3
Solutions of j-block metals in liquid NH3
Redox reactions in liquid NH3
9.7 Liquid hydrogen fluoride
Physical properties
236
237
238
239
239
239
239
239
240
240
240
241
241
242
243
244
244
Contents xv
Acid-base behaviour in liquid HF 244
Electrolysis in liquid HF 245
9.8 Sulfuric acid and fluorosulfonic acid 245
Physical properties of sulfuric acid 245
Acid-base behaviour in liquid H2SO4 246
Physical properties of fluorosulfonic acid 246
9.9 Superacids 247
9.10 Bromine trifluoride 248
Physical properties 248
Behaviour of fluoride salts and molecular fluorides in BrF3 248
Reactions in BrF3 248
9.11 Dinitrogen tetraoxide 249
Physical properties 249
Reactions in N2O4 249
9.12 Ionic liquids 251
Molten salt solvent systems 251
Ionic liquids at ambient temperatures 251
Reactions in and applications of molten salt/ionic liquid media 254
9.13 Supercritical fluids 255
Properties of supercritical fluids and their uses as solvents 255
Supercritical fluids as media for inorganic chemistry 257
10.1 Hydrogen: the simplest atom 261
10.2 The H+ and H ions 261
The hydrogen ion (proton) 261
The hydride ion 262
10.3 Isotopes of hydrogen 262
Protium and deuterium 262
Deuterated compounds 263
Tritium 263
10.4 Dihydrogen 263
Occurrence 263
Physical properties 263
Synthesis and uses 265
Reactivity 268
10.5 Polar and non-polar E-H bonds 269
10.6 Hydrogen bonding 270
The hydrogen bond 270
Trends in boiling points, melting points and enthalpies of vaporization
for /»-block binary hydrides 273
Infrared spectroscopy 273
Solid state structures 273
Hydrogen bonding in biological systems 276
xvi Contents
10.7 Binary hydrides: classification and general properties 278
Classification 278
Metallic hydrides 278
Saline hydrides 279
Molecular hydrides and complexes derived from them 279
Covalent hydrides with extended structures 281
11.1 Introduction 284
11.2 Occurrence, extraction and uses 284
Occurrence 284
Extraction 284
Major uses of the alkali metals and their compounds 285
11.3 Physical properties 286
General properties 286
Atomic spectra and flame tests 287
Radioactive isotopes 289
NMR active nuclei 289
11.4 The metals 289
Appearance 289
Reactivity 289
11.5 Halides 292
11.6 Oxides and hydroxides 293
Oxides, peroxides, Superoxides, suboxides and ozonides 293
Hydroxides 294
11.7 Salts of oxoacids: carbonates and hydrogencarbonates 294
11.8 Aqueous solution chemistry including macrocyclic complexes 296
Hydrated ions 296
Complex ions 297
11.9 Non-aqueous coordination chemistry 301
12.1 Introduction 305
12.2 Occurrence, extraction and uses 305
Occurrence 305
Extraction 306
Major uses of the group 2 metals and their compounds 307
12.3 Physical properties 308
General properties 30g
Flame tests 309
Radioactive isotopes 309
Contents xvü
12.4 The metals 309
Appearance 309
Reactivity 309
12.5 Halides 311
Beryllium halides 311
Halides of Mg, Ca, Sr and Ba 312
12.6 Oxides and hydroxides 314
Oxides and peroxides 314
Hydroxides 317
12.7 Salts of oxoacids 317
12.8 Complex ions in aqueous solution 318
Aqua species of beryllium 318
Aqua species of Mg2+, Ca2+, Sr2+ and Ba2+ 318
Complexes with ligands other than water 320
12.9 Complexes with amido or alkoxy ligands 320
12.10 Diagonal relationships between Li and Mg, and between Be and Al 321
Lithium and magnesium 322
Beryllium and aluminium 322
can
13.1 Introduction 325
13.2 Occurrence, extraction and uses 325
Occurrence 325
Extraction 325
Major uses of the group 13 elements and their compounds 327
13.3 Physical properties 329
Electronic configurations and oxidation states 329
NMR active nuclei 331
13.4 The elements 331
Appearance 331
Structures of the elements 332
Reactivity 333
13.5 Simple hydrides 334
Neutral hydrides 334
The [MH4]~ ions 339
13.6 Halides and complex halides 340
Boron halides: BX3 and B2X4 340
Al(III), Ga(III), In(III) and Tl(III) halides and their complexes 343
Lower oxidation state Al, Ga, In and Tl halides 345
13.7 Oxides, oxoacids, oxoanions and hydroxides 347
Boron oxides, oxoacids and oxoanions 347
Aluminium oxides, oxoacids, oxoanions and hydroxides 349
Oxides of Ga, In and Tl 352
XVIII
Contents
13.8 Compounds containing nitrogen 352
Nitrides 352
Ternary boron nitrides 354
Molecular species containing B-N or B-P bonds 354
Molecular species containing group 13 metal-nitrogen bonds 357
13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry
and complexes 357
Aluminium sulfate and alums 357
Aqua ions 358
Redox reactions in aqueous solution 358
Coordination complexes of the M3+ions 359
13.10 Metal borides 360
13.11 Electron-deficient borane and carbaborane clusters: an introduction 362
14.1 Introduction
14.2
14.3
14.4
14.5
14.6
14.7
14.8
Occurrence, extraction and uses
Occurrence
Extraction and manufacture
Uses
Physical properties
Ionization energies and cation formation
Some energetic and bonding considerations
NMR active nuclei
Mössbauer spectroscopy
Allotropes of carbon
Graphite and diamond: structure and properties
Graphite: intercalation compounds
Fullerenes: synthesis and structure
Fullerenes: reactivity
Carbon nanotubes
Structural and chemical properties of silicon, germanium, tin and lead
Structures
Chemical properties
Hydrides
Binary hydrides
Halohydrides of silicon and germanium
Carbides, suicides, germides, stannides and plumbides
Carbides
Suicides
Zintl ions containing Si, Ge, Sn and Pb
Halides and complex halides
Carbon halides
Silicon halides
Halides of germanium, tin and lead
376
376
376
377
377
380
380
381
384
384
384
384
386
387
387
394
394
394
394
395
396
398
399
399
400
400
403
403
405
405
Contents xix
14.9 Oxides, oxoacids and hydroxides 409
Oxides and oxoacids of carbon 409
Silica, silicates and aluminosilicates 413
Oxides, hydroxides and oxoacids of germanium, tin and lead 419
14.10 Siloxanes and polysiloxanes (silicones) 422
14.11 Sulfides 423
14.12 Cyanogen, silicon nitride and tin nitride 426
Cyanogen and its derivatives 426
Silicon nitride 428
Tin(IV) nitride 428
14.13 Aqueous solution chemistry and salts of oxoacids of germanium,
tin and lead 428
15.1 Introduction 433
15.2 Occurrence, extraction and uses 435
Occurrence 435
Extraction 435
Uses 436
15.3 Physical properties 437
Bonding considerations 439
NMR active nuclei 441
Radioactive isotopes 441
15.4 The elements 441
Nitrogen 441
Phosphorus 441
Arsenic, antimony and bismuth 443
15.5 Hydrides 443
Trihydrides, EH3 (E = N, P, As, Sb and Bi) 443
Hydrides E2H4 (E = N, P, As) 447
Chloramine and hydroxylamine 448
Hydrogen azide and azide salts 449
15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides 451
Nitrides 451
Phosphides 451
Arsenides, antimonides and bismuthides 453
15.7 Halides, oxohalides and complex halides 455
Nitrogen halides 455
Oxofluorides and oxochlorides of nitrogen 457
Phosphorus halides 457
Phosphoryl trichloride, POC13 460
Arsenic and antimony halides 460
Bismuth halides 462
xx Contents
15.8 Oxides of nitrogen 463
Dinitrogen monoxide, N2O 463
Nitrogen monoxide, NO 464
Dinitrogen trioxide, N2O3 467
Dinitrogen tetraoxide, N2O4, and nitrogen dioxide, NO2 467
Dinitrogen pentaoxide, N2O5 468
15.9 Oxoacids of nitrogen 468
IsomersofH2N2O2 468
Nitrous acid, HNO2 468
Nitric acid, HNO3, and its derivatives 469
15.10 Oxides of phosphorus, arsenic, antimony and bismuth 472
Oxides of phosphorus 473
Oxides of arsenic, antimony and bismuth 474
15.11 Oxoacids of phosphorus 474
Phosphinic acid, H3PO2 474
Phosphonic acid, H3PO3 476
Hypodiphosphoric acid, H4P2O6 476
Phosphoric acid, H3PO4, and its derivatives 476
Chiral phosphate anions 480
15.12 Oxoacids of arsenic, antimony and bismuth 480
15.13 Phosphazenes 481
15.14 Sulfides and selenides 484
Sulfides and selenides of phosphorus 484
Arsenic, antimony and bismuth sulfides 485
15.15 Aqueous solution chemistry and complexes 485
a- ...- . .,.., . - ..., . .. . lïïâi
I
16.1 Introduction 490
16.2 Occurrence, extraction and uses 490
Occurrence 490
Extraction 49 j
Uses 492
16.3 Physical properties and bonding considerations 492
NMR active nuclei and isotopes as tracers 495
16.4 The elements
Dioxygen 495
Ozone 496
Sulfur: allotropes 400
Sulfur: reactivity 400
Selenium and tellurium 5qq
16.5 Hydrides 501
Water, H2O 501
Hydrogen peroxide, H2O2 5q!
Contents xxi
Hydrides H2E (E = S, Se, Te) 504
Polysulfanes 505
16.6 Metal sulfides, polysulfides, polyselenides and polytellurides 505
Sulfides 505
Polysulfides 505
Polyselenides and polytellurides 507
16.7 Halides, oxohalides and complex halides 508
Oxygen fluorides 508
Sulfur fluorides and oxofluorides 509
Sulfur chlorides and oxochlorides 511
Halides of selenium and tellurium 512
16.8 Oxides 515
Oxides of sulfur 515
Oxides of selenium and tellurium 518
16.9 Oxoacids and their salts 520
Dithionous acid, H2S2O4 520
Sulfurous and disulfurous acids, H2SO3 and H2S2O5 520
Dithionic acid, H2S2O6 522
Sulfuric acid, H2SO4 522
Fluoro- and chlorosulfonic acids, HSO3F and HSO3C1 524
Polyoxoacids with S-O-S units 524
Peroxysulfuric acids, H2S2O8 and H2SO5 524
Thiosulfuric acid, H2S2O3, and polythionates 525
Oxoacids of selenium and tellurium 525
16.10 Compounds of sulfur and selenium with nitrogen 526
Sulfur-nitrogen compounds 526
Tetraselenium tetranitride 528
16.11 Aqueous solution chemistry of sulfur, selenium and tellurium 528
c......,.: .:, ,..Muu*miiAMjifflfflrc •.¦¦¦¦¦¦:..¦¦-. ..im
17.1 Introduction 532
Fluorine, chlorine, bromine and iodine 532
Astatine 533
17.2 Occurrence, extraction and uses 533
Occurrence 533
Extraction 533
Uses 534
17.3 Physical properties and bonding considerations 537
NMR active nuclei and isotopes as tracers 538
17.4 The elements 540
Difluorine 540
Dichlorine, dibromine and diiodine 540
Charge transfer complexes 541
Clathrates 542
17.5 Hydrogen halides 543
XXII
Contents
17.6 Metal halides: structures and energetics
17.7 Interhalogen compounds and polyhalogen ions
Interhalogen compounds
Bonding in [XY2]~ ions
Polyhalogen cations
Polyhalide anions
17.8 Oxides and oxofluorides of chlorine, bromine and iodine
Oxides
Oxofluorides
17.9 Oxoacids and their salts
Hypofluorous acid, HOF
Oxoacids of chlorine, bromine and iodine
17.10 Aqueous solution chemistry
544
545
545
549
549
550
550
550
552
553
553
553
556
18.1 Introduction
18.2 Occurrence, extraction and uses
Occurrence
Extraction
Uses
18.3 Physical properties
NMR active nuclei
18.4 Compounds of xenon
Fluorides
Chlorides
Oxides
Oxofluorides
Other compounds of xenon
18.5 Compounds of argon, krypton and radon
561
562
562
562
562
564
565
565
565
568
569
569
569
572
îetalli^
19.1 Introduction
19.2 Group 1 : alkali metal organometallics
19.3 Group 2 organometallics
Beryllium
Magnesium
Calcium, strontium and barium
19.4 Group 13
Boron
574
575
578
578
579
581
582
582
Contents xxüi
Aluminium 583
Gallium, indium and thallium 586
19.5 Group 14 590
Silicon 591
Germanium 593
Tin 595
Lead 598
Coparallel and tilted C5-rings in group 14 metallocenes 601
19.6 Group 15 602
Bonding aspects and E=E bond formation 602
Arsenic, antimony and bismuth 602
19.7 Group 16 605
Selenium and tellurium 605
20.1 Topic overview 611
20.2 Ground state electronic configurations 611
¿¿-Block metals versus transition elements 611
Electronic configurations 612
20.3 Physical properties 612
20.4 The reactivity of the metals 614
20.5 Characteristic properties: a general perspective 614
Colour 614
Paramagnetism 615
Complex formation 615
Variable oxidation states 618
20.6 Electroneutrality principle 619
20.7 Coordination numbers and geometries 619
The Kepert model 620
Coordination numbers in the solid state 621
Coordination number 2 621
Coordination number 3 622
Coordination number 4 622
Coordination number 5 623
Coordination number 6 623
Coordination number 7 625
Coordination number 8 626
Coordination number 9 626
Coordination numbers of 10 and above 627
20.8 Isomerism in ¿/-block metal complexes 627
Structural isomerism: ionization isomers 627
Structural isomerism: hydration isomers 628
Structural isomerism: coordination isomerism 628
Structural isomerism: linkage isomerism 628
Stereoisomerism: diastereoisomers 629
Stereoisomerism: enantiomers 629
xxiv Contents
L
21.1 Introduction 637
High- and low-spin states 637
21.2 Bonding in c/-block metal complexes: valence bond theory 638
Hybridization schemes 638
The limitations of VB theory 638
21.3 Crystal field theory 640
The octahedral crystal field 640
Crystal field stabilization energy: high- and low-spin octahedral complexes 642
Jahn-Teller distortions 644
The tetrahedral crystal field 645
The square planar crystal field 646
Other crystal fields 647
Crystal field theory: uses and limitations 647
21.4 Molecular orbital theory: octahedral complexes 648
Complexes with no metal-ligand ?r-bonding 648
Complexes with metal-ligand 7r-bonding 649
21.5 Ligand field theory 654
21.6 Describing electrons in multi-electron systems 654
Quantum numbers L and ML for multi-electron species 654
Quantum numbers S and Ms for multi-electron species 655
Microstates and term symbols 655
The quantum numbers J and Mj 656
Ground states of elements with Z = 1-10 657
The d2 configuration 659
21.7 Electronic spectra 660
Spectral features 660
Charge transfer absorptions 661
Selection rules 662
Electronic spectra of octahedral and tetrahedral complexes 663
Interpretation of electronic spectra: use of Racah parameters 666
Interpretation of electronic spectra: Tanabe—Sugano diagrams 668
21.8 Evidence for metal-ligand covalent bonding 669
The nephelauxetic effect 669
EPR spectroscopy 670
21.9 Magnetic properties 670
Magnetic susceptibility and the spin-only formula 670
Spin and orbital contributions to the magnetic moment 672
The effects of temperature on //efT 674
Spin crossover 675
Ferromagnetism, antiferromagnetism and ferrimagnetism 676
21.10 Thermodynamic aspects: ligand field stabilization energies (LFSE) 678
Trends in LFSE 678
Lattice energies and hydration energies of M + ions 678
Octahedral versus tetrahedral coordination: spinels 678
21.11 Thermodynamic aspects: the Irving-Williams series 680
Contents xxv
21.12 Thermodynamic aspects: oxidation states in aqueous solution 680
!2j||||BIÄ
22.1 Introduction 686
22.2 Occurrence, extraction and uses 686
22.3 Physical properties: an overview 690
22.4 Group 3: scandium 690
The metal 690
Scandium(III) 690
22.5 Group 4: titanium 691
The metal 691
Titanium(IV) 692
Titanium(III) 694
Low oxidation states 695
22.6 Group 5: vanadium 695
The metal 695
Vanadium(V) 695
Vanadium(IV) 696
Vanadium(III) 698
Vanadium(II) 699
22.7 Group 6: chromium 699
The metal 699
Chromium(VI) 699
Chromium(V) and chromium(IV) 701
Chromium(III) 703
ChromiumCII) 704
Chromium-chromium multiple bonds 705
22.8 Group 7: manganese 707
The metal 707
Manganese(VII) 707
Manganese(VI) 709
Manganese(V) 709
Manganese(IV) 710
Manganese(III) 711
Manganese(II) 712
Manganese(I) 714
22.9 Group 8: iron 714
The metal 714
Iron(VI), iron(V) and iron(IV) 714
Iron(III) 716
Iron(II) 720
Iron in low oxidation states 722
22.10 Group 9: cobalt 722
The metal 722
Cobalt(IV) 722
XXVJ
Contents
Cobalt(III)
Cobalt(II)
22.11 Group 10: nickel
The metal
Nickel(IV) and nickel(III)
Nickel(II)
Nickel®
22.12 Group 11: copper
The metal
Copper(IV) and copper(III)
Copper(II)
Copper(I)
22.13 Group 12: zinc
The metal
Zinc(II)
Zinc(I)
722
725
729
729
729
730
732
732
732
733
734
737
739
739
739
740
¦||||i|j^^
23.1 Introduction
23.2 Occurrence, extraction and uses
23.3
23.4
23.5
23.6
23.7
Physical properties
Effects of the lanthanoid contraction
Coordination numbers
NMR active nuclei
Group 3: yttrium
The metal
Yttrium(III)
Group 4: zirconium and hafnium
The metals
Zirconium(IV) and hafnium(IV)
Lower oxidation states of zirconium and hafnium
Zirconium clusters
Group 5: niobium and tantalum
The metals
Niobium(V) and tantalum(V)
Niobium(IV) and tantalum(IV)
Lower oxidation state halides
Group 6: molybdenum and tungsten
The metals
Molybdenum(VI) and tungsten(VI)
Molybdenum(V) and tungsten(V)
Molybdenum(IV) and tungsten(IV)
Molybdenum(III) and tungsten(III)
Molybdenum(II) and tungsten(II)
744
744
749
749
751
751
751
751
751
752
752
752
753
754
754
754
755
756
757
759
759
759
763
764
765
766
Contents xxvü
23.8 Group 7: technetium and rhenium 769
The metals 769
High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V) 769
Technetium(IV) and rhenium(IV) 771
Technetium(III) and rhenium(III) 772
Technetium(I) and rhenium(I) 773
23.9 Group 8: ruthenium and osmium 774
The metals 774
High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI) 774
Ruthenium(V), (IV) and osmium(V), (IV) 776
Ruthenium(III) and osmium(III) 779
Ruthenium(II) and osmium(II) 780
Mixed-valence ruthenium complexes 782
23.10 Group 9: rhodium and iridium 783
The metals 783
High oxidation states of rhodium and iridium: M(VI) and M(V) 783
Rhodium(IV) and iridium(IV) 784
Rhodium(III) and iridium(III) 784
Rhodium(II) and iridium(II) 786
Rhodium(I) and iridium(I) 787
23.11 Group 10: palladium and platinum 788
The metals 788
The highest oxidation states: M(VI) and M(V) 788
Palladium(IV) and platinum(IV) 788
Palladium(HI), platinum(IH) and mixed-valence complexes 789
Palladium(II) and platinum(II) 790
Platinum(-II) 793
23.12 Group 11 : silver and gold 794
The metals 794
Gold(V) and silver(V) 795
Gold(III) and silver(III) 795
Gold(II) and silver(II) 796
Gold(I) and silver(I) 797
Gold(-I) and silver(-I) 799
23.13 Group 12: cadmium and mercury 800
The metals 800
Cadmium(II) 800
Mercury(II) 801
Mercury(I) 802
p$Ýf|@|gan^
24.1 Introduction 806
Hapticity of a ligand 806
24.2 Common types of ligand: bonding and spectroscopy 806
cr-Bonded alkyl, aryl and related ligands 806
Carbonyl ligands 807
Hydride ligands 808
Phosphine and related ligands 809
TT-Bonded organic ligands 811
Contents
Nitrogen monoxide
Dinitrogen
Dihydrogen
24.3 The 18-electron rule
24.4 Metal carbonyls: synthesis, physical properties and structure
Synthesis and physical properties
Structures
24.5 The isolobal principle and application of Wade s rules
24.6 Total valence electron counts in c/-block organometallic clusters
Single cage structures
Condensed cages
Limitations of total valence counting schemes
24.7 Types of organometallic reactions
Substitution of CO ligands
Oxidative addition
Alkyl and hydrogen migrations
ß-Hydrogen elimination
oc-Hydrogen abstraction
Summary
24.8 Metal carbonyls: selected reactions
24.9 Metal carbonyl hydrides and halides
24.10 Alkyl, aryl, alkene and alkyne complexes
cr-Bonded alkyl and aryl ligands
Alkene ligands
Alkyne ligands
24.11 Allyl and buta-1,3-diene complexes
Allyl and related ligands
Buta-1,3-diene and related ligands
24.12 Carbene and carbyne complexes
24.13 Complexes containing ri5-cyclopentadienyl ligands
Ferrocene and other metallocenes
(Ti5-Cp)2Fe2(CO)4 and derivatives
24.14 Complexes containing rj6- and r|7-ligands
24.15
r) -Arene ligands
Cycloheptatriene and derived ligands
Complexes containing the r|4-cyclobutadiene ligand
813
814
814
815
816
817
819
821
824
824
826
826
827
827
828
828
829
830
830
831
832
833
833
834
836
837
837
839
839
841
841
843
846
846
847
849
ilS^^
25.1 Introduction
25.2 f-Orbitals and oxidation states
854
855
Contents xxix
25.3 Atom and ion sizes 856
The lanthanoid contraction 856
Coordination numbers 856
25.4 Spectroscopic and magnetic properties 858
Electronic spectra and magnetic moments: lanthanoids 858
Luminescence of lanthanoid complexes 860
Electronic spectra and magnetic moments: actinoids 860
25.5 Sources of the lanthanoids and actinoids 860
Occurrence and separation of the lanthanoids 860
The actinoids 861
25.6 Lanthanoid metals 862
25.7 Inorganic compounds and coordination complexes of the lanthanoids 863
Halides 863
Hydroxides and oxides 864
Complexes of Ln(III) 865
25.8 Organometallic complexes of the lanthanoids 866
cr-Bonded complexes 866
Cyclopentadienyl complexes 867
Bis(arene) derivatives 870
Complexes containing the r|8-cyclooctatetraenyl ligand 871
25.9 The actinoid metals 871
25.10 Inorganic compounds and coordination complexes of thorium,
uranium and plutonium 872
Thorium 872
Uranium 872
Plutonium 874
25.11 Organometallic complexes of thorium and uranium 875
cr-Bonded complexes 875
Cyclopentadienyl derivatives 876
Complexes containing the r^-cyclooctatetraenyl ligand 877
m
m
26.1 Introduction 880
26.2 Ligand substitutions: some general points 880
Kinetically inert and labile complexes 880
Stoichiometric equations say nothing about mechanism 881
Types of substitution mechanism 882
Activation parameters 882
26.3 Substitution in square planar complexes 883
Rate equations, mechanism and the trans-effect 883
Ligand nucleophilicity 886
26.4 Substitution and racemization in octahedral complexes 888
Water exchange 888
KXX
Contents
The Eigen-Wilkins mechanism
Stereochemistry of substitution
Base-catalysed hydrolysis
Isomerization and racemization of octahedral complexes
26.5 Electron-transfer processes
Inner-sphere mechanism
Outer-sphere mechanism
889
891
893
893
895
895
897
27A Introduction and definitions 905
27.2 Catalysis: introductory concepts 905
Energy profiles for a reaction: catalysed versus non-catalysed 905
Catalytic cycles 906
Choosing a catalyst 908
27.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis 908
27.4 Homogeneous catalytic reduction of N2 to NH3 911
27.5 Homogeneous catalysis: industrial applications 912
Alkene hydrogénation 912
Monsanto acetic acid synthesis 915
Tennessee-Eastman acetic anhydride process 917
Hydroformylation (Oxo-process) 917
Alkene oligomerization 919
27.6 Homogeneous catalyst development 919
Polymer-supported catalysts 920
Biphasic catalysis 920
¿/-Block organometallic clusters as homogeneous catalysts 922
27.7 Heterogeneous catalysis: surfaces and interactions with adsorbates 923
27.8 Heterogeneous catalysis: commercial applications 925
Alkene polymerization: Ziegler-Natta catalysis and metallocene catalysts 925
Fischer-Tropsch carbon chain growth 927
Haber process 928
Production of SO3 in the Contact process 929
Catalytic converters 929
Zeolites as catalysts for organic transformations: uses of ZSM-5 930
27.9 Heterogeneous catalysis: organometallic cluster models 931
28.1 Introduction
28.2 Defects in solid state lattices
Types of defect: stoichiometric and non-stoichiometric compounds
938
938
938
Contents xxxi
Colour centres (F-centres) 939
Thermodynamic effects of crystal defects 940
28.3 Electrical conductivity in ionic solids 940
Sodium and lithium ion conductors 940
¿-Block metal(II) oxides 942
28.4 Superconductivity 943
Superconductors: early examples and basic theory 943
High-temperature superconductors 944
Chevrel phases 945
Superconducting properties of MgB2 946
Applications of superconductors 946
28.5 Ceramic materials: colour pigments 947
White pigments (opacifiers) 947
Adding colour 947
28.6 Chemical vapour deposition (CVD) 947
High-purity silicon for semiconductors 948
a-Boron nitride 949
Silicon nitride and carbide 949
III-V Semiconductors 949
Metal deposition 951
Ceramic coatings 951
Perovskites and cuprate superconductors 952
28.7 Inorganic fibres 953
Boron fibres 953
Carbon fibres 954
Silicon carbide fibres 955
Alumina fibres 956
28.8 Carbon nanotubes 957
L
ffhettracSmétalsíofílif
— Ým, • ^
29.1 Introduction 962
Amino acids, peptides and proteins: some terminology 962
29.2 Metal storage and transport: Fe, Cu, Zn and V 963
Iron storage and transport 966
Metallothioneins: transporting some toxic metals 969
29.3 Dealing with O2 971
Haemoglobin and myoglobin 971
Haemocyanin 973
Haemerythrin 976
Cytochromes P-450 977
29.4 Biological redox processes 978
Blue copper proteins 978
The mitochondrial electron-transfer chain 979
Iron-sulfur proteins 981
Cytochromes 986
XXXII
Contents
29.5 The Zn2+ ¡on: Nature s Lewis acid
Carbonic anhydrase II
Carboxypeptidase A
Carboxypeptidase G2
Cobalt-for-zinc ion substitution
Appendices
989
989
991
991
994
1 Greek letters with pronunciations 1000
2 Abbreviations and symbols for quantities and units 1001
3 Selected character tables 1005
4 The electromagnetic spectrum 1009
5 Naturally occurring isotopes and their abundances 1011
6 Van der Waals, metallic, covalent and ionic radii 1013
7 Pauling electronegativity values (xP) for selected elements of the
periodic table 1015
8 Ground state electronic configurations of the elements and
ionization energies 1016
9 Electron affinities 1019
10 Standard enthalpies of atomization (AaH°) of the elements at 298 K 1020
11 Selected standard reduction potentials (298 K) 1021
L
^ri^ersftc^
|
adam_txt |
Titel: Inorganic chemistry
Autor: Housecroft, Catherine E.
Jahr: 2008
Preface
Acknowledgements
1 Basic concepts: atoms
2 Basic concepts: molecules
3 Nuclear properties
4 An introduction to molecular symmetry
5 Bonding in polyatomic molecules
6 Structures and energetics of metallic and ionic solids
7 Acids, bases and ions in aqueous solution
8 Reduction and oxidation
9 Non-aqueous media
10 Hydrogen
11 Group 1: the alkali metals
12 The group 2 metals
13 The group 13 elements
14 The group 14 elements
15 The group 15 elements
16 The group 16 elements
17 The group 17 elements
18 The group 18 elements
19 Organometallic compounds of s- and p-block elements
XXXVI
xxx via
1
30
58
88
115
148
181
212
236
261
284
305
325
376
433
490
532
561
574
vi Summary of contents
20 d-Block metal chemistry: general considerations 611
21 cZ-Block metal chemistry: coordination complexes 637
22 c/-Block metal chemistry: the first row metals 686
23 c/-Block metal chemistry: the second and third row metals 744
24 Organometallic compounds of d-block elements 806
25 The /-block metals: lanthanoids and actinoids 854
26 c/-Block metal complexes: reaction mechanisms 880
27 Catalysis and some industrial processes 905
28 Some aspects of solid state chemistry 938
29 The trace metals of life 962
Appendices 999
Answers to non-descriptive problems 1024
Index 1042
Preface
Acknowledgements
xxx vi
xxxviii
liliSBasicfconceptsiatoms
1.1 Introduction
Inorganic chemistry: it is not an isolated branch of chemistry
The aims of Chapters 1 and 2
1.2 Fundamental particles of an atom
1.3 Atomic number, mass number and isotopes
Nuclides, atomic number and mass number
Relative atomic mass
Isotopes
1.4 Successes in early quantum theory
Some important successes of classical quantum theory
Bohr's theory of the atomic spectrum of hydrogen
1.5 An introduction to wave mechanics
The wave-nature of electrons
The uncertainty principle
The Schrödinger wave equation
1.6 Atomic orbitals
The quantum numbers n, I and m¡
The radial part of the wavefunction, R(r)
The radial distribution function, 4?rr2/?(r)2
The angular part of the wavefunction, A(6,(j )
Orbital energies in a hydrogen-like species
Size of orbitals
The spin quantum number and the magnetic spin quantum number
The ground state of the hydrogen atom
1.7 Many-electron atoms
The helium atom: two electrons
Ground state electronic configurations: experimental data
Penetration and shielding
2
2
2
2
4
5
6
6
6
6
9
9
11
12
13
15
15
15
17
17
17
18
18
1.8 The periodic table
20
'in contents
1.9 The auf bau principle 22
Ground state electronic configurations 22
Valence and core electrons 23
Diagrammatic representations of electronic configurations 23
1.10 lonization energies and electron affinities 24
Ionization energies 24
Electron affinities 26
•fmolecüles
2.1 Bonding models: an introduction 30
A historical overview 30
Lewis structures 30
2.2 Homonudear diatomic molecules: valence bond (VB) theory 31
Uses of the term homonudear 31
Covalent bond distance, covalent radius and van der Waals radius 31
The valence bond (VB) model of bonding in H2 32
The valence bond (VB) model applied to F2 , O2 and N2 33
2.3 Homonudear diatomic molecules: molecular orbital (MO) theory 33
An overview of the MO model 33
Molecular orbital theory applied to the bonding in H2 33
The bonding in He2, Li2 and Be2 36
The bonding in F2 and O2 36
What happens if the s-p separation is small? 38
2.4 The octet rule and isoelectronic species 40
The octet rule: first row /»-block elements 40
Isoelectronic species 41
The octet rule: heavier p-block elements 41
2.5 Electronegativity values 42
Pauling electronegativity values, %P 42
Mulliken electronegativity values, %M 44
Allred-Rochow electronegativity values, xAR 44
Electronegativity: final remarks 44
2.6 Dipole moments 44
Polar diatomic molecules 44
Molecular dipole moments 45
2.7 MO theory: heteronuclear diatomic molecules 46
Which orbital interactions should be considered? 46
Hydrogen fluoride 47
Carbon monoxide 48
2.8 Molecular shape and the VSEPR model 48
Valence-shell electron-pair repulsion model 48
Structures derived from a trigonal bipyramid 53
Limitations of the VSEPR model 53
2.9 Molecular shape: stereoisomerism 54
Square planar species 54
Octahedral species 54
Contents ¡x
Trigonal bipyramidal species 55
High coordination numbers 55
Double bonds 55
3.1 Introduction 58
3.2 Nuclear binding energy 58
Mass defect and binding energy 58
The average binding energy per nucleón 59
3.3 Radioactivity 60
Nuclear emissions 60
Nuclear transformations 60
The kinetics of radioactive decay 61
Units of radioactivity 62
3.4 Artificial isotopes 62
Bombardment of nuclei by high-energy a-particles and neutrons 62
Bombardment of nuclei by 'slow' neutrons 63
3.5 Nuclear fission 63
The fission of uranium-23 5 63
The production of energy by nuclear fission 64
Nuclear reprocessing 64
3.6 Syntheses of transuranium elements 64
3.7 The separation of radioactive isotopes 67
Chemical separation 67
The Szilard-Chalmers effect 67
3.8 Nuclear fusion 67
3.9 Applications of isotopes 69
Infrared (IR) spectroscopy 69
Kinetic isotope effects 70
Radiocarbon dating 70
Analytical applications 71
3.10 Sources of 2H and 13C 72
Deuterium: electrolytic separation of isotopes 72
Carbon-13: chemical enrichment 72
3.11 Multinuclear NMR spectroscopy in inorganic chemistry 72
Which nuclei are suitable for NMR spectroscopie studies? 72
Chemical shift ranges 73
Spin-spin coupling 73
Stereochemically non-rigid species 78
Exchange processes in solution 79
3.12 Mössbauer spectroscopy in inorganic chemistry 82
The technique of Mössbauer spectroscopy 82
What can isomer shift data tell us? 82
iiillPiïi^^
4.1 Introduction
4.2 Symmetry operations and symmetry elements
Rotation about an «-fold axis of symmetry
Reflection through a plane of symmetry (mirror plane)
Reflection through a centre of symmetry (inversion centre)
Rotation about an axis, followed by reflection through a plane perpendicular
to this axis
Identity operator
4.3 Successive operations
4.4 Point groups
C\ point group
Cœy point group
Dxii point group
T¿, Ob or 4 point groups
Determining the point group of a molecule or molecular ion
4.5 Character tables: an introduction
4.6 Why do we need to recognize symmetry elements?
4.7 Vibrational spectroscopy
How many vibrational modes are there for a given molecular species?
Selection rules for an infrared or Raman active mode of vibration
Linear (D^ or Cœv) and bent (C2v) triatomic molecules
Bent molecules XY2: using the C2v character table
XY3 molecules with DJh symmetry
XY3 molecules with C3v symmetry
XY4 molecules with Td or Z 4h symmetry
XY6 molecules with Ob symmetry
Metal carbonyl complexes, M(CO)„
Metal carbonyl complexes M(CO)6_„X„
Observing IR spectroscopie absorptions: practical problems
4.8 Chiral molecules
88
88
89
89
91
91
91
93
94
94
94
95
95
95
98
99
100
100
101
101
103
104
106
107
108
108
109
110
no
5.1 Introduction
5.2
5.3
Valence bond theory: hybridization of atomic orbitals
What is orbital hybridization?
sp Hybridization: a scheme for linear species
sp Hybridization: a scheme for trigonal planar species
sp Hybridization: a scheme for tetrahedral and related species
Other hybridization schemes
Valence bond theory: multiple bonding in polyatomic molecules
C2H4
HCN
BF3
115
115
115
116
117
118
119
120
120
120
121
Contents
XI
5.4 Molecular orbital theory: the ligand group orbital approach
and application to triatomic molecules 122
Molecular orbital diagrams: moving from a diatomic to polyatomic species 122
MO approach to bonding in linear XH2: symmetry matching by inspection 122
MO approach to bonding in linear XH2: working from molecular symmetry 124
A bent triatomic: H2O 124
5.5 Molecular orbital theory applied to the polyatomic molecules BH3,
NH3andCH4 127
BH3 127
NH3 128
CH4 130
A comparison of the MO and VB bonding models 131
5.6 Molecular orbital theory: bonding analyses soon become complicated 133
5.7 Molecular orbital theory: learning to use the theory objectively 135
TT-Bonding in CO2 135
[NO3]- 137
SF6 138
Three-centre two-electron interactions 141
A more advanced problem: B2H6 141
L
6||Strü aúresiaridíen^
6.1 Introduction 148
6.2 Packing of spheres 148
Cubic and hexagonal close-packing 148
The unit cell: hexagonal and cubic close-packing 149
Interstitial holes: hexagonal and cubic close-packing 150
Non-close-packing: simple cubic and body-centred cubic arrays 151
6.3 The packing-of-spheres model applied to the structures of elements 151
Group 18 elements in the solid state 152
H2 and F2 in the solid state 152
Metallic elements in the solid state 152
6.4 Polymorphism in metals 153
Polymorphism: phase changes in the solid state 153
Phase diagrams 154
6.5 Metallic radii 154
6.6 Melting points and standard enthalpies of atomization of metals 155
6.7 Alloys and ¡ntermetallic compounds 155
Substitutional alloys 155
Interstitial alloys 155
Intermetallic compounds 158
6.8 Bonding in metals and semiconductors 158
Electrical conductivity and resistivity 158
Band theory of metals and insulators 158
The Fermi level 160
Band theory of semiconductors 161
6.9 Semiconductors 161
Intrinsic semiconductors 161
Extrinsic (n- and p-type) semiconductors 161
6.10 Sizes of ions 162
Ionic radii 163
Periodic trends in ionic radii 163
6.11 Ionic lattices 164
The rock salt (NaCl) structure type 165
The caesium chloride (CsCl) structure type 167
The fluorite (CaF2) structure type 168
The antifluorite structure type 168
The zinc blende (ZnS) structure type: a diamond-type network 169
The ß-cristobalite (SiO2) structure type 169
The wurtzite (ZnS) structure type 169
The rutile (TiO2) structure type 169
Cdl2 and CdCl2: layer structures 170
The perovskite (CaTiO3) structure type: a double oxide 170
6.12 Crystal structures of semiconductors 171
6.13 Lattice energy: estimates from an electrostatic model 171
Coulombic attraction within an isolated ion-pair 171
Coulombic interactions in an ionic lattice 172
Born forces 172
The Bom-Landé equation 173
Madelung constants 173
Refinements to the Born-Landé equation 173
Overview 174
6.14 Lattice energy: the Born-Haber cycle 174
6.15 Lattice energy: 'calculated' versus 'experimental' values 175
6.16 Applications of lattice energies 175
Estimation of electron affinities 176
Fluoride affinities 176
Estimation of standard enthalpies of formation and disproportionation 176
The Kapustinskii equation 177
6.17 Defects in solid state lattices: an introduction 177
Schottky defect 177
Frenkel defect ¡77
Experimental observation of Schottky and Frenkel defects 178
7.1 Introduction 13!
7.2 Properties of water 181
Structure and hydrogen bonding Igl
The self-ionization of water 183
Water as a Bransted acid or base 183
Contents xiü
7.3 Definitions and units in aqueous solution 184
Molarity and molality 184
Standard state 184
Activity 184
7.4 Some Bronsted acids and bases 185
Carboxylic acids: examples of mono-, di- and polybasic acids 185
Inorganic acids 186
Inorganic bases: hydroxides 186
Inorganic bases: nitrogen bases 187
7.5 The energetics of acid dissociation in aqueous solution 187
Hydrogen halides 187
H2S, H2Se and H2Te 190
7.6 Trends within a series of oxoacids EOn(OH)m 190
7.7 Aquated cations: formation and acidic properties 191
Water as a Lewis base 191
Aquated cations as Bronsted acids 191
7.8 Amphoteric oxides and hydroxides 193
Amphoteric behaviour 193
Periodic trends in amphoteric properties 193
7.9 Solubilities of ionic salts 193
Solubility and saturated solutions 193
Sparingly soluble salts and solubility products 194
The energetics of the dissolution of an ionic salt: AsoiG° 195
The energetics of the dissolution of an ionic salt: hydration of ions 196
Solubilities: some concluding remarks 197
7.10 Common-ion effect 197
7.11 Coordination complexes: an introduction 198
Definitions and terminology 198
Investigating coordination complex formation 199
7.12 Stability constants of coordination complexes 201
Determination of stability constants 202
Trends in stepwise stability constants 202
Thermodynamic considerations of complex formation: an introduction 202
7.13 Factors affecting the stabilities of complexes containing only
monodentate ligands 206
Ionic size and charge 206
Hard and soft metal centres and ligands 206
8.1 Introduction 212
Oxidation and reduction 212
Oxidation states 212
Stock nomenclature 213
Contents
8.2 Standard reduction potentials, E°, and relationships between £°,
AC0 and K 213
Half-cells and galvanic cells 213
Defining and using standard reduction potentials, E° 215
Dependence of reduction potentials on cell conditions 217
8.3 The effect of complex formation or precipitation on Mz+/M reduction
potentials 221
Half-cells involving silver halides 221
Modifying the relative stabilities of different oxidation states of a metal 222
8.4 Disproportionation reactions 225
Disproportionation 225
Stabilizing species against disproportionation 225
8.5 Potential diagrams 226
8.6 Frost-Ebsworth diagrams 227
Frost-Ebsworth diagrams and their relationship to potential diagrams 227
Interpretation of Frost-Ebsworth diagrams 228
8.7 The relationships between standard reduction potentials and some
other quantities 230
Factors influencing the magnitudes of standard reduction potentials 230
Values of AfG° for aqueous ions 231
8.8 Applications of redox reactions to the extraction of elements
from their ores 232
Ellingham diagrams 232
|NÖn!aqueoü#ned i.
9.1 Introduction
9.2 Relative permittivity
9.3 Energetics of ionic salt transfer from water to an organic solvent
9.4 Acid-base behaviour in non-aqueous solvents
Strengths of acids and bases
Levelling and differentiating effects
'Acids' in acidic solvents
Acids and bases: a solvent-oriented definition
9.5 Self-ionizing and non-ionizing non-aqueous solvents
9.6 Liquid ammonia
Physical properties
Self-ionization
Reactions in liquid NH3
Solutions of j-block metals in liquid NH3
Redox reactions in liquid NH3
9.7 Liquid hydrogen fluoride
Physical properties
236
237
238
239
239
239
239
239
240
240
240
241
241
242
243
244
244
Contents xv
Acid-base behaviour in liquid HF 244
Electrolysis in liquid HF 245
9.8 Sulfuric acid and fluorosulfonic acid 245
Physical properties of sulfuric acid 245
Acid-base behaviour in liquid H2SO4 246
Physical properties of fluorosulfonic acid 246
9.9 Superacids 247
9.10 Bromine trifluoride 248
Physical properties 248
Behaviour of fluoride salts and molecular fluorides in BrF3 248
Reactions in BrF3 248
9.11 Dinitrogen tetraoxide 249
Physical properties 249
Reactions in N2O4 249
9.12 Ionic liquids 251
Molten salt solvent systems 251
Ionic liquids at ambient temperatures 251
Reactions in and applications of molten salt/ionic liquid media 254
9.13 Supercritical fluids 255
Properties of supercritical fluids and their uses as solvents 255
Supercritical fluids as media for inorganic chemistry 257
10.1 Hydrogen: the simplest atom 261
10.2 The H+ and H" ions 261
The hydrogen ion (proton) 261
The hydride ion 262
10.3 Isotopes of hydrogen 262
Protium and deuterium 262
Deuterated compounds 263
Tritium 263
10.4 Dihydrogen 263
Occurrence 263
Physical properties 263
Synthesis and uses 265
Reactivity 268
10.5 Polar and non-polar E-H bonds 269
10.6 Hydrogen bonding 270
The hydrogen bond 270
Trends in boiling points, melting points and enthalpies of vaporization
for /»-block binary hydrides 273
Infrared spectroscopy 273
Solid state structures 273
Hydrogen bonding in biological systems 276
xvi Contents
10.7 Binary hydrides: classification and general properties 278
Classification 278
Metallic hydrides 278
Saline hydrides 279
Molecular hydrides and complexes derived from them 279
Covalent hydrides with extended structures 281
11.1 Introduction 284
11.2 Occurrence, extraction and uses 284
Occurrence 284
Extraction 284
Major uses of the alkali metals and their compounds 285
11.3 Physical properties 286
General properties 286
Atomic spectra and flame tests 287
Radioactive isotopes 289
NMR active nuclei 289
11.4 The metals 289
Appearance 289
Reactivity 289
11.5 Halides 292
11.6 Oxides and hydroxides 293
Oxides, peroxides, Superoxides, suboxides and ozonides 293
Hydroxides 294
11.7 Salts of oxoacids: carbonates and hydrogencarbonates 294
11.8 Aqueous solution chemistry including macrocyclic complexes 296
Hydrated ions 296
Complex ions 297
11.9 Non-aqueous coordination chemistry 301
12.1 Introduction 305
12.2 Occurrence, extraction and uses 305
Occurrence 305
Extraction 306
Major uses of the group 2 metals and their compounds 307
12.3 Physical properties 308
General properties 30g
Flame tests 309
Radioactive isotopes 309
Contents xvü
12.4 The metals 309
Appearance 309
Reactivity 309
12.5 Halides 311
Beryllium halides 311
Halides of Mg, Ca, Sr and Ba 312
12.6 Oxides and hydroxides 314
Oxides and peroxides 314
Hydroxides 317
12.7 Salts of oxoacids 317
12.8 Complex ions in aqueous solution 318
Aqua species of beryllium 318
Aqua species of Mg2+, Ca2+, Sr2+ and Ba2+ 318
Complexes with ligands other than water 320
12.9 Complexes with amido or alkoxy ligands 320
12.10 Diagonal relationships between Li and Mg, and between Be and Al 321
Lithium and magnesium 322
Beryllium and aluminium 322
can
13.1 Introduction 325
13.2 Occurrence, extraction and uses 325
Occurrence 325
Extraction 325
Major uses of the group 13 elements and their compounds 327
13.3 Physical properties 329
Electronic configurations and oxidation states 329
NMR active nuclei 331
13.4 The elements 331
Appearance 331
Structures of the elements 332
Reactivity 333
13.5 Simple hydrides 334
Neutral hydrides 334
The [MH4]~ ions 339
13.6 Halides and complex halides 340
Boron halides: BX3 and B2X4 340
Al(III), Ga(III), In(III) and Tl(III) halides and their complexes 343
Lower oxidation state Al, Ga, In and Tl halides 345
13.7 Oxides, oxoacids, oxoanions and hydroxides 347
Boron oxides, oxoacids and oxoanions 347
Aluminium oxides, oxoacids, oxoanions and hydroxides 349
Oxides of Ga, In and Tl 352
XVIII
Contents
13.8 Compounds containing nitrogen 352
Nitrides 352
Ternary boron nitrides 354
Molecular species containing B-N or B-P bonds 354
Molecular species containing group 13 metal-nitrogen bonds 357
13.9 Aluminium to thallium: salts of oxoacids, aqueous solution chemistry
and complexes 357
Aluminium sulfate and alums 357
Aqua ions 358
Redox reactions in aqueous solution 358
Coordination complexes of the M3+ions 359
13.10 Metal borides 360
13.11 Electron-deficient borane and carbaborane clusters: an introduction 362
14.1 Introduction
14.2
14.3
14.4
14.5
14.6
14.7
14.8
Occurrence, extraction and uses
Occurrence
Extraction and manufacture
Uses
Physical properties
Ionization energies and cation formation
Some energetic and bonding considerations
NMR active nuclei
Mössbauer spectroscopy
Allotropes of carbon
Graphite and diamond: structure and properties
Graphite: intercalation compounds
Fullerenes: synthesis and structure
Fullerenes: reactivity
Carbon nanotubes
Structural and chemical properties of silicon, germanium, tin and lead
Structures
Chemical properties
Hydrides
Binary hydrides
Halohydrides of silicon and germanium
Carbides, suicides, germides, stannides and plumbides
Carbides
Suicides
Zintl ions containing Si, Ge, Sn and Pb
Halides and complex halides
Carbon halides
Silicon halides
Halides of germanium, tin and lead
376
376
376
377
377
380
380
381
384
384
384
384
386
387
387
394
394
394
394
395
396
398
399
399
400
400
403
403
405
405
Contents xix
14.9 Oxides, oxoacids and hydroxides 409
Oxides and oxoacids of carbon 409
Silica, silicates and aluminosilicates 413
Oxides, hydroxides and oxoacids of germanium, tin and lead 419
14.10 Siloxanes and polysiloxanes (silicones) 422
14.11 Sulfides 423
14.12 Cyanogen, silicon nitride and tin nitride 426
Cyanogen and its derivatives 426
Silicon nitride 428
Tin(IV) nitride 428
14.13 Aqueous solution chemistry and salts of oxoacids of germanium,
tin and lead 428
15.1 Introduction 433
15.2 Occurrence, extraction and uses 435
Occurrence 435
Extraction 435
Uses 436
15.3 Physical properties 437
Bonding considerations 439
NMR active nuclei 441
Radioactive isotopes 441
15.4 The elements 441
Nitrogen 441
Phosphorus 441
Arsenic, antimony and bismuth 443
15.5 Hydrides 443
Trihydrides, EH3 (E = N, P, As, Sb and Bi) 443
Hydrides E2H4 (E = N, P, As) 447
Chloramine and hydroxylamine 448
Hydrogen azide and azide salts 449
15.6 Nitrides, phosphides, arsenides, antimonides and bismuthides 451
Nitrides 451
Phosphides 451
Arsenides, antimonides and bismuthides 453
15.7 Halides, oxohalides and complex halides 455
Nitrogen halides 455
Oxofluorides and oxochlorides of nitrogen 457
Phosphorus halides 457
Phosphoryl trichloride, POC13 460
Arsenic and antimony halides 460
Bismuth halides 462
xx Contents
15.8 Oxides of nitrogen 463
Dinitrogen monoxide, N2O 463
Nitrogen monoxide, NO 464
Dinitrogen trioxide, N2O3 467
Dinitrogen tetraoxide, N2O4, and nitrogen dioxide, NO2 467
Dinitrogen pentaoxide, N2O5 468
15.9 Oxoacids of nitrogen 468
IsomersofH2N2O2 468
Nitrous acid, HNO2 468
Nitric acid, HNO3, and its derivatives 469
15.10 Oxides of phosphorus, arsenic, antimony and bismuth 472
Oxides of phosphorus 473
Oxides of arsenic, antimony and bismuth 474
15.11 Oxoacids of phosphorus 474
Phosphinic acid, H3PO2 474
Phosphonic acid, H3PO3 476
Hypodiphosphoric acid, H4P2O6 476
Phosphoric acid, H3PO4, and its derivatives 476
Chiral phosphate anions 480
15.12 Oxoacids of arsenic, antimony and bismuth 480
15.13 Phosphazenes 481
15.14 Sulfides and selenides 484
Sulfides and selenides of phosphorus 484
Arsenic, antimony and bismuth sulfides 485
15.15 Aqueous solution chemistry and complexes 485
a-".- . .,., . - .,'. .". lïïâi
I
16.1 Introduction 490
16.2 Occurrence, extraction and uses 490
Occurrence 490
Extraction 49 j
Uses 492
16.3 Physical properties and bonding considerations 492
NMR active nuclei and isotopes as tracers 495
16.4 The elements
Dioxygen 495
Ozone 496
Sulfur: allotropes 400
Sulfur: reactivity 400
Selenium and tellurium 5qq
16.5 Hydrides 501
Water, H2O 501
Hydrogen peroxide, H2O2 5q!
Contents xxi
Hydrides H2E (E = S, Se, Te) 504
Polysulfanes 505
16.6 Metal sulfides, polysulfides, polyselenides and polytellurides 505
Sulfides 505
Polysulfides 505
Polyselenides and polytellurides 507
16.7 Halides, oxohalides and complex halides 508
Oxygen fluorides 508
Sulfur fluorides and oxofluorides 509
Sulfur chlorides and oxochlorides 511
Halides of selenium and tellurium 512
16.8 Oxides 515
Oxides of sulfur 515
Oxides of selenium and tellurium 518
16.9 Oxoacids and their salts 520
Dithionous acid, H2S2O4 520
Sulfurous and disulfurous acids, H2SO3 and H2S2O5 520
Dithionic acid, H2S2O6 522
Sulfuric acid, H2SO4 522
Fluoro- and chlorosulfonic acids, HSO3F and HSO3C1 524
Polyoxoacids with S-O-S units 524
Peroxysulfuric acids, H2S2O8 and H2SO5 524
Thiosulfuric acid, H2S2O3, and polythionates 525
Oxoacids of selenium and tellurium 525
16.10 Compounds of sulfur and selenium with nitrogen 526
Sulfur-nitrogen compounds 526
Tetraselenium tetranitride 528
16.11 Aqueous solution chemistry of sulfur, selenium and tellurium 528
c.,.: .:, ,.Muu*miiAMjifflfflrc •.¦¦¦¦¦¦:.¦¦-. .im
17.1 Introduction 532
Fluorine, chlorine, bromine and iodine 532
Astatine 533
17.2 Occurrence, extraction and uses 533
Occurrence 533
Extraction 533
Uses 534
17.3 Physical properties and bonding considerations 537
NMR active nuclei and isotopes as tracers 538
17.4 The elements 540
Difluorine 540
Dichlorine, dibromine and diiodine 540
Charge transfer complexes 541
Clathrates 542
17.5 Hydrogen halides 543
XXII
Contents
17.6 Metal halides: structures and energetics
17.7 Interhalogen compounds and polyhalogen ions
Interhalogen compounds
Bonding in [XY2]~ ions
Polyhalogen cations
Polyhalide anions
17.8 Oxides and oxofluorides of chlorine, bromine and iodine
Oxides
Oxofluorides
17.9 Oxoacids and their salts
Hypofluorous acid, HOF
Oxoacids of chlorine, bromine and iodine
17.10 Aqueous solution chemistry
544
545
545
549
549
550
550
550
552
553
553
553
556
18.1 Introduction
18.2 Occurrence, extraction and uses
Occurrence
Extraction
Uses
18.3 Physical properties
NMR active nuclei
18.4 Compounds of xenon
Fluorides
Chlorides
Oxides
Oxofluorides
Other compounds of xenon
18.5 Compounds of argon, krypton and radon
561
562
562
562
562
564
565
565
565
568
569
569
569
572
îetalli^
19.1 Introduction
19.2 Group 1 : alkali metal organometallics
19.3 Group 2 organometallics
Beryllium
Magnesium
Calcium, strontium and barium
19.4 Group 13
Boron
574
575
578
578
579
581
582
582
Contents xxüi
Aluminium 583
Gallium, indium and thallium 586
19.5 Group 14 590
Silicon 591
Germanium 593
Tin 595
Lead 598
Coparallel and tilted C5-rings in group 14 metallocenes 601
19.6 Group 15 602
Bonding aspects and E=E bond formation 602
Arsenic, antimony and bismuth 602
19.7 Group 16 605
Selenium and tellurium 605
20.1 Topic overview 611
20.2 Ground state electronic configurations 611
¿¿-Block metals versus transition elements 611
Electronic configurations 612
20.3 Physical properties 612
20.4 The reactivity of the metals 614
20.5 Characteristic properties: a general perspective 614
Colour 614
Paramagnetism 615
Complex formation 615
Variable oxidation states 618
20.6 Electroneutrality principle 619
20.7 Coordination numbers and geometries 619
The Kepert model 620
Coordination numbers in the solid state 621
Coordination number 2 621
Coordination number 3 622
Coordination number 4 622
Coordination number 5 623
Coordination number 6 623
Coordination number 7 625
Coordination number 8 626
Coordination number 9 626
Coordination numbers of 10 and above 627
20.8 Isomerism in ¿/-block metal complexes 627
Structural isomerism: ionization isomers 627
Structural isomerism: hydration isomers 628
Structural isomerism: coordination isomerism 628
Structural isomerism: linkage isomerism 628
Stereoisomerism: diastereoisomers 629
Stereoisomerism: enantiomers 629
xxiv Contents
L
21.1 Introduction 637
High- and low-spin states 637
21.2 Bonding in c/-block metal complexes: valence bond theory 638
Hybridization schemes 638
The limitations of VB theory 638
21.3 Crystal field theory 640
The octahedral crystal field 640
Crystal field stabilization energy: high- and low-spin octahedral complexes 642
Jahn-Teller distortions 644
The tetrahedral crystal field 645
The square planar crystal field 646
Other crystal fields 647
Crystal field theory: uses and limitations 647
21.4 Molecular orbital theory: octahedral complexes 648
Complexes with no metal-ligand ?r-bonding 648
Complexes with metal-ligand 7r-bonding 649
21.5 Ligand field theory 654
21.6 Describing electrons in multi-electron systems 654
Quantum numbers L and ML for multi-electron species 654
Quantum numbers S and Ms for multi-electron species 655
Microstates and term symbols 655
The quantum numbers J and Mj 656
Ground states of elements with Z = 1-10 657
The d2 configuration 659
21.7 Electronic spectra 660
Spectral features 660
Charge transfer absorptions 661
Selection rules 662
Electronic spectra of octahedral and tetrahedral complexes 663
Interpretation of electronic spectra: use of Racah parameters 666
Interpretation of electronic spectra: Tanabe—Sugano diagrams 668
21.8 Evidence for metal-ligand covalent bonding 669
The nephelauxetic effect 669
EPR spectroscopy 670
21.9 Magnetic properties 670
Magnetic susceptibility and the spin-only formula 670
Spin and orbital contributions to the magnetic moment 672
The effects of temperature on //efT 674
Spin crossover 675
Ferromagnetism, antiferromagnetism and ferrimagnetism 676
21.10 Thermodynamic aspects: ligand field stabilization energies (LFSE) 678
Trends in LFSE 678
Lattice energies and hydration energies of M"+ ions 678
Octahedral versus tetrahedral coordination: spinels 678
21.11 Thermodynamic aspects: the Irving-Williams series 680
Contents xxv
21.12 Thermodynamic aspects: oxidation states in aqueous solution 680
!2j||||BIÄ
22.1 Introduction 686
22.2 Occurrence, extraction and uses 686
22.3 Physical properties: an overview 690
22.4 Group 3: scandium 690
The metal 690
Scandium(III) 690
22.5 Group 4: titanium 691
The metal 691
Titanium(IV) 692
Titanium(III) 694
Low oxidation states 695
22.6 Group 5: vanadium 695
The metal 695
Vanadium(V) 695
Vanadium(IV) 696
Vanadium(III) 698
Vanadium(II) 699
22.7 Group 6: chromium 699
The metal 699
Chromium(VI) 699
Chromium(V) and chromium(IV) 701
Chromium(III) 703
ChromiumCII) 704
Chromium-chromium multiple bonds 705
22.8 Group 7: manganese 707
The metal 707
Manganese(VII) 707
Manganese(VI) 709
Manganese(V) 709
Manganese(IV) 710
Manganese(III) 711
Manganese(II) 712
Manganese(I) 714
22.9 Group 8: iron 714
The metal 714
Iron(VI), iron(V) and iron(IV) 714
Iron(III) 716
Iron(II) 720
Iron in low oxidation states 722
22.10 Group 9: cobalt 722
The metal 722
Cobalt(IV) 722
XXVJ
Contents
Cobalt(III)
Cobalt(II)
22.11 Group 10: nickel
The metal
Nickel(IV) and nickel(III)
Nickel(II)
Nickel®
22.12 Group 11: copper
The metal
Copper(IV) and copper(III)
Copper(II)
Copper(I)
22.13 Group 12: zinc
The metal
Zinc(II)
Zinc(I)
722
725
729
729
729
730
732
732
732
733
734
737
739
739
739
740
¦||||i|j^^
23.1 Introduction
23.2 Occurrence, extraction and uses
23.3
23.4
23.5
23.6
23.7
Physical properties
Effects of the lanthanoid contraction
Coordination numbers
NMR active nuclei
Group 3: yttrium
The metal
Yttrium(III)
Group 4: zirconium and hafnium
The metals
Zirconium(IV) and hafnium(IV)
Lower oxidation states of zirconium and hafnium
Zirconium clusters
Group 5: niobium and tantalum
The metals
Niobium(V) and tantalum(V)
Niobium(IV) and tantalum(IV)
Lower oxidation state halides
Group 6: molybdenum and tungsten
The metals
Molybdenum(VI) and tungsten(VI)
Molybdenum(V) and tungsten(V)
Molybdenum(IV) and tungsten(IV)
Molybdenum(III) and tungsten(III)
Molybdenum(II) and tungsten(II)
744
744
749
749
751
751
751
751
751
752
752
752
753
754
754
754
755
756
757
759
759
759
763
764
765
766
Contents xxvü
23.8 Group 7: technetium and rhenium 769
The metals 769
High oxidation states of technetium and rhenium: M(VII), M(VI) and M(V) 769
Technetium(IV) and rhenium(IV) 771
Technetium(III) and rhenium(III) 772
Technetium(I) and rhenium(I) 773
23.9 Group 8: ruthenium and osmium 774
The metals 774
High oxidation states of ruthenium and osmium: M(VIII), M(VII) and M(VI) 774
Ruthenium(V), (IV) and osmium(V), (IV) 776
Ruthenium(III) and osmium(III) 779
Ruthenium(II) and osmium(II) 780
Mixed-valence ruthenium complexes 782
23.10 Group 9: rhodium and iridium 783
The metals 783
High oxidation states of rhodium and iridium: M(VI) and M(V) 783
Rhodium(IV) and iridium(IV) 784
Rhodium(III) and iridium(III) 784
Rhodium(II) and iridium(II) 786
Rhodium(I) and iridium(I) 787
23.11 Group 10: palladium and platinum 788
The metals 788
The highest oxidation states: M(VI) and M(V) 788
Palladium(IV) and platinum(IV) 788
Palladium(HI), platinum(IH) and mixed-valence complexes 789
Palladium(II) and platinum(II) 790
Platinum(-II) 793
23.12 Group 11 : silver and gold 794
The metals 794
Gold(V) and silver(V) 795
Gold(III) and silver(III) 795
Gold(II) and silver(II) 796
Gold(I) and silver(I) 797
Gold(-I) and silver(-I) 799
23.13 Group 12: cadmium and mercury 800
The metals 800
Cadmium(II) 800
Mercury(II) 801
Mercury(I) 802
p$Ýf|@|gan^
24.1 Introduction 806
Hapticity of a ligand 806
24.2 Common types of ligand: bonding and spectroscopy 806
cr-Bonded alkyl, aryl and related ligands 806
Carbonyl ligands 807
Hydride ligands 808
Phosphine and related ligands 809
TT-Bonded organic ligands 811
Contents
Nitrogen monoxide
Dinitrogen
Dihydrogen
24.3 The 18-electron rule
24.4 Metal carbonyls: synthesis, physical properties and structure
Synthesis and physical properties
Structures
24.5 The isolobal principle and application of Wade's rules
24.6 Total valence electron counts in c/-block organometallic clusters
Single cage structures
Condensed cages
Limitations of total valence counting schemes
24.7 Types of organometallic reactions
Substitution of CO ligands
Oxidative addition
Alkyl and hydrogen migrations
ß-Hydrogen elimination
oc-Hydrogen abstraction
Summary
24.8 Metal carbonyls: selected reactions
24.9 Metal carbonyl hydrides and halides
24.10 Alkyl, aryl, alkene and alkyne complexes
cr-Bonded alkyl and aryl ligands
Alkene ligands
Alkyne ligands
24.11 Allyl and buta-1,3-diene complexes
Allyl and related ligands
Buta-1,3-diene and related ligands
24.12 Carbene and carbyne complexes
24.13 Complexes containing ri5-cyclopentadienyl ligands
Ferrocene and other metallocenes
(Ti5-Cp)2Fe2(CO)4 and derivatives
24.14 Complexes containing rj6- and r|7-ligands
24.15
r) -Arene ligands
Cycloheptatriene and derived ligands
Complexes containing the r|4-cyclobutadiene ligand
813
814
814
815
816
817
819
821
824
824
826
826
827
827
828
828
829
830
830
831
832
833
833
834
836
837
837
839
839
841
841
843
846
846
847
849
ilS^^
25.1 Introduction
25.2 f-Orbitals and oxidation states
854
855
Contents xxix
25.3 Atom and ion sizes 856
The lanthanoid contraction 856
Coordination numbers 856
25.4 Spectroscopic and magnetic properties 858
Electronic spectra and magnetic moments: lanthanoids 858
Luminescence of lanthanoid complexes 860
Electronic spectra and magnetic moments: actinoids 860
25.5 Sources of the lanthanoids and actinoids 860
Occurrence and separation of the lanthanoids 860
The actinoids 861
25.6 Lanthanoid metals 862
25.7 Inorganic compounds and coordination complexes of the lanthanoids 863
Halides 863
Hydroxides and oxides 864
Complexes of Ln(III) 865
25.8 Organometallic complexes of the lanthanoids 866
cr-Bonded complexes 866
Cyclopentadienyl complexes 867
Bis(arene) derivatives 870
Complexes containing the r|8-cyclooctatetraenyl ligand 871
25.9 The actinoid metals 871
25.10 Inorganic compounds and coordination complexes of thorium,
uranium and plutonium 872
Thorium 872
Uranium 872
Plutonium 874
25.11 Organometallic complexes of thorium and uranium 875
cr-Bonded complexes 875
Cyclopentadienyl derivatives 876
Complexes containing the r^-cyclooctatetraenyl ligand 877
m
m
26.1 Introduction 880
26.2 Ligand substitutions: some general points 880
Kinetically inert and labile complexes 880
Stoichiometric equations say nothing about mechanism 881
Types of substitution mechanism 882
Activation parameters 882
26.3 Substitution in square planar complexes 883
Rate equations, mechanism and the trans-effect 883
Ligand nucleophilicity 886
26.4 Substitution and racemization in octahedral complexes 888
Water exchange 888
KXX
Contents
The Eigen-Wilkins mechanism
Stereochemistry of substitution
Base-catalysed hydrolysis
Isomerization and racemization of octahedral complexes
26.5 Electron-transfer processes
Inner-sphere mechanism
Outer-sphere mechanism
889
891
893
893
895
895
897
27A Introduction and definitions 905
27.2 Catalysis: introductory concepts 905
Energy profiles for a reaction: catalysed versus non-catalysed 905
Catalytic cycles 906
Choosing a catalyst 908
27.3 Homogeneous catalysis: alkene (olefin) and alkyne metathesis 908
27.4 Homogeneous catalytic reduction of N2 to NH3 911
27.5 Homogeneous catalysis: industrial applications 912
Alkene hydrogénation 912
Monsanto acetic acid synthesis 915
Tennessee-Eastman acetic anhydride process 917
Hydroformylation (Oxo-process) 917
Alkene oligomerization 919
27.6 Homogeneous catalyst development 919
Polymer-supported catalysts 920
Biphasic catalysis 920
¿/-Block organometallic clusters as homogeneous catalysts 922
27.7 Heterogeneous catalysis: surfaces and interactions with adsorbates 923
27.8 Heterogeneous catalysis: commercial applications 925
Alkene polymerization: Ziegler-Natta catalysis and metallocene catalysts 925
Fischer-Tropsch carbon chain growth 927
Haber process 928
Production of SO3 in the Contact process 929
Catalytic converters 929
Zeolites as catalysts for organic transformations: uses of ZSM-5 930
27.9 Heterogeneous catalysis: organometallic cluster models 931
28.1 Introduction
28.2 Defects in solid state lattices
Types of defect: stoichiometric and non-stoichiometric compounds
938
938
938
Contents xxxi
Colour centres (F-centres) 939
Thermodynamic effects of crystal defects 940
28.3 Electrical conductivity in ionic solids 940
Sodium and lithium ion conductors 940
¿-Block metal(II) oxides 942
28.4 Superconductivity 943
Superconductors: early examples and basic theory 943
High-temperature superconductors 944
Chevrel phases 945
Superconducting properties of MgB2 946
Applications of superconductors 946
28.5 Ceramic materials: colour pigments 947
White pigments (opacifiers) 947
Adding colour 947
28.6 Chemical vapour deposition (CVD) 947
High-purity silicon for semiconductors 948
a-Boron nitride 949
Silicon nitride and carbide 949
III-V Semiconductors 949
Metal deposition 951
Ceramic coatings 951
Perovskites and cuprate superconductors 952
28.7 Inorganic fibres 953
Boron fibres 953
Carbon fibres 954
Silicon carbide fibres 955
Alumina fibres 956
28.8 Carbon nanotubes 957
L
ffhettracSmétalsíofílif
— Ým, • ^
29.1 Introduction 962
Amino acids, peptides and proteins: some terminology 962
29.2 Metal storage and transport: Fe, Cu, Zn and V 963
Iron storage and transport 966
Metallothioneins: transporting some toxic metals 969
29.3 Dealing with O2 971
Haemoglobin and myoglobin 971
Haemocyanin 973
Haemerythrin 976
Cytochromes P-450 977
29.4 Biological redox processes 978
Blue copper proteins 978
The mitochondrial electron-transfer chain 979
Iron-sulfur proteins 981
Cytochromes 986
XXXII
Contents
29.5 The Zn2+ ¡on: Nature's Lewis acid
Carbonic anhydrase II
Carboxypeptidase A
Carboxypeptidase G2
Cobalt-for-zinc ion substitution
Appendices
989
989
991
991
994
1 Greek letters with pronunciations 1000
2 Abbreviations and symbols for quantities and units 1001
3 Selected character tables 1005
4 The electromagnetic spectrum 1009
5 Naturally occurring isotopes and their abundances 1011
6 Van der Waals, metallic, covalent and ionic radii 1013
7 Pauling electronegativity values (xP) for selected elements of the
periodic table 1015
8 Ground state electronic configurations of the elements and
ionization energies 1016
9 Electron affinities 1019
10 Standard enthalpies of atomization (AaH°) of the elements at 298 K 1020
11 Selected standard reduction potentials (298 K) 1021
L
^ri^ersftc^ |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Housecroft, Catherine E. 1955- Sharpe, Alan G. 1921-2008 |
author_GND | (DE-588)114053138 (DE-588)13084991X |
author_facet | Housecroft, Catherine E. 1955- Sharpe, Alan G. 1921-2008 |
author_role | aut aut |
author_sort | Housecroft, Catherine E. 1955- |
author_variant | c e h ce ceh a g s ag ags |
building | Verbundindex |
bvnumber | BV022821709 |
callnumber-first | Q - Science |
callnumber-label | QD151 |
callnumber-raw | QD151.2 |
callnumber-search | QD151.2 |
callnumber-sort | QD 3151.2 |
callnumber-subject | QD - Chemistry |
classification_rvk | VH 5010 |
classification_tum | CHE 300f |
ctrlnum | (OCoLC)228102552 (DE-599)BSZ266876056 |
dewey-full | 546 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 546 - Inorganic chemistry |
dewey-raw | 546 |
dewey-search | 546 |
dewey-sort | 3546 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Chemie |
discipline_str_mv | Chemie / Pharmazie Chemie |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01652nam a2200421 c 4500</leader><controlfield tag="001">BV022821709</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20091127 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070925s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780131755536</subfield><subfield code="9">978-0-13-175553-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0131755536</subfield><subfield code="9">0-13-175553-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)228102552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ266876056</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD151.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">546</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VH 5010</subfield><subfield code="0">(DE-625)147252:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 300f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Housecroft, Catherine E.</subfield><subfield code="d">1955-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)114053138</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Inorganic chemistry</subfield><subfield code="c">Catherine E. Housecroft and Alan G. Sharpe</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Harlow [u.a.]</subfield><subfield code="b">Pearson Prentice Hall</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXVII, 1098 S.</subfield><subfield code="b">zahlr. Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chimie inorganique - Manuels d'enseignement supérieur</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, Inorganic / Textbooks</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anorganische Chemie</subfield><subfield code="0">(DE-588)4002145-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Anorganische Chemie</subfield><subfield code="0">(DE-588)4002145-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sharpe, Alan G.</subfield><subfield code="d">1921-2008</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13084991X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027053&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-016027053</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022821709 |
illustrated | Illustrated |
index_date | 2024-07-02T18:40:18Z |
indexdate | 2024-07-09T21:06:55Z |
institution | BVB |
isbn | 9780131755536 0131755536 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-016027053 |
oclc_num | 228102552 |
open_access_boolean | |
owner | DE-20 DE-29T DE-634 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
owner_facet | DE-20 DE-29T DE-634 DE-19 DE-BY-UBM DE-91G DE-BY-TUM |
physical | XXXVII, 1098 S. zahlr. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Pearson Prentice Hall |
record_format | marc |
spelling | Housecroft, Catherine E. 1955- Verfasser (DE-588)114053138 aut Inorganic chemistry Catherine E. Housecroft and Alan G. Sharpe 3. ed. Harlow [u.a.] Pearson Prentice Hall 2008 XXXVII, 1098 S. zahlr. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Chimie inorganique - Manuels d'enseignement supérieur Chemistry, Inorganic / Textbooks Anorganische Chemie (DE-588)4002145-2 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Anorganische Chemie (DE-588)4002145-2 s DE-604 Sharpe, Alan G. 1921-2008 Verfasser (DE-588)13084991X aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027053&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Housecroft, Catherine E. 1955- Sharpe, Alan G. 1921-2008 Inorganic chemistry Chimie inorganique - Manuels d'enseignement supérieur Chemistry, Inorganic / Textbooks Anorganische Chemie (DE-588)4002145-2 gnd |
subject_GND | (DE-588)4002145-2 (DE-588)4123623-3 |
title | Inorganic chemistry |
title_auth | Inorganic chemistry |
title_exact_search | Inorganic chemistry |
title_exact_search_txtP | Inorganic chemistry |
title_full | Inorganic chemistry Catherine E. Housecroft and Alan G. Sharpe |
title_fullStr | Inorganic chemistry Catherine E. Housecroft and Alan G. Sharpe |
title_full_unstemmed | Inorganic chemistry Catherine E. Housecroft and Alan G. Sharpe |
title_short | Inorganic chemistry |
title_sort | inorganic chemistry |
topic | Chimie inorganique - Manuels d'enseignement supérieur Chemistry, Inorganic / Textbooks Anorganische Chemie (DE-588)4002145-2 gnd |
topic_facet | Chimie inorganique - Manuels d'enseignement supérieur Chemistry, Inorganic / Textbooks Anorganische Chemie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=016027053&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT housecroftcatherinee inorganicchemistry AT sharpealang inorganicchemistry |