Classification and learning using genetic algorithms: applications in bioinformatics and web intelligence
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg ; New York
Springer
2007
|
Schriftenreihe: | Natural computing series
|
Schlagworte: | |
Online-Zugang: | BTU01 FHM01 UBG01 UBY01 UPA01 UBR01 Volltext Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 277 - 307 |
Beschreibung: | 1 Online-Ressource (XV, 311 S.) graph. Darst. 24 cm |
ISBN: | 3540496068 9783540496069 9783540496076 |
DOI: | 10.1007/3-540-49607-6 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV022782363 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 070919s2007 gw |||| o||u| ||||||eng d | ||
015 | |a 06,N49,0747 |2 dnb | ||
015 | |a 07,A33,0022 |2 dnb | ||
020 | |a 3540496068 |c Pp. : EUR 74.85 (freier Pr.) |9 3-540-49606-8 | ||
020 | |a 9783540496069 |c Pp. : EUR 74.85 (freier Pr.) |9 978-3-540-49606-9 | ||
020 | |a 9783540496076 |c Online |9 978-3-540-49607-6 | ||
024 | 7 | |a 10.1007/3-540-49607-6 |2 doi | |
024 | 3 | |a 9783540496069 | |
028 | 5 | 2 | |a 11818298 |
035 | |a (OCoLC)873439412 | ||
035 | |a (DE-599)BVBBV022782363 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE |a xxu |c XD-US | ||
049 | |a DE-473 |a DE-739 |a DE-706 |a DE-M347 |a DE-634 |a DE-355 | ||
084 | |a 510 |2 sdnb | ||
084 | |a 004 |2 sdnb | ||
100 | 1 | |a Bandyopadhyay, Sanghamitra |d 1968- |e Verfasser |0 (DE-588)13317591X |4 aut | |
245 | 1 | 0 | |a Classification and learning using genetic algorithms |b applications in bioinformatics and web intelligence |c Sanghamitra Bandyopadhyay ; Sankar K. Pal |
264 | 1 | |a Berlin ; Heidelberg ; New York |b Springer |c 2007 | |
300 | |a 1 Online-Ressource (XV, 311 S.) |b graph. Darst. |c 24 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Natural computing series | |
500 | |a Literaturverz. S. 277 - 307 | ||
650 | 0 | 7 | |a Mustererkennung |0 (DE-588)4040936-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Genetischer Algorithmus |0 (DE-588)4265092-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mustererkennung |0 (DE-588)4040936-3 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Genetischer Algorithmus |0 (DE-588)4265092-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Automatische Klassifikation |0 (DE-588)4120957-6 |D s |
689 | 1 | 1 | |a Genetischer Algorithmus |0 (DE-588)4265092-6 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Pal, Sankar K. |d 1950- |e Verfasser |0 (DE-588)121101622 |4 aut | |
856 | 4 | 0 | |u https://doi.org/10.1007/3-540-49607-6 |x Verlag |3 Volltext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015987846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SCS | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015987846 | ||
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l BTU01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l FHM01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l UBG01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l UBY01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l UPA01 |p ZDB-2-SCS |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/3-540-49607-6 |l UBR01 |p ZDB-2-SCS |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804137044510769152 |
---|---|
adam_text | Contents
1 Introduction 1
1.1 Introduction 1
1.2 Machine Recognition of Patterns: Preliminaries 3
1.2.1 Data Acquisition 4
1.2.2 Feature Selection 5
1.2.3 Classification 6
1.2.4 Clustering 8
1.3 Different Approaches 9
1.4 Connectionist Approach: Relevance and Features 11
1.5 Genetic Approach: Relevance and Features 13
1.6 Fuzzy Set Theoretic Approach: Relevance and Features 14
1.7 Other Approaches 15
1.8 Applications of Pattern Recognition and Learning 16
1.9 Summary and Scope of the Book 17
2 Genetic Algorithms 19
2.1 Introduction 19
2.2 Traditional Versus Nontraditional Search 19
2.3 Overview of Genetic Algorithms 21
2.3.1 Basic Principles and Features 21
2.3.2 Encoding Strategy and Population 22
2.3.3 Evaluation 24
2.3.4 Genetic Operators 24
2.3.5 Parameters of Genetic Algorithms 27
2.3.6 Schema Theorem 27
2.4 Proof of Convergence of GAs 29
2.4.1 Markov Chain Modelling of GAs 29
2.4.2 Limiting Behavior of Elitist Model of GAs 31
2.5 Some Implementation Issues in GAs 35
2.6 Multiobjective Genetic Algorithms 40
2.7 Applications of Genetic Algorithms 46
XII Contents
2.8 Summary 51
3 Supervised Classification Using Genetic Algorithms 53
3.1 Introduction 53
3.2 Genetic Algorithms for Generating Fuzzy If Then Rules 54
3.3 Genetic Algorithms and Decision Trees 57
3.4 GA classifier. Genetic Algorithm for Generation of Class
Boundaries 60
3.4.1 Principle of Hyperplane Fitting 61
3.4.2 Region Identification and Fitness Computation 62
3.4.3 Genetic Operations 65
3.5 Experimental Results 65
3.5.1 Results 69
3.5.2 Consideration of Higher Order Surfaces 75
3.6 Summary 78
4 Theoretical Analysis of the GA classifier 81
4.1 Introduction 81
4.2 Relationship with Bayes Error Probability 82
4.3 Relationship Between Hopt and Hqa 88
4.3.1 Obtaining HGA from H 88
4.3.2 How HGA Is Related to Hopt 89
4.3.3 Some Points Related to n and H 89
4.4 Experimental Results 90
4.4.1 Data Sets 91
4.4.2 Learning the Class Boundaries and Performance on
Test Data 93
4.4.3 Variation of Recognition Scores with Pi 104
4.5 Summary 106
5 Variable String Lengths in GA classifier 109
5.1 Introduction 109
5.2 Genetic Algorithm with Variable String Length and the
Classification Criteria 110
5.3 Description of VGA Classifier Ill
5.3.1 Chromosome Representation and Population
Initialization Ill
5.3.2 Fitness Computation 113
5.3.3 Genetic Operators 114
5.4 Theoretical Study of VGA classifier 117
5.4.1 Issues of Minimum miss and H 117
5.4.2 Error Rate 118
5.5 Experimental Results 119
5.5.1 Data Sets 119
5.5.2 Results 120
Contents XIII
5.6 VGA classifier for the Design of a Multilayer Perceptron 124
5.6.1 Analogy Between Multilayer Perceptron and
VGA classifier 124
5.6.2 Deriving the MLP Architecture and the Connection
Weights 125
5.6.3 Postprocessing Step 129
5.6.4 Experimental Results 131
5.7 Summary 132
6 Chromosome Differentiation in VGA classifier 139
6.1 Introduction 139
6.2 GACD: Incorporating Chromosome Differentiation in GA .... 140
6.2.1 Motivation 140
6.2.2 Description of GACD 140
6.3 Schema Theorem for GACD 143
6.3.1 Terminology 143
6.3.2 Analysis of GACD 143
6.4 VGACD classifier. Incorporation of Chromosome
Differentiation in VGA classifier 148
6.4.1 Population Initialization 149
6.4.2 Fitness Computation and Genetic Operators 150
6.5 Pixel Classification of Remotely Sensed Image 150
6.5.1 Relevance of GA 150
6.5.2 Experimental Results 150
6.6 Summary 154
7 Multiobjective VGA classifier and Quantitative Indices . . . 159
7.1 Introduction 159
7.2 Multiobjective Optimization 160
7.3 Relevance of Multiobjective Optimization 161
7.4 Multiobjective GA Based Classifier 162
7.4.1 Chromosome Representation 162
7.4.2 Fitness Computation 162
7.4.3 Selection 163
7.4.4 Crossover 164
7.4.5 Mutation 164
7.4.6 Incorporating Elitism 165
7.4.7 PAES classifier. The Classifier Based on Pareto
Archived Evolution Strategy 167
7.5 Validation and Testing 169
7.6 Indices for Comparing MO Solutions 170
7.6.1 Measures Based on Position of Nondominated Front ... 170
7.6.2 Measures Based on Diversity of the Solutions 171
7.7 Experimental Results 172
7.7.1 Parameter Values 173
XIV Contents
7.7.2 Comparison of Classification Performance 173
7.8 Summary 179
8 Genetic Algorithms in Clustering 181
8.1 Introduction 181
8.2 Basic Concepts and Preliminary Definitions 182
8.3 Clustering Algorithms 184
8.3.1 K Means Clustering Algorithm 184
8.3.2 Single Linkage Clustering Algorithm 185
8.3.3 Fuzzy c Means Clustering Algorithm 186
8.4 Clustering Using GAs: Fixed Number of Crisp Clusters 187
8.4.1 Encoding Strategy 188
8.4.2 Population Initialization 188
8.4.3 Fitness Computation 188
8.4.4 Genetic Operators 189
8.4.5 Experimental Results 189
8.5 Clustering Using GAs: Variable Number of Crisp Clusters .... 192
8.5.1 Encoding Strategy and Population Initialization 192
8.5.2 Fitness Computation 193
8.5.3 Genetic Operators 193
8.5.4 Some Cluster Validity Indices 194
8.5.5 Experimental Results 196
8.6 Clustering Using GAs: Variable Number of Fuzzy Clusters .... 205
8.6.1 Fitness Computation 205
8.6.2 Experimental Results 206
8.7 Summary 212
9 Genetic Learning in Bioinformatics 213
9.1 Introduction 213
9.2 Bioinformatics: Concepts and Features 214
9.2.1 Basic Concepts of Cell Biology 214
9.2.2 Different Bioinformatics Tasks 216
9.3 Relevance of Genetic Algorithms in Bioinformatics 216
9.4 Bioinformatics Tasks and Application of GAs 220
9.4.1 Alignment and Comparison of DNA, RNA and
Protein Sequences 220
9.4.2 Gene Mapping on Chromosomes 223
9.4.3 Gene Finding and Promoter Identification from DNA
Sequences 224
9.4.4 Interpretation of Gene Expression and Microarray Data 226
9.4.5 Gene Regulatory Network Identification 227
9.4.6 Construction of Phylogenetic Trees for Studying
Evolutionary Relationship 228
9.4.7 DNA Structure Prediction 229
9.4.8 RNA Structure Prediction 231
Contents XV
9.4.9 Protein Structure Prediction and Classification 233
9.4.10 Molecular Design and Docking 236
9.5 Experimental Results 238
9.6 Summary 239
10 Genetic Algorithms and Web Intelligence 243
10.1 Introduction 243
10.2 Web Mining 244
10.2.1 Web Mining Components and Methodologies 246
10.2.2 Web Mining Categories 246
10.2.3 Challenges and Limitations in Web Mining 248
10.3 Genetic Algorithms in Web Mining 250
10.3.1 Search and Retrieval 250
10.3.2 Query Optimization and Reformulation 252
10.3.3 Document Representation and Personalization 254
10.3.4 Distributed Mining 254
10.4 Summary 255
A e Optimal Stopping Time for GAs 257
A.I Introduction 257
A.2 Foundation 257
A.3 Fitness Function 259
A.4 Upper Bound for Optimal Stopping Time 261
A. 5 Mutation Probability and f Optimal Stopping Time 264
B Data Sets Used for the Experiments 269
C Variation of Error Probability with Pi 275
References 277
Index 309
|
adam_txt |
Contents
1 Introduction 1
1.1 Introduction 1
1.2 Machine Recognition of Patterns: Preliminaries 3
1.2.1 Data Acquisition 4
1.2.2 Feature Selection 5
1.2.3 Classification 6
1.2.4 Clustering 8
1.3 Different Approaches 9
1.4 Connectionist Approach: Relevance and Features 11
1.5 Genetic Approach: Relevance and Features 13
1.6 Fuzzy Set Theoretic Approach: Relevance and Features 14
1.7 Other Approaches 15
1.8 Applications of Pattern Recognition and Learning 16
1.9 Summary and Scope of the Book 17
2 Genetic Algorithms 19
2.1 Introduction 19
2.2 Traditional Versus Nontraditional Search 19
2.3 Overview of Genetic Algorithms 21
2.3.1 Basic Principles and Features 21
2.3.2 Encoding Strategy and Population 22
2.3.3 Evaluation 24
2.3.4 Genetic Operators 24
2.3.5 Parameters of Genetic Algorithms 27
2.3.6 Schema Theorem 27
2.4 Proof of Convergence of GAs 29
2.4.1 Markov Chain Modelling of GAs 29
2.4.2 Limiting Behavior of Elitist Model of GAs 31
2.5 Some Implementation Issues in GAs 35
2.6 Multiobjective Genetic Algorithms 40
2.7 Applications of Genetic Algorithms 46
XII Contents
2.8 Summary 51
3 Supervised Classification Using Genetic Algorithms 53
3.1 Introduction 53
3.2 Genetic Algorithms for Generating Fuzzy If Then Rules 54
3.3 Genetic Algorithms and Decision Trees 57
3.4 GA classifier. Genetic Algorithm for Generation of Class
Boundaries 60
3.4.1 Principle of Hyperplane Fitting 61
3.4.2 Region Identification and Fitness Computation 62
3.4.3 Genetic Operations 65
3.5 Experimental Results 65
3.5.1 Results 69
3.5.2 Consideration of Higher Order Surfaces 75
3.6 Summary 78
4 Theoretical Analysis of the GA classifier 81
4.1 Introduction 81
4.2 Relationship with Bayes' Error Probability 82
4.3 Relationship Between Hopt and Hqa 88
4.3.1 Obtaining HGA from H 88
4.3.2 How HGA Is Related to Hopt 89
4.3.3 Some Points Related to n and H 89
4.4 Experimental Results 90
4.4.1 Data Sets 91
4.4.2 Learning the Class Boundaries and Performance on
Test Data 93
4.4.3 Variation of Recognition Scores with Pi 104
4.5 Summary 106
5 Variable String Lengths in GA classifier 109
5.1 Introduction 109
5.2 Genetic Algorithm with Variable String Length and the
Classification Criteria 110
5.3 Description of VGA Classifier Ill
5.3.1 Chromosome Representation and Population
Initialization Ill
5.3.2 Fitness Computation 113
5.3.3 Genetic Operators 114
5.4 Theoretical Study of VGA classifier 117
5.4.1 Issues of Minimum miss and H 117
5.4.2 Error Rate 118
5.5 Experimental Results 119
5.5.1 Data Sets 119
5.5.2 Results 120
Contents XIII
5.6 VGA classifier for the Design of a Multilayer Perceptron 124
5.6.1 Analogy Between Multilayer Perceptron and
VGA classifier 124
5.6.2 Deriving the MLP Architecture and the Connection
Weights 125
5.6.3 Postprocessing Step 129
5.6.4 Experimental Results 131
5.7 Summary 132
6 Chromosome Differentiation in VGA classifier 139
6.1 Introduction 139
6.2 GACD: Incorporating Chromosome Differentiation in GA . 140
6.2.1 Motivation 140
6.2.2 Description of GACD 140
6.3 Schema Theorem for GACD 143
6.3.1 Terminology 143
6.3.2 Analysis of GACD 143
6.4 VGACD classifier. Incorporation of Chromosome
Differentiation in VGA classifier 148
6.4.1 Population Initialization 149
6.4.2 Fitness Computation and Genetic Operators 150
6.5 Pixel Classification of Remotely Sensed Image 150
6.5.1 Relevance of GA 150
6.5.2 Experimental Results 150
6.6 Summary 154
7 Multiobjective VGA classifier and Quantitative Indices . . . 159
7.1 Introduction 159
7.2 Multiobjective Optimization 160
7.3 Relevance of Multiobjective Optimization 161
7.4 Multiobjective GA Based Classifier 162
7.4.1 Chromosome Representation 162
7.4.2 Fitness Computation 162
7.4.3 Selection 163
7.4.4 Crossover 164
7.4.5 Mutation 164
7.4.6 Incorporating Elitism 165
7.4.7 PAES classifier. The Classifier Based on Pareto
Archived Evolution Strategy 167
7.5 Validation and Testing 169
7.6 Indices for Comparing MO Solutions 170
7.6.1 Measures Based on Position of Nondominated Front . 170
7.6.2 Measures Based on Diversity of the Solutions 171
7.7 Experimental Results 172
7.7.1 Parameter Values 173
XIV Contents
7.7.2 Comparison of Classification Performance 173
7.8 Summary 179
8 Genetic Algorithms in Clustering 181
8.1 Introduction 181
8.2 Basic Concepts and Preliminary Definitions 182
8.3 Clustering Algorithms 184
8.3.1 K Means Clustering Algorithm 184
8.3.2 Single Linkage Clustering Algorithm 185
8.3.3 Fuzzy c Means Clustering Algorithm 186
8.4 Clustering Using GAs: Fixed Number of Crisp Clusters 187
8.4.1 Encoding Strategy 188
8.4.2 Population Initialization 188
8.4.3 Fitness Computation 188
8.4.4 Genetic Operators 189
8.4.5 Experimental Results 189
8.5 Clustering Using GAs: Variable Number of Crisp Clusters . 192
8.5.1 Encoding Strategy and Population Initialization 192
8.5.2 Fitness Computation 193
8.5.3 Genetic Operators 193
8.5.4 Some Cluster Validity Indices 194
8.5.5 Experimental Results 196
8.6 Clustering Using GAs: Variable Number of Fuzzy Clusters . 205
8.6.1 Fitness Computation 205
8.6.2 Experimental Results 206
8.7 Summary 212
9 Genetic Learning in Bioinformatics 213
9.1 Introduction 213
9.2 Bioinformatics: Concepts and Features 214
9.2.1 Basic Concepts of Cell Biology 214
9.2.2 Different Bioinformatics Tasks 216
9.3 Relevance of Genetic Algorithms in Bioinformatics 216
9.4 Bioinformatics Tasks and Application of GAs 220
9.4.1 Alignment and Comparison of DNA, RNA and
Protein Sequences 220
9.4.2 Gene Mapping on Chromosomes 223
9.4.3 Gene Finding and Promoter Identification from DNA
Sequences 224
9.4.4 Interpretation of Gene Expression and Microarray Data 226
9.4.5 Gene Regulatory Network Identification 227
9.4.6 Construction of Phylogenetic Trees for Studying
Evolutionary Relationship 228
9.4.7 DNA Structure Prediction 229
9.4.8 RNA Structure Prediction 231
Contents XV
9.4.9 Protein Structure Prediction and Classification 233
9.4.10 Molecular Design and Docking 236
9.5 Experimental Results 238
9.6 Summary 239
10 Genetic Algorithms and Web Intelligence 243
10.1 Introduction 243
10.2 Web Mining 244
10.2.1 Web Mining Components and Methodologies 246
10.2.2 Web Mining Categories 246
10.2.3 Challenges and Limitations in Web Mining 248
10.3 Genetic Algorithms in Web Mining 250
10.3.1 Search and Retrieval 250
10.3.2 Query Optimization and Reformulation 252
10.3.3 Document Representation and Personalization 254
10.3.4 Distributed Mining 254
10.4 Summary 255
A e Optimal Stopping Time for GAs 257
A.I Introduction 257
A.2 Foundation 257
A.3 Fitness Function 259
A.4 Upper Bound for Optimal Stopping Time 261
A. 5 Mutation Probability and f Optimal Stopping Time 264
B Data Sets Used for the Experiments 269
C Variation of Error Probability with Pi 275
References 277
Index 309 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Bandyopadhyay, Sanghamitra 1968- Pal, Sankar K. 1950- |
author_GND | (DE-588)13317591X (DE-588)121101622 |
author_facet | Bandyopadhyay, Sanghamitra 1968- Pal, Sankar K. 1950- |
author_role | aut aut |
author_sort | Bandyopadhyay, Sanghamitra 1968- |
author_variant | s b sb s k p sk skp |
building | Verbundindex |
bvnumber | BV022782363 |
collection | ZDB-2-SCS |
ctrlnum | (OCoLC)873439412 (DE-599)BVBBV022782363 |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1007/3-540-49607-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03036nmm a2200649 c 4500</leader><controlfield tag="001">BV022782363</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070919s2007 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N49,0747</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,A33,0022</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540496068</subfield><subfield code="c">Pp. : EUR 74.85 (freier Pr.)</subfield><subfield code="9">3-540-49606-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540496069</subfield><subfield code="c">Pp. : EUR 74.85 (freier Pr.)</subfield><subfield code="9">978-3-540-49606-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540496076</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-49607-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/3-540-49607-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540496069</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11818298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)873439412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022782363</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">004</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bandyopadhyay, Sanghamitra</subfield><subfield code="d">1968-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13317591X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Classification and learning using genetic algorithms</subfield><subfield code="b">applications in bioinformatics and web intelligence</subfield><subfield code="c">Sanghamitra Bandyopadhyay ; Sankar K. Pal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg ; New York</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 311 S.)</subfield><subfield code="b">graph. Darst.</subfield><subfield code="c">24 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Natural computing series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 277 - 307</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mustererkennung</subfield><subfield code="0">(DE-588)4040936-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Automatische Klassifikation</subfield><subfield code="0">(DE-588)4120957-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Genetischer Algorithmus</subfield><subfield code="0">(DE-588)4265092-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pal, Sankar K.</subfield><subfield code="d">1950-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)121101622</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015987846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SCS</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015987846</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/3-540-49607-6</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SCS</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022782363 |
illustrated | Not Illustrated |
index_date | 2024-07-02T18:36:43Z |
indexdate | 2024-07-09T21:06:02Z |
institution | BVB |
isbn | 3540496068 9783540496069 9783540496076 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015987846 |
oclc_num | 873439412 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-739 DE-706 DE-M347 DE-634 DE-355 DE-BY-UBR |
owner_facet | DE-473 DE-BY-UBG DE-739 DE-706 DE-M347 DE-634 DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (XV, 311 S.) graph. Darst. 24 cm |
psigel | ZDB-2-SCS |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Natural computing series |
spelling | Bandyopadhyay, Sanghamitra 1968- Verfasser (DE-588)13317591X aut Classification and learning using genetic algorithms applications in bioinformatics and web intelligence Sanghamitra Bandyopadhyay ; Sankar K. Pal Berlin ; Heidelberg ; New York Springer 2007 1 Online-Ressource (XV, 311 S.) graph. Darst. 24 cm txt rdacontent c rdamedia cr rdacarrier Natural computing series Literaturverz. S. 277 - 307 Mustererkennung (DE-588)4040936-3 gnd rswk-swf Automatische Klassifikation (DE-588)4120957-6 gnd rswk-swf Genetischer Algorithmus (DE-588)4265092-6 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Mustererkennung (DE-588)4040936-3 s Maschinelles Lernen (DE-588)4193754-5 s Genetischer Algorithmus (DE-588)4265092-6 s DE-604 Automatische Klassifikation (DE-588)4120957-6 s Pal, Sankar K. 1950- Verfasser (DE-588)121101622 aut https://doi.org/10.1007/3-540-49607-6 Verlag Volltext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015987846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Bandyopadhyay, Sanghamitra 1968- Pal, Sankar K. 1950- Classification and learning using genetic algorithms applications in bioinformatics and web intelligence Mustererkennung (DE-588)4040936-3 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Genetischer Algorithmus (DE-588)4265092-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4040936-3 (DE-588)4120957-6 (DE-588)4265092-6 (DE-588)4193754-5 |
title | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence |
title_auth | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence |
title_exact_search | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence |
title_exact_search_txtP | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence |
title_full | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence Sanghamitra Bandyopadhyay ; Sankar K. Pal |
title_fullStr | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence Sanghamitra Bandyopadhyay ; Sankar K. Pal |
title_full_unstemmed | Classification and learning using genetic algorithms applications in bioinformatics and web intelligence Sanghamitra Bandyopadhyay ; Sankar K. Pal |
title_short | Classification and learning using genetic algorithms |
title_sort | classification and learning using genetic algorithms applications in bioinformatics and web intelligence |
title_sub | applications in bioinformatics and web intelligence |
topic | Mustererkennung (DE-588)4040936-3 gnd Automatische Klassifikation (DE-588)4120957-6 gnd Genetischer Algorithmus (DE-588)4265092-6 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Mustererkennung Automatische Klassifikation Genetischer Algorithmus Maschinelles Lernen |
url | https://doi.org/10.1007/3-540-49607-6 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015987846&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bandyopadhyaysanghamitra classificationandlearningusinggeneticalgorithmsapplicationsinbioinformaticsandwebintelligence AT palsankark classificationandlearningusinggeneticalgorithmsapplicationsinbioinformaticsandwebintelligence |