The manner of finding of the true sum of the infinite secants of an arch, by an infinite series: which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Printed by Tho. James for the author
1685
|
Schlagworte: | |
Online-Zugang: | BSB01 LCO01 SBR01 UBA01 UBG01 UBM01 UBR01 UBT01 UEI01 UER01 Volltext |
Beschreibung: | Caption title. - Imprint from colophon. - Reproduction of original in the British Library. - Wing (2nd ed.), N1276A |
Beschreibung: | 12 p., [1] folded plate ill |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV022761581 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 070914s1685 |||| o||u| ||||||eng d | ||
035 | |a (OCoLC)220313140 | ||
035 | |a (DE-599)BVBBV022761581 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-473 |a DE-703 |a DE-824 |a DE-29 |a DE-19 |a DE-355 |a DE-155 |a DE-70 | ||
100 | 1 | |a Norris, Richard |e Verfasser |4 aut | |
245 | 1 | 0 | |a The manner of finding of the true sum of the infinite secants of an arch, by an infinite series |b which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |c by Richard Norris, mariner |
264 | 1 | |a London |b Printed by Tho. James for the author |c 1685 | |
300 | |a 12 p., [1] folded plate |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Caption title. - Imprint from colophon. - Reproduction of original in the British Library. - Wing (2nd ed.), N1276A | ||
533 | |a Online_Ausgabe |b Ann Arbor, Mich |c UMI |d 1999- |f Early English books online |n Sonstige Standardnummer des Gesamttitels: 20723581 |n Digital version of: (Early English books, 1641-1700 ; 1748:45) |7 s1999 | ||
650 | 4 | |a aSpherical projection | |
650 | 4 | |a aSpherical trigonometry | |
650 | 4 | |a Spherical projection | |
650 | 4 | |a Spherical trigonometry | |
776 | 0 | 8 | |i Reproduktion von |a Norris, Richard |t The manner of finding of the true sum of the infinite secants of an arch, by an infinite series |d 1685 |
856 | 4 | 0 | |u https://search.proquest.com/docview/2240904651 |3 Volltext |
912 | |a ZDB-1-EEB | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015967131 | ||
966 | e | |u https://search.proquest.com/docview/2240904651 |l BSB01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l LCO01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l SBR01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UBA01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UBG01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UBM01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UBR01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UBT01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UEI01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240904651 |l UER01 |p ZDB-1-EEB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804137010684755968 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Norris, Richard |
author_facet | Norris, Richard |
author_role | aut |
author_sort | Norris, Richard |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV022761581 |
collection | ZDB-1-EEB |
ctrlnum | (OCoLC)220313140 (DE-599)BVBBV022761581 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02807nmm a2200469 c 4500</leader><controlfield tag="001">BV022761581</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070914s1685 |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)220313140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022761581</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-70</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Norris, Richard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The manner of finding of the true sum of the infinite secants of an arch, by an infinite series</subfield><subfield code="b">which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere</subfield><subfield code="c">by Richard Norris, mariner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Printed by Tho. James for the author</subfield><subfield code="c">1685</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">12 p., [1] folded plate</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Caption title. - Imprint from colophon. - Reproduction of original in the British Library. - Wing (2nd ed.), N1276A</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Online_Ausgabe</subfield><subfield code="b">Ann Arbor, Mich</subfield><subfield code="c">UMI</subfield><subfield code="d">1999-</subfield><subfield code="f">Early English books online</subfield><subfield code="n">Sonstige Standardnummer des Gesamttitels: 20723581</subfield><subfield code="n">Digital version of: (Early English books, 1641-1700 ; 1748:45)</subfield><subfield code="7">s1999</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aSpherical projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">aSpherical trigonometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical projection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spherical trigonometry</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Reproduktion von</subfield><subfield code="a">Norris, Richard</subfield><subfield code="t">The manner of finding of the true sum of the infinite secants of an arch, by an infinite series</subfield><subfield code="d">1685</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-EEB</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015967131</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">SBR01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240904651</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022761581 |
illustrated | Not Illustrated |
index_date | 2024-07-02T18:34:45Z |
indexdate | 2024-07-09T21:05:30Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015967131 |
oclc_num | 220313140 |
open_access_boolean | |
owner | DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-824 DE-29 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-155 DE-BY-UBR DE-70 |
owner_facet | DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-824 DE-29 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-155 DE-BY-UBR DE-70 |
physical | 12 p., [1] folded plate ill |
psigel | ZDB-1-EEB |
publishDate | 1685 |
publishDateSearch | 1685 |
publishDateSort | 1685 |
publisher | Printed by Tho. James for the author |
record_format | marc |
spelling | Norris, Richard Verfasser aut The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere by Richard Norris, mariner London Printed by Tho. James for the author 1685 12 p., [1] folded plate ill txt rdacontent c rdamedia cr rdacarrier Caption title. - Imprint from colophon. - Reproduction of original in the British Library. - Wing (2nd ed.), N1276A Online_Ausgabe Ann Arbor, Mich UMI 1999- Early English books online Sonstige Standardnummer des Gesamttitels: 20723581 Digital version of: (Early English books, 1641-1700 ; 1748:45) s1999 aSpherical projection aSpherical trigonometry Spherical projection Spherical trigonometry Reproduktion von Norris, Richard The manner of finding of the true sum of the infinite secants of an arch, by an infinite series 1685 https://search.proquest.com/docview/2240904651 Volltext |
spellingShingle | Norris, Richard The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere aSpherical projection aSpherical trigonometry Spherical projection Spherical trigonometry |
title | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |
title_auth | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |
title_exact_search | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |
title_exact_search_txtP | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |
title_full | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere by Richard Norris, mariner |
title_fullStr | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere by Richard Norris, mariner |
title_full_unstemmed | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere by Richard Norris, mariner |
title_short | The manner of finding of the true sum of the infinite secants of an arch, by an infinite series |
title_sort | the manner of finding of the true sum of the infinite secants of an arch by an infinite series which being found and compared with the sum of the secants found by adding of the secants of whole minutes do plainly demonstrate that mr edward wright s nautical planisphere is not a true projection of the sphere |
title_sub | which being found and compared with the sum of the secants found, by adding of the secants of whole minutes ... do plainly demonstrate that Mr. Edward Wright's nautical planisphere is not a true projection of the sphere |
topic | aSpherical projection aSpherical trigonometry Spherical projection Spherical trigonometry |
topic_facet | aSpherical projection aSpherical trigonometry Spherical projection Spherical trigonometry |
url | https://search.proquest.com/docview/2240904651 |
work_keys_str_mv | AT norrisrichard themanneroffindingofthetruesumoftheinfinitesecantsofanarchbyaninfiniteserieswhichbeingfoundandcomparedwiththesumofthesecantsfoundbyaddingofthesecantsofwholeminutesdoplainlydemonstratethatmredwardwrightsnauticalplanisphereisnotatrueprojectionofthesphere |