Handbook of financial time series:
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Heidelberg
Springer
[2009]
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxix, 1050 Seiten Illustrationen, Diagramme |
ISBN: | 9783540712961 9783662518373 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022717337 | ||
003 | DE-604 | ||
005 | 20220411 | ||
007 | t | ||
008 | 070905s2009 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 984910786 |2 DE-101 | |
020 | |a 9783540712961 |c hardcover |9 978-3-540-71296-1 | ||
020 | |a 9783662518373 |c softcover |9 978-3-662-51837-3 | ||
035 | |a (OCoLC)320532088 | ||
035 | |a (DE-599)DNB984910786 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 |a DE-384 |a DE-521 |a DE-20 |a DE-N2 |a DE-11 |a DE-945 |a DE-19 |a DE-703 |a DE-91G |a DE-188 | ||
082 | 0 | |a 332.0151955 |2 22/ger | |
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a SK 845 |0 (DE-625)143262: |2 rvk | ||
084 | |a WIR 170f |2 stub | ||
084 | |a MAT 634f |2 stub | ||
084 | |a 330 |2 sdnb | ||
245 | 1 | 0 | |a Handbook of financial time series |c Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle |
264 | 1 | |a Berlin ; Heidelberg |b Springer |c [2009] | |
264 | 4 | |c © 2009 | |
300 | |a xxix, 1050 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Finance |x Statistical methods | |
650 | 4 | |a Time-series analysis | |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kreditmarkt |0 (DE-588)4073788-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kreditmarkt |0 (DE-588)4073788-3 |D s |
689 | 0 | 1 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Andersen, Torben |0 (DE-588)128603259 |4 edt | |
700 | 1 | |a Davis, Richard A. |d 1952- |0 (DE-588)173920608 |4 edt | |
700 | 1 | |a Kreiß, Jens-Peter |d 1958- |0 (DE-588)110698444 |4 edt | |
700 | 1 | |a Mikosch, Thomas |d 1955- |0 (DE-588)141029412 |4 edt | |
700 | 1 | |a Engle, Robert F. |d 1942- |0 (DE-588)128388528 |4 wpr | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-71297-8 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015923107&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015923107 |
Datensatz im Suchindex
_version_ | 1804136940935577600 |
---|---|
adam_text | Contents
Foreword
....................................................
v
List of Contributors
......................................... xxv
Introduction
................................................. 1
Torben
G.
Andersen, Richard A. Davis, Jens-Peter Kreiss and Thomas
Mikosch
References
................................................ 13
Part I Recent Developments in GARCH Modeling
An Introduction to Univariate GARCH Models
............. 17
Timo
Teräsvirta
1
Introduction
......................................... 17
2
The ARCH Model
.................................... 18
3
The Generalized ARCH Model
......................... 19
3.1
Why Generalized ARCH?
...................... 19
3.2
Families of univariate GARCH models
........... 20
3.3
Nonlinear GARCH
............................ 23
3.4
Time-varying GARCH
......................... 26
3.5
Markov-switching ARCH and GARCH
........... 27
3.6
Integrated and fractionally integrated GARCH
... 28
3.7
Semi- and nonparametric ARCH models
......... 30
3.8
GARCH-in-mean model
....................... 30
3.9
Stylized facts and the first-order GARCH model
.. 31
ч
4
Family
of Exponential GARCH Models
................. 34
4.1
Definition and properties
....................... 34
4.2
Stylized facts and the first-order EGARCH model
. 35
4.3
Stochastic volatility
........................... 36
5
Comparing EGARCH with GARCH
.................... 37
6
Final Remarks and Further Reading
.................... 38
References
................................................ 39
Stationarity, Mixing, Distributional Properties and Moments
of GARCH(p, ^-Processes
................................... 43
Alexander M. Lindner
1
Introduction
......................................... 43
viii Contents
2
Stationary Solutions
.................................. 44
2.1
Strict stationarity of
ARCH(l)
and GARCHCl,
1) . 45
2.2
Strict stationarity of GARCH^p, q)
.............. 49
2.3
Ergodicity
................................... 52
2.4
Weak stationarity
............................. 53
3
The ARCH(oo) Representation and the Conditional
Variance
............................................ 54
4
Existence of Moments and the Autocovariance Function of
the Squared Process
.................................. 55
4.1
Moments of
ARCHfl)
and GARCH(1,
1)......... 56
4.2
Moments of GARCrljp, q)
...................... 57
4.3
The autocorrelation function of the squares
...... 60
5
Strong Mixing
....................................... 62
6
Some Distributional Properties
......................... 64
7
Models Defined on the Non-Negative Integers
............ 66
8
Conclusion
.......................................... 67
References
................................................ 67
ARCH(oo) Models and Long Memory Properties
............ 71
Liúdas Giraitis,
Remigijus Leipus and
Donatas Surgailis
1
Introduction
......................................... 71
2
Stationary ARCHioo) Process
......................... 73
2.1
Volterra representations
........................ 73
2.2
Dependence structure, association, and central
limit theorem
................................. 75
2.3
Infinite variance and integrated ARCH(oo)
....... 77
3
Linear ARCH and Bilinear Model
...................... 79
References
................................................ 82
A Tour in the Asymptotic Theory of GARCH Estimation
... 85
Christian Francq and
Jean-Michel Zakoïan
1
Introduction
......................................... 85
2
Least-Squares Estimation of ARCH Models
............. 87
3
Quasi-Maximum Likelihood Estimation
................. 89
3.1
Pure GARCH models
.......................... 90
3.2
ARMA-GARCH models
....................... 94
4
Efficient Estimation
.................................. 95
5
Alternative Estimators
................................ 99
5.1
Self-weighted
LSE
for the
ARMA
parameters
___ 100
5.2
Self-weighted QMLE
.......................... 100
5.3
jLp-estimators
................................ 101
5.4
Least absolute deviations estimators
............. 102
5.5
Whittle estimator
............................. 103
5.6
Moment estimators
............................ 104
6
Properties of Estimators when some GARCH Coefficients
are Equal to Zero
.................................... 104
Contents ix
6.1
Fitting an ARCH(l) model to a white noise
...... 105
6.2
On the need of additional assumptions
........... 106
6.3
Asymptotic distribution of the QMLE on the
boundary
.................................... 106
6.4
Application to hypothesis testing
............... 107
7
Conclusion
.......................................... 109
References
................................................ 109
Practical Issues in the Analysis of Univariate GARCH Models
113
Eric Zivot
1
Introduction
......................................... 113
2
Some Stylized Facts of Asset Returns
................... 114
3
The ARCH and GARCH Model
........................ 115
3.1
Conditional mean specification
.................. 118
3.2
Explanatory variables in the conditional variance
equation
..................................... 119
3.3
The GARCH model and stylized facts of asset
returns
...................................... 119
3.4
Temporal aggregation
......................... 121
4
Testing for ARCH/GARCH Effects
..................... 121
4.1
Testing for ARCH effects in daily and monthly
returns
...................................... 122
5
Estimation of GARCH Models
......................... 123
5.1
Numerical accuracy of GARCH estimates
........ 125
5.2
Quasi-maximum likelihood estimation
........... 126
5.3
Model selection
............................... 126
5.4
Evaluation of estimated GARCH models
......... 127
5.5
Estimation of GARCH models for daily and
monthly returns
.............................. 127
6
GARCH Model Extensions
............................ 131
6.1
Asymmetric leverage effects and news impact
..... 131
6.2
Non-Gaussian error distributions
................ 135
7
Long Memory GARCH Models
......................... 137
7.1
Testing for long memory
....................... 139
7.2
Two component GARCH model
................. 139
7.3
Integrated GARCH model
..................... 140
7.4
Long memory GARCH models for daily returns
... 141
8
GARCH Model Prediction
............................. 142
8.1
GARCH and forecasts for the conditional mean
... 142
8.2
Forecasts from the GARCH(1,1) model
.......... 143
8.3
Forecasts from asymmetric GARCH(1,1) models
.. 144
8.4
Simulation-based forecasts
..................... 145
8.5
Forecasting the volatility of multiperiod returns
... 145
8.6
Evaluating volatility predictions
................ 146
χ
Contents
8.7
Forecasting the volatility of Microsoft and the
S&P
500..................................... 150
9
Final Remarks
....................................... 151
References
................................................ 151
Semiparametric and Nonparametric ARCH Modeling
....... 157
Oliver
B. Linton
1
Introduction
......................................... 157
2
The GARCH Model
.................................. 157
3
The Nonparametric Approach
.......................... 158
3.1
Error density
................................. 158
3.2
Functional form of volatility function
............ 159
3.3
Relationship between mean and variance
......... 162
3.4
Long memory
................................ 163
3.5
Locally stationary processes
.................... 164
3.6
Continuous time
.............................. 164
4
Conclusion
.......................................... 165
References
................................................ 165
Varying Coefficient GARCH Models
......................... 169
Pavel
Čížek
and Vladimir Spokoiny
1
Introduction
......................................... 169
2
Conditional Heteroscedasticity Models
.................. 171
2.1
Model estimation
............................. 173
2.2
Test of homogeneity against a change-point
alternative
................................... 173
3
Adaptive Nonparametric Estimation
.................... 175
3.1
Adaptive choice of the interval of homogeneity
.... 176
3.2
Parameters of the method and the implementation
details
....................................... 176
4
Real-Data Application
................................ 179
4.1
Finite-sample critical values for the test of
homogeneity
................................. 179
4.2
Stock index S&P
500.......................... 180
5
Conclusion
.......................................... 183
References
................................................ 183
Extreme Value Theory for GARCH Processes
............... 187
Richard A. Davis and Thomas Mikosch
1
The Model
.......................................... 187
2
Strict Stationarity and Mixing Properties
............... 188
3
Embedding a GARCH Process in a Stochastic Recurrence
Equation
............................................ 189
4
The Tails of a GARCH Process
........................ 190
5
Limit Theory for Extremes
............................ 194
5.1
Convergence of maxima
........................ 194
Contents xi
5.2
Convergence
of point processes
................. 195
5.3
The behavior of the sample autocovariance function
197
References-
................................................ 199
Multivariate GARCH Models
................................ 201
Annastiina Silvennoinen and
Timo
Teräsvirta
1
Introduction
......................................... 201
2
Models
.............................................. 203
2.1
Models of the conditional covariance matrix
...... 204
2.2
Factonmodels
................................ 207
2.3
Models of conditional variances and correlations
. . 210
2.4
Non-parametric and semiparametric approaches
... 215
3
Statistical Properties
................................. 218
4
Hyppthesis Testing in Multivariate GARCH Models
...... 218
4.1
General misspecification tests
................... 219
4.2
Tests for extensions of the CCC-GARCH model
.. 221
5
An Application
...................................... 222
6
Final Remarks
....................................... 224
References
................................................ 226
Part II Recent Developments in Stochastic Volatility Modeling
Stochastic Volatility: Origins and Overview
.................. 233
Neil Shephard and
Torben G.
Andersen
1
Introduction
......................................... 233
2
The Origin of SV Models
.............................. 235
3
Second Generation Model Building
..................... 240
3.1
Univariate models
............................. 240
3.2
Multivariate models
........................... 241
4
Inference Based on Return Data
....................... 242
4.1
Moment-based inference
....................... 242
4.2
Simulation-based inference
..................... 243
5
Options
............................................. 246
5.1
Models
...................................... 246
6
Realized Volatility
.................................... 247
References
................................................ 250
Probabilistic Properties of Stochastic Volatility Models
...... 255
Richard A. Davis and Thomas Mikosch
1
The Model
.......................................... 255
2
Stationarity, Ergodicity and Strong Mixing
.............. 256
2.1
Strict stationarity
............................. 256
2.2
Ergodicity and strong mixing
................... 257
3
The Covariance Structure
............................. 258
4
Moments and Tails
................................... 261
5
Asymptotic Theory for the Sample ACVF and ACF
...... 263
xii
Contents
References
................................................ 266
Moment—Based Estimation of Stochastic Volatility Models
... 269
Eric Renault
1
Introduction
......................................... 270
2
The Use of a Regression Model to Analyze Fluctuations in
Variance
............................................ 272
2.1
The linear regression model for conditional variance
272
2.2
The SR-SARV(p) model
....................... 274
2.3
The Exponential SARV model
.................. 277
2.4
Other parametric SARV models
................. 279
3
Implications of SV Model Specification for Higher Order
Moments
............................................ 281
3.1
Fat tails and variance of the variance
............ 281
3.2
Skewness, feedback and leverage effects
.......... 284
4
Continuous Time Models
.............................. 286
4.1
Measuring volatility
........................... 287
4.2
Moment-based estimation with realized volatility
.. 288
4.3
Reduced form models of volatility
............... 292
4.4
High frequency data with random times separating
successive observations
........................ 293
5
Simulation-Based Estimation
.......................... 295
5.1
Simulation-based bias correction
................ 296
5.2
Simulation-based indirect inference
.............. 298
5.3
Simulated method of moments
.................. 300
5.4
Indirect inference in presence of misspecification
. . 304
6
Concluding Remarks
.................................. 305
References
................................................ 307
Parameter Estimation and Practical Aspects of Modeling
Stochastic Volatility
......................................... 313
Borus Jungbacker and Siem
Jan Koopman
1
Introduction
......................................... 313
2
A Quasi-Likelihood Analysis Based on
Kalman
Filter
Methods
............................................ 316
2.1
Kalman
filter for prediction and likelihood
evaluation
.................................... 319
2.2
Smoothing methods for the conditional mean,
variance and mode
............................ 320
2.3
Practical considerations for analyzing the
linearized SV model
........................... 321
3
A Monte Carlo Likelihood Analysis
..................... 322
3.1
Construction of a proposal density
.............. 323
3.2
Sampling from the importance density and Monte
Carlo likelihood
............................... 325
4
Some Generalizations of SV Models
..................... 327
Contents xiii
4.1 Basic SV
model
............................... 327
4.2 Multiple
volatility factors......................
328
4.3 Regression
and fixed effects ....................
329
4.4
Heavy-tailed innovations
....................... 330
4.5
Additive noise
................................ 331
4.6
Leverage effects
............................... 331
4.7
Stochastic volatility in mean
................... 333
5
Empirical Illustrations
................................ 333
5.1
Standard
&
Poor s
500
stock index: volatility
estimation
................................... 334
5.2
Standard
h
Poor s
500
stock index: regression
effects
....................................... 335
5.3
Daily changes in exchange rates: dollar-pound and
dollar-yen
................................... 337
6
Conclusions
......................................... 340
Appendix
................................................. 340
References
................................................ 342
Stochastic Volatility Models with Long Memory
............. 345
Clifford M. Hurvich and Philippe
Soulier
1
Introduction
......................................... 345
2
Basic Properties of the LMSV Model
................... 346
3
Parametric Estimation
................................ 347
4
Semiparametric Estimation
............................ 349
5
Generalizations of the LMSV Model
.................... 352
6
Applications of the LMSV Model
....................... 352
References
................................................ 353
Extremes of Stochastic Volatility Models
.................... 355
Richard A. Davis and Thomas Mikosch
1
Introduction
......................................... 355
2
The Tail Behavior of the Marginal Distribution
.......... 356
2.1
The light-tailed case
........................... 356
2.2
The heavy-tailed case
.......................... 357
3
Point Process Convergence
............................ 358
3.1
Background
.................................. 358
3.2
Application to stochastic volatility models
....... 360
References
................................................ 364
Multivariate Stochastic Volatility
............................ 365
Siddhartha Chib, Yasuhiro
Omori
and Manabu
Asai
1
Introduction
......................................... 366
2
Basic MSV Model
.................................... 369
2.1
No-leverage model
............................ 369
2.2
Leverage effects
............................... 373
2.3
Heavy-tailed measurement error models
.......... 377
xiv Contents
3
Factor MSV Model
................................... 379
3.1
Volatility
factor model
......................... 379
3.2
Mean
factor model
............................ 382
3.3
Bayesian analysis of mean
factor MSV model
..... 384
4
Dynamic Correlation MSV
Model
...................... 388
4.1
Modeling by reparameterization
................ 388
4.2
Matrix
exponential transformation..............
390
4.3
Wishart
process ..............................
391
5
Conclusion
.......................................... 396
References
................................................ 397
Part III Topics in Continuous Time Processes
An Overview of Asset-Price Models
......................... 403
Peter J.
Brockwell
1
Introduction
......................................... 404
2
Shortcomings of the BSM Model
....................... 409
3
A General Framework for Option Pricing
................ 410
4
Some Non-Gaussian Models for Asset Prices
............. 411
5
Further Models
...................................... 415
References
................................................ 416
Ornstein—Uhlenbeck Processes and Extensions
............... 421
Ross A. Mailer,
Gernot Müller
and Alex Szimayer
1
Introduction
......................................... 422
2
OU
Process Driven by Brownian Motion
................ 422
3
Generalised
OU
Processes
............................. 424
3.1
Background on bivariate Levy processes
......... 424
3.2
Levy
OU
processes
............................ 426
3.3
Self-decomposability, self-similarity, class L,
Lamperti transform
........................... 429
4
Discretisations
....................................... 430
4.1
Autoregressive
representation, and perpetuities
... 430
4.2
Statistical issues: Estimation and hypothesis testing
431
4.3
Discretely sampled process
..................... 431
4.4
Approximating the COGARCH
................. 432
5
Conclusion
.......................................... 435
References
................................................ 435
Jump-Type Levy Processes
.................................. 439
Ernst
Eberlein
1
Probabilistic Structure of Levy Processes
................ 439
2
Distributional Description of Levy Processes
............. 443
3
Financial Modeling
................................... 446
4
Examples of Levy Processes with Jumps
................ 449
4.1
Poisson
and compound
Poisson
processes
........ 449
Contents xv
4.2
Levy jump diffusion
........................... 450
4.3
Hyperbolic Levy processes
..................... 450
4.4
Generalized hyperbolic Levy processes
........... 451
4.5
CGMY and variance gamma Levy processes
...... 452
4.6
α
-Stable Levy processes
........................ 453
4.7
Meixner Levy processes
........................ 453
References
................................................ 454
Levy—Driven Continuous—Time
ARMA
Processes
............ 457
Peter J.
Brockwell
1
Introduction
......................................... 458
2
Second-Order Levy-Driven CARMA Processes
.......... 460
3
Connections with Discrete-Time
ARMA
Processes
....... 470
4
An Application to Stochastic Volatility Modelling
........ 474
5
Continuous-Time GARCH Processes
................... 476
6
Inference for CARMA Processes
........................ 478
References
................................................ 479
Continuous Time Approximations to GARCH and Stochastic
Volatility Models
............................................ 481
Alexander M. Lindner
1
Stochastic Volatility Models and Discrete GARCH
....... 481
2
Continuous Time GARCH Approximations
.............. 482
2.1
Preserving the random recurrence equation property
483
2.2
The diffusion limit of Nelson
................... 484
2.3
The COGARCH model
........................ 486
2.4
Weak GARCH processes
....................... 488
2.5
Stochastic delay equations
..................... 489
2.6
A continuous time GARCH model designed for
option pricing
................................ 490
3
Continuous Time Stochastic Volatility Approximations
.... 491
3.1
Sampling a continuous time SV model at
equidistant times
............................. 491
3.2
Approximating a continuous time SV model
...... 493
References
................................................ 495
Maximum Likelihood and Gaussian Estimation of Continuous
Time Models in Finance
..................................... 497
Peter C. B. Phillips and
Jun
Yu
1
Introduction
......................................... 498
2
Exact ML Methods
................................... 499
2.1
ML based on the transition density
.............. 499
2.2
ML based on the continuous record likelihood
.... 502
3
Approximate ML Methods Based on Transition Densities
.. 503
3.1
The
Euler
approximation and refinements
........ 504
3.2
Closed-form approximations
.................... 509
xvi Contents
3.3
Simulated infill ML methods
................... 512
3.4
Other approaches
............................. 514
4
Approximate ML Methods Based on the Continuous
Record Likelihood and Realized Volatility
............... 516
5
Monte Carlo Simulations
.............................. 519
6
Estimation Bias Reduction Techniques
.................. 520
6.1
Jackknife estimation
........................... 521
6.2
Indirect inference estimation
................... 522
7
Multivariate Continuous Time Models
.................. 524
8
Conclusions
......................................... 527
References
................................................ 527
Parametric Inference for Discretely Sampled Stochastic
Differential Equations
....................................... 531
Michael S0rensen
1
Introduction
......................................... 531
2
Asymptotics: Fixed Frequency
......................... 532
3
Likelihood Inference
.................................. 536
4
Martingale Estimating Functions
....................... 538
5
Explicit Inference
.................................... 543
6
High Frequency Asymptotics and Efficient Estimation
.... 548
References
................................................ 551
Realized Volatility
........................................... 555
Torben
G.
Andersen and
Luca Benzoni
1
Introduction
......................................... 556
2
Measuring Mean Return versus Return Volatility
......... 557
3
Quadratic Return Variation and Realized Volatility
....... 559
4
Conditional Return Variance and Realized Volatility
...... 561
5
Jumps and Bipower Variation
.......................... 563
6
Efficient Sampling versus
Microstructure
Noise
........... 564
7
Empirical Applications
................................ 566
7.1
Early work
................................... 566
7.2
Volatility forecasting
.......................... 567
7.3
The distributional implications of the no-arbitrage
condition
.................................... 568
7.4
Multivariate quadratic variation measures
........ 568
7.5
Realized volatility, model specification and
estimation
................................... 569
8
Possible Directions for Future Research
................. 569
References
................................................ 570
Contents xvii
Estimating Volatility in the Presence of Market
Microstructure
Noise: A Review of the Theory and Practical
Considerations
............................................... 577
Yacine Ai t-Sahalia and Per A. Mykland
1
Introduction
......................................... 577
2
Estimators
.......................................... 579
2.1
The parametric volatility case
.................. 579
2.2
The nonparametric stochastic volatility case
...... 582
3
Refinements
......................................... 585
3.1
Multi-scale realized volatility
................... 585
3.2
Non-equally spaced observations
................ 586
3.3
Serially-correlated noise
........................ 587
3.4
Noise correlated with the price signal
............ 589
3.5
Small sample edgeworth expansions
............. 591
3.6
Robustness to departures from the data generating
process assumptions
........................... 591
4
Computational and Practical Implementation
Considerations
....................................... 592
4.1
Calendar, tick and transaction time sampling
..... 592
4.2
Transactions or quotes
......................... 592
4.3
Selecting the number of subsamples in practice
... 593
4.4
High versus low liquidity assets
................. 594
4.5
Robustness to data cleaning procedures
.......... 594
4.6
Smoothing by averaging
....................... 595
5
Conclusions
......................................... 596
References
................................................ 596
Option Pricing
............................................... 599
Jan Kallsen
1
Introduction
......................................... 599
2
Arbitrage Theory from a Market Perspective
............. 600
3
Martingale Modelling
................................. 603
4
Arbitrage Theory from an Individual Perspective
......... 605
5
Quadratic Hedging
................................... 606
6
Utility Indifference Pricing
............................ 607
References
................................................ 611
An Overview of Interest Rate Theory
....................... 615
Tomas Björk
1
General Background
.................................. 615
2
Interest Rates and the Bond Market
.................... 618
3
Factor Models
....................................... 620
4
Modeling under the Objective Measure
Ρ
............... 621
4.1
The market price of risk
....................... 622
5
Martingale Modeling
.................................. 623
5.1 Affine
term structures
......................... 624
xviii
Contents
5.2
Short rate models
............................. 625
5.3
Inverting the yield curve
....................... 627
6
Forward Rate Models
................................. 629
6.1
The HJM drift condition
....................... 629
6.2
The Musiela parameterization
.................. 631
7
Change of Numeraire
................................. 632
7.1
Generalities
.................................. 632
7.2
Forward measures
............................. 635
7.3
Option pricing
................................ 635
8
LIBOR
Market Models
................................ 638
8.1
Caps: definition and market practice
............ 638
8.2
The
LIBOR
market model
..................... 640
8.3
Pricing caps in the
LIBOR
model
............... 641
8.4
Terminal measure dynamics and existence
........ 641
9
Potentials and Positive Interest
........................ 642
9.1
Generalities
.................................. 642
9.2
The Flesaker-Hughston fractional model
......... 644
9.3
Connections to the Riesz decomposition
......... 646
9.4
Conditional variance potentials
................. 647
9.5
The Rogers Markov potential approach
.......... 648
10
Notes
............................................... 650
References
................................................ 651
Extremes of Continuous—Time Processes
..................... 653
Vicky
Fasen
1
Introduction
......................................... 653
2
Extreme Value Theory
................................ 654
2.1
Extremes of discrete-time processes
............. 655
2.2
Extremes of continuous-time processes
.......... 656
2.3
Extensions
................................... 656
3
The Generalized Ornstein-Uhlenbeck (GOU)-Model
...... 657
3.1
The Ornstein-Uhlenbeck process
................ 658
3.2
The non-Ornstein-Uhlenbeck process
............ 659
3.3
Comparison of the models
...................... 661
4
Tail Behavior of the Sample Maximum
.................. 661
5
Running sample Maxima and Extremal Index Function
... 663
6
Conclusion
.......................................... 664
References
................................................ 665
Part IV Topics in Cointegration and Unit Roots
Cointegration: Overview and Development
.................. 671
Soren Johansen
1
Introduction
......................................... 671
1.1
Two examples of cointegration
.................. 672
Contents xix
1.2
Three ways of modeling
cointegration
............ 673
1.3
The model analyzed in this article
.............. 674
2
Integration,
Cointegration
and Granger s Representation
Theorem
........................................... 675
2.1
Definition of integration and
cointegration
....... 675
2.2
The Granger Representation Theorem
........... 677
2.3
Interpretation of cointegrating coefficients
........ 678
3
Interpretation of the
1(1)
Model for
Cointegration
........ 680
3.1
The models H(r)
............................. 680
3.2
Normalization of parameters of the J(l) model.
... 681
3.3
Hypotheses on long-run coefficients
.............. 681
3.4
Hypotheses on adjustment coefficients
........... 682
4
Likelihood Analysis of the
/(1)
Model
................... 683
4.1
Checking the specifications of the model
......... 683
4.2
Reduced rank regression
....................... 683
4.3
Maximum likelihood estimation in the
1(1)
model
and derivation of the rank test
.................. 684
5
Asymptotic Analysis
.................................. 686
5.1
Asymptotic distribution of the rank test
......... 686
5.2
Asymptotic distribution of the estimators
........ 687
6
Further Topics in the Area of Cointegration
............. 689
6.1
Rational expectations
......................... 689
6.2
The
1(2)
model
............................... 690
7
Concluding Remarks
................................. 691
References
................................................ 692
Time Series with Roots on or Near the Unit Circle
.......... 695
Ngai Hang Chan
1
Introduction
......................................... 695
2
Unit Root Models
.................................... 696
2.1
First order
................................... 697
2.2
AR(p) models
................................ 699
2.3
Model selection
............................... 702
3
Miscellaneous Developments and Conclusion
............. 704
References
................................................ 705
Fractional Cointegration
..................................... 709
Willa W.
Chen and Clifford M. Hurvich
1
Introduction
......................................... 709
2
Type I and Type II Definitions of I{d)
.................. 710
2.1
Univariate series
.............................. 710
2.2
Multivariate series
............................ 713
3
Models for Fractional Cointegration
.................... 715
3.1
Parametric models
............................ 716
4
Tapering
............................................ 717
5
Semiparametric Estimation of the Cointegrating Vectors
.. 718
xx Contents
6
Testing
for
Cointegration;
Determination of Cointegrating
Rank
............................................... 723
References
................................................ 724
Part V Special Topics
-
Risk
Different Kinds of Risk
...................................... 729
Paul Embrechts,
Hansjörg Furrer
and Roger
Kaufmann
1
Introduction
......................................... 729
2
Preliminaries
........................................ 732
2.1
Risk measures
................................ 732
2.2
Risk factor mapping and loss portfolios
.......... 735
3
Credit Risk
.......................................... 736
3.1
Structural models
............................. 737
3.2
Reduced form models
.......................... 737
3.3
Credit risk for regulatory reporting
.............. 738
4
Market Risk
......................................... 738
4.1
Market risk models
............................ 739
4.2
Conditional versus unconditional modeling
....... 740
4.3
Scaling of market risks
......................... 740
5
Operational Risk
..................................... 742
6
Insurance Risk
....................................... 744
6.1
Life insurance risk
............................ 744
6.2
Modeling parametric life insurance risk
.......... 745
6.3
Non-life insurance risk
......................... 747
7
Aggregation of Risks
.................................. 748
8
Summary
........................................... 749
References
................................................ 750
Value-at-Risk Models
....................................... 753
Peter
Christoffersen
1
Introduction and Stylized Facts
........................ 753
2
A Univariate Portfolio Risk Model
...................... 755
2.1
The dynamic conditional variance model
......... 756
2.2
Univariate filtered historical simulation
.......... 757
2.3
Univariate extensions and alternatives
........... 759
3
Multivariate, Base-Asset Return Methods
............... 760
3.1
The dynamic conditional correlation model
....... 761
3.2
Multivariate filtered historical simulation
......... 761
3.3
Multivariate extensions and alternatives
......... 763
4
Summary and Further Issues
........................... 764
References
................................................ 764
Contents xxi
Copula—
Based Models for Financial Time Series
............. 767
Andrew J.
Patton
1
Introduction
......................................... 767
2
Copula-Based Models for Time Series
................... 771
2.1
Copula-based models for multivariate time series
. 772
2.2
Copula-based models for univariate time series
... 773
2.3
Estimation and evaluation of copula—based models
for time series
................................ 775
3
Applications of Copulas in Finance and Economics
....... 778
4
Conclusions and Areas for Future Research
.............. 780
References
................................................ 781
Credit Risk Modeling
........................................ 787
David
Lando
1
Introduction
......................................... 787
2
Modeling the Probability of Default and Recovery
........ 788
3
Two Modeling Frameworks
............................ 789
4
Credit Default Swap Spreads
.......................... 792
5
Corporate Bond Spreads and Bond Returns
............. 795
6
Credit Risk Correlation
............................... 795
References
................................................ 797
Part V Special Topics
-
Time Series Methods
Evaluating Volatility and Correlation Forecasts
.............. 801
Andrew J.
Patton
and Kevin Sheppard
1
Introduction
......................................... 801
1.1
Notation
..................................... 803
2
Direct Evaluation of Volatility Forecasts
................ 804
2.1
Forecast optimality tests for univariate volatility
forecasts
..................................... 805
2.2
MZ regressions on transformations of 3f
......... 806
2.3
Forecast optimality tests for multivariate volatility
forecasts
..................................... 807
2.4
Improved MZ regressions using generalised least
squares
...................................... 808
2.5
Simulation study
.............................. 810
3
Direct Comparison of Volatility Forecasts
............... 815
3.1
Pair-wise comparison of volatility forecasts
....... 816
3.2
Comparison of many volatility forecasts
.......... 817
3.3
Robust loss functions for forecast comparison
.... 818
3.4
Problems arising from non-robust loss functions
. 819
3.5
Choosing a robust loss function
............... 823
3.6
Robust loss functions for multivariate volatility
comparison
................................... 825
xxii
Contents
3.7
Direct comparison via encompassing tests
........ 828
4
Indirect Evaluation of Volatility Forecasts
............... 830
4.1
Portfolio optimisation
......................... 831
4.2
Tracking error minimisation
.................... 832
4.3
Other methods of indirect evaluation
............ 833
5
Conclusion
.......................................... 835
References
................................................ 835
Structural Breaks in Financial Time Series
.................. 839
Elena
Andreou
and Eric Ghysels
1
Introduction
......................................... 839
2
Consequences of Structural Breaks in Financial Time Series
840
3
Methods for Detecting Structural Breaks
................ 843
3.1
Assumptions
................................. 844
3.2
Historical and sequential partial-sums
change-point statistics
......................... 845
3.3
Multiple breaks tests
.......................... 848
4
Change-Point Tests in Returns and Volatility
............ 851
4.1
Tests based on empirical volatility processes
...... 851
4.2
Empirical processes and the SV class of models
... 854
4.3
Tests based on parametric volatility models
...... 858
4.4
Change-point tests in long memory
............. 861
4.5
Change-point in the distribution
................ 863
5
Conclusions
......................................... 865
References
................................................ 866
An Introduction to Regime Switching Time Series Models
... 871
Theis
Lange
and Anders Rahbek
1
Introduction
......................................... 871
1.1
Markov and observation switching
............... 872
2
Switching ARCH and CVAR
........................... 874
2.1
Switching ARCH and GARCH
................. 875
2.2
Switching CVAR
.............................. 877
3
Likelihood-Based Estimation
.......................... 879
4
Hypothesis Testing
................................... 881
5
Conclusion
.......................................... 883
References
................................................ 883
Model Selection
............................................. 889
Hannes
Leeb and
Benedikt
M.
Pötscher
1
The Model Selection Problem
.......................... 889
1.1
A general formulation
......................... 889
1.2
Model selection procedures
..................... 892
2
Properties of Model Selection Procedures and of
Post-Model-Selection Estimators
....................... 900
2.1
Selection probabilities and consistency
........... 900
Contents xxiii
2.2
Risk properties of post-model-selection estimators
903
2.3
Distributional properties of post-model-selection
estimators
................................... 906
3
Model Selection in Large- or Infinite-Dimensional Models
. 908
4
Related Procedures Based on Shrinkage and Model
Averaging
........................................... 915
5
Further Reading
..................................... 916
References
................................................ 916
Nonparametric Modeling in Financial Time Series
........... 927
Jürgen Franke,
Jens-Peter Kreiss and Enno
Mammen
1
Introduction
......................................... 927
2
Nonparametric Smoothing for Time Series
............... 929
2.1
Density estimation via kernel smoothing
......... 929
2.2
Kernel smoothing regression
.................... 932
2.3
Diffusions
.................................... 935
3
Testing
............................................. 937
4
Nonparametric Quantile Estimation
.................... 940
5
Advanced Nonparametric Modeling
..................... 942
6
Sieve Methods
....................................... 944
References
................................................ 947
Modelling Financial High Frequency Data Using Point
Processes
.................................................... 953
Luc Bauwens and
Nikolaus Hautsch
1
Introduction
......................................... 953
2
Fundamental Concepts of Point Process Theory
.......... 954
2.1
Notation and definitions
....................... 955
2.2
Compensators, intensities, and hazard rates
...... 955
2.3
Types and representations of point processes
..... 956
2.4
The random time change theorem
............... 959
3
Dynamic Duration Models
............................. 960
3.1
ACD models
................................. 960
3.2
Statistical inference
........................... 963
3.3
Other models
................................. 964
3.4
Applications
.................................. 965
4
Dynamic Intensity Models
............................. 967
4.1
Hawkes processes
............................. 967
4.2
Autoregressive
intensity processes
............... 969
4.3
Statistical inference
........................... 973
4.4
Applications
.................................. 975
References
................................................ 976
xxiv
Contents
Part V Special Topics
-
Simulation Based Methods
Resampling and
Subsampling
for Financial Time Series
...... 983
Efstathios Paparoditis and Dimitris
N.
Politis
1
Introduction
......................................... 983
2
Resampling the Time Series of Log-Returns
............. 986
2.1
Parametric methods based on i.i.d. resampling of
residuals
..................................... 986
2.2
Nonparametric methods based on i.i.d. resampling
of residuals
................................... 988
2.3
Markovian bootstrap
.......................... 990
3
Resampling Statistics Based on the Time Series of
Log-Returns
......................................... 992
3.1
Regression bootstrap
.......................... 992
3.2
Wild bootstrap
............................... 993
3.3
Local bootstrap
............................... 994
4
Subsampling
and Self—Normalization
.................... 995
References
................................................ 997
Markov Chain Monte Carlo
..................................1001
Michael Johannes and Nicholas Poison
1
Introduction
.........................................1001
2
Overview of MCMC Methods
..........................1002
2.1
Clifford-Hammersley theorem
..................1002
2.2
Constructing Markov chains
....................1003
2.3
Convergence theory
...........................1007
3
Financial Time Series Examples
........................1008
3.1
Geometric Brownian motion
....................1008
3.2
Time-varying expected returns
..................1009
3.3
Stochastic volatility models
....................1010
4
Further Reading
.....................................1011
References
................................................1012
Particle Filtering
............................................1015
Michael Johannes and Nicholas Poison
1
Introduction
.........................................1015
2
A Motivating Example
................................1017
3
Particle Filters
.......................................1019
3.1
Exact particle filtering
.........................1021
3.2
SIR
.........................................1024
3.3
Auxiliary particle filtering algorithms
............1026
4
Further Reading
.....................................1027
References
................................................1028
Index
........................................................1031
|
adam_txt |
Contents
Foreword
.
v
List of Contributors
. xxv
Introduction
. 1
Torben
G.
Andersen, Richard A. Davis, Jens-Peter Kreiss and Thomas
Mikosch
References
. 13
Part I Recent Developments in GARCH Modeling
An Introduction to Univariate GARCH Models
. 17
Timo
Teräsvirta
1
Introduction
. 17
2
The ARCH Model
. 18
3
The Generalized ARCH Model
. 19
3.1
Why Generalized ARCH?
. 19
3.2
Families of univariate GARCH models
. 20
3.3
Nonlinear GARCH
. 23
3.4
Time-varying GARCH
. 26
3.5
Markov-switching ARCH and GARCH
. 27
3.6
Integrated and fractionally integrated GARCH
. 28
3.7
Semi- and nonparametric ARCH models
. 30
3.8
GARCH-in-mean model
. 30
3.9
Stylized facts and the first-order GARCH model
. 31
ч
4
Family
of Exponential GARCH Models
. 34
4.1
Definition and properties
. 34
4.2
Stylized facts and the first-order EGARCH model
. 35
4.3
Stochastic volatility
. 36
5
Comparing EGARCH with GARCH
. 37
6
Final Remarks and Further Reading
. 38
References
. 39
Stationarity, Mixing, Distributional Properties and Moments
of GARCH(p, ^-Processes
. 43
Alexander M. Lindner
1
Introduction
. 43
viii Contents
2
Stationary Solutions
. 44
2.1
Strict stationarity of
ARCH(l)
and GARCHCl,
1) . 45
2.2
Strict stationarity of GARCH^p, q)
. 49
2.3
Ergodicity
. 52
2.4
Weak stationarity
. 53
3
The ARCH(oo) Representation and the Conditional
Variance
. 54
4
Existence of Moments and the Autocovariance Function of
the Squared Process
. 55
4.1
Moments of
ARCHfl)
and GARCH(1,
1). 56
4.2
Moments of GARCrljp, q)
. 57
4.3
The autocorrelation function of the squares
. 60
5
Strong Mixing
. 62
6
Some Distributional Properties
. 64
7
Models Defined on the Non-Negative Integers
. 66
8
Conclusion
. 67
References
. 67
ARCH(oo) Models and Long Memory Properties
. 71
Liúdas Giraitis,
Remigijus Leipus and
Donatas Surgailis
1
Introduction
. 71
2
Stationary ARCHioo) Process
. 73
2.1
Volterra representations
. 73
2.2
Dependence structure, association, and central
limit theorem
. 75
2.3
Infinite variance and integrated ARCH(oo)
. 77
3
Linear ARCH and Bilinear Model
. 79
References
. 82
A Tour in the Asymptotic Theory of GARCH Estimation
. 85
Christian Francq and
Jean-Michel Zakoïan
1
Introduction
. 85
2
Least-Squares Estimation of ARCH Models
. 87
3
Quasi-Maximum Likelihood Estimation
. 89
3.1
Pure GARCH models
. 90
3.2
ARMA-GARCH models
. 94
4
Efficient Estimation
. 95
5
Alternative Estimators
. 99
5.1
Self-weighted
LSE
for the
ARMA
parameters
_ 100
5.2
Self-weighted QMLE
. 100
5.3
jLp-estimators
. 101
5.4
Least absolute deviations estimators
. 102
5.5
Whittle estimator
. 103
5.6
Moment estimators
. 104
6
Properties of Estimators when some GARCH Coefficients
are Equal to Zero
. 104
Contents ix
6.1
Fitting an ARCH(l) model to a white noise
. 105
6.2
On the need of additional assumptions
. 106
6.3
Asymptotic distribution of the QMLE on the
boundary
. 106
6.4
Application to hypothesis testing
. 107
7
Conclusion
. 109
References
. 109
Practical Issues in the Analysis of Univariate GARCH Models
113
Eric Zivot
1
Introduction
. 113
2
Some Stylized Facts of Asset Returns
. 114
3
The ARCH and GARCH Model
. 115
3.1
Conditional mean specification
. 118
3.2
Explanatory variables in the conditional variance
equation
. 119
3.3
The GARCH model and stylized facts of asset
returns
. 119
3.4
Temporal aggregation
. 121
4
Testing for ARCH/GARCH Effects
. 121
4.1
Testing for ARCH effects in daily and monthly
returns
. 122
5
Estimation of GARCH Models
. 123
5.1
Numerical accuracy of GARCH estimates
. 125
5.2
Quasi-maximum likelihood estimation
. 126
5.3
Model selection
. 126
5.4
Evaluation of estimated GARCH models
. 127
5.5
Estimation of GARCH models for daily and
monthly returns
. 127
6
GARCH Model Extensions
. 131
6.1
Asymmetric leverage effects and news impact
. 131
6.2
Non-Gaussian error distributions
. 135
7
Long Memory GARCH Models
. 137
7.1
Testing for long memory
. 139
7.2
Two component GARCH model
. 139
7.3
Integrated GARCH model
. 140
7.4
Long memory GARCH models for daily returns
. 141
8
GARCH Model Prediction
. 142
8.1
GARCH and forecasts for the conditional mean
. 142
8.2
Forecasts from the GARCH(1,1) model
. 143
8.3
Forecasts from asymmetric GARCH(1,1) models
. 144
8.4
Simulation-based forecasts
. 145
8.5
Forecasting the volatility of multiperiod returns
. 145
8.6
Evaluating volatility predictions
. 146
χ
Contents
8.7
Forecasting the volatility of Microsoft and the
S&P
500. 150
9
Final Remarks
. 151
References
. 151
Semiparametric and Nonparametric ARCH Modeling
. 157
Oliver
B. Linton
1
Introduction
. 157
2
The GARCH Model
. 157
3
The Nonparametric Approach
. 158
3.1
Error density
. 158
3.2
Functional form of volatility function
. 159
3.3
Relationship between mean and variance
. 162
3.4
Long memory
. 163
3.5
Locally stationary processes
. 164
3.6
Continuous time
. 164
4
Conclusion
. 165
References
. 165
Varying Coefficient GARCH Models
. 169
Pavel
Čížek
and Vladimir Spokoiny
1
Introduction
. 169
2
Conditional Heteroscedasticity Models
. 171
2.1
Model estimation
. 173
2.2
Test of homogeneity against a change-point
alternative
. 173
3
Adaptive Nonparametric Estimation
. 175
3.1
Adaptive choice of the interval of homogeneity
. 176
3.2
Parameters of the method and the implementation
details
. 176
4
Real-Data Application
. 179
4.1
Finite-sample critical values for the test of
homogeneity
. 179
4.2
Stock index S&P
500. 180
5
Conclusion
. 183
References
. 183
Extreme Value Theory for GARCH Processes
. 187
Richard A. Davis and Thomas Mikosch
1
The Model
. 187
2
Strict Stationarity and Mixing Properties
. 188
3
Embedding a GARCH Process in a Stochastic Recurrence
Equation
. 189
4
The Tails of a GARCH Process
. 190
5
Limit Theory for Extremes
. 194
5.1
Convergence of maxima
. 194
Contents xi
5.2
Convergence
of point processes
. 195
5.3
The behavior of the sample autocovariance function
197
References-
. 199
Multivariate GARCH Models
. 201
Annastiina Silvennoinen and
Timo
Teräsvirta
1
Introduction
. 201
2
Models
. 203
2.1
Models of the conditional covariance matrix
. 204
2.2
Factonmodels
. 207
2.3
Models of conditional variances and correlations
. . 210
2.4
Non-parametric and semiparametric approaches
. 215
3
Statistical Properties
. 218
4
Hyppthesis Testing in Multivariate GARCH Models
. 218
4.1
General misspecification tests
. 219
4.2 '
Tests for extensions of the CCC-GARCH model
. 221
5
An Application
. 222
6
Final Remarks
. 224
References
. 226
Part II Recent Developments in Stochastic Volatility Modeling
Stochastic Volatility: Origins and Overview
. 233
Neil Shephard and
Torben G.
Andersen
1
Introduction
. 233
2
The Origin of SV Models
. 235
3
Second Generation Model Building
. 240
3.1
Univariate models
. 240
3.2
Multivariate models
. 241
4
Inference Based on Return Data
. 242
4.1
Moment-based inference
. 242
4.2
Simulation-based inference
. 243
5
Options
. 246
5.1
Models
. 246
6
Realized Volatility
. 247
References
. 250
Probabilistic Properties of Stochastic Volatility Models
. 255
Richard A. Davis and Thomas Mikosch
1
The Model
. 255
2
Stationarity, Ergodicity and Strong Mixing
. 256
2.1
Strict stationarity
. 256
2.2
Ergodicity and strong mixing
. 257
3
The Covariance Structure
. 258
4
Moments and Tails
. 261
5
Asymptotic Theory for the Sample ACVF and ACF
. 263
xii
Contents
References
. 266
Moment—Based Estimation of Stochastic Volatility Models
. 269
Eric Renault
1
Introduction
. 270
2
The Use of a Regression Model to Analyze Fluctuations in
Variance
. 272
2.1
The linear regression model for conditional variance
272
2.2
The SR-SARV(p) model
. 274
2.3
The Exponential SARV model
. 277
2.4
Other parametric SARV models
. 279
3
Implications of SV Model Specification for Higher Order
Moments
. 281
3.1
Fat tails and variance of the variance
. 281
3.2
Skewness, feedback and leverage effects
. 284
4
Continuous Time Models
. 286
4.1
Measuring volatility
. 287
4.2
Moment-based estimation with realized volatility
. 288
4.3
Reduced form models of volatility
. 292
4.4
High frequency data with random times separating
successive observations
. 293
5
Simulation-Based Estimation
. 295
5.1
Simulation-based bias correction
. 296
5.2
Simulation-based indirect inference
. 298
5.3
Simulated method of moments
. 300
5.4
Indirect inference in presence of misspecification
. . 304
6
Concluding Remarks
. 305
References
. 307
Parameter Estimation and Practical Aspects of Modeling
Stochastic Volatility
. 313
Borus Jungbacker and Siem
Jan Koopman
1
Introduction
. 313
2
A Quasi-Likelihood Analysis Based on
Kalman
Filter
Methods
. 316
2.1
Kalman
filter for prediction and likelihood
evaluation
. 319
2.2
Smoothing methods for the conditional mean,
variance and mode
. 320
2.3
Practical considerations for analyzing the
linearized SV model
. 321
3
A Monte Carlo Likelihood Analysis
. 322
3.1
Construction of a proposal density
. 323
3.2
Sampling from the importance density and Monte
Carlo likelihood
. 325
4
Some Generalizations of SV Models
. 327
Contents xiii
4.1 Basic SV
model
. 327
4.2 Multiple
volatility factors.
328
4.3 Regression
and fixed effects .
329
4.4
Heavy-tailed innovations
. 330
4.5
Additive noise
. 331
4.6
Leverage effects
. 331
4.7
Stochastic volatility in mean
. 333
5
Empirical Illustrations
. 333
5.1
Standard
&
Poor's
500
stock index: volatility
estimation
. 334
5.2
Standard
h
Poor's
500
stock index: regression
effects
. 335
5.3
Daily changes in exchange rates: dollar-pound and
dollar-yen
. 337
6
Conclusions
. 340
Appendix
. 340
References
. 342
Stochastic Volatility Models with Long Memory
. 345
Clifford M. Hurvich and Philippe
Soulier
1
Introduction
. 345
2
Basic Properties of the LMSV Model
. 346
3
Parametric Estimation
. 347
4
Semiparametric Estimation
. 349
5
Generalizations of the LMSV Model
. 352
6
Applications of the LMSV Model
. 352
References
. 353
Extremes of Stochastic Volatility Models
. 355
Richard A. Davis and Thomas Mikosch
1
Introduction
. 355
2
The Tail Behavior of the Marginal Distribution
. 356
2.1
The light-tailed case
. 356
2.2
The heavy-tailed case
. 357
3
Point Process Convergence
. 358
3.1
Background
. 358
3.2
Application to stochastic volatility models
. 360
References
. 364
Multivariate Stochastic Volatility
. 365
Siddhartha Chib, Yasuhiro
Omori
and Manabu
Asai
1
Introduction
. 366
2
Basic MSV Model
. 369
2.1
No-leverage model
. 369
2.2
Leverage effects
. 373
2.3
Heavy-tailed measurement error models
. 377
xiv Contents
3
Factor MSV Model
. 379
3.1
Volatility
factor model
. 379
3.2
Mean
factor model
. 382
3.3
Bayesian analysis of mean
factor MSV model
. 384
4
Dynamic Correlation MSV
Model
. 388
4.1
Modeling by reparameterization
. 388
4.2
Matrix
exponential transformation.
390
4.3
Wishart
process .
391
5
Conclusion
. 396
References
. 397
Part III Topics in Continuous Time Processes
An Overview of Asset-Price Models
. 403
Peter J.
Brockwell
1
Introduction
. 404
2
Shortcomings of the BSM Model
. 409
3
A General Framework for Option Pricing
. 410
4
Some Non-Gaussian Models for Asset Prices
. 411
5
Further Models
. 415
References
. 416
Ornstein—Uhlenbeck Processes and Extensions
. 421
Ross A. Mailer,
Gernot Müller
and Alex Szimayer
1
Introduction
. 422
2
OU
Process Driven by Brownian Motion
. 422
3
Generalised
OU
Processes
. 424
3.1
Background on bivariate Levy processes
. 424
3.2
Levy
OU
processes
. 426
3.3
Self-decomposability, self-similarity, class L,
Lamperti transform
. 429
4
Discretisations
. 430
4.1
Autoregressive
representation, and perpetuities
. 430
4.2
Statistical issues: Estimation and hypothesis testing
431
4.3
Discretely sampled process
. 431
4.4
Approximating the COGARCH
. 432
5
Conclusion
. 435
References
. 435
Jump-Type Levy Processes
. 439
Ernst
Eberlein
1
Probabilistic Structure of Levy Processes
. 439
2
Distributional Description of Levy Processes
. 443
3
Financial Modeling
. 446
4
Examples of Levy Processes with Jumps
. 449
4.1
Poisson
and compound
Poisson
processes
. 449
Contents xv
4.2
Levy jump diffusion
. 450
4.3
Hyperbolic Levy processes
. 450
4.4
Generalized hyperbolic Levy processes
. 451
4.5
CGMY and variance gamma Levy processes
. 452
4.6
α
-Stable Levy processes
. 453
4.7
Meixner Levy processes
. 453
References
. 454
Levy—Driven Continuous—Time
ARMA
Processes
. 457
Peter J.
Brockwell
1
Introduction
. 458
2
Second-Order Levy-Driven CARMA Processes
. 460
3
Connections with Discrete-Time
ARMA
Processes
. 470
4
An Application to Stochastic Volatility Modelling
. 474
5
Continuous-Time GARCH Processes
. 476
6
Inference for CARMA Processes
. 478
References
. 479
Continuous Time Approximations to GARCH and Stochastic
Volatility Models
. 481
Alexander M. Lindner
1
Stochastic Volatility Models and Discrete GARCH
. 481
2
Continuous Time GARCH Approximations
. 482
2.1
Preserving the random recurrence equation property
483
2.2
The diffusion limit of Nelson
. 484
2.3
The COGARCH model
. 486
2.4
Weak GARCH processes
. 488
2.5
Stochastic delay equations
. 489
2.6
A continuous time GARCH model designed for
option pricing
. 490
3
Continuous Time Stochastic Volatility Approximations
. 491
3.1
Sampling a continuous time SV model at
equidistant times
. 491
3.2
Approximating a continuous time SV model
. 493
References
. 495
Maximum Likelihood and Gaussian Estimation of Continuous
Time Models in Finance
. 497
Peter C. B. Phillips and
Jun
Yu
1
Introduction
. 498
2
Exact ML Methods
. 499
2.1
ML based on the transition density
. 499
2.2
ML based on the continuous record likelihood
. 502
3
Approximate ML Methods Based on Transition Densities
. 503
3.1
The
Euler
approximation and refinements
. 504
3.2
Closed-form approximations
. 509
xvi Contents
3.3
Simulated infill ML methods
. 512
3.4
Other approaches
. 514
4
Approximate ML Methods Based on the Continuous
Record Likelihood and Realized Volatility
. 516
5
Monte Carlo Simulations
. 519
6
Estimation Bias Reduction Techniques
. 520
6.1
Jackknife estimation
. 521
6.2
Indirect inference estimation
. 522
7
Multivariate Continuous Time Models
. 524
8
Conclusions
. 527
References
. 527
Parametric Inference for Discretely Sampled Stochastic
Differential Equations
. 531
Michael S0rensen
1
Introduction
. 531
2
Asymptotics: Fixed Frequency
. 532
3
Likelihood Inference
. 536
4
Martingale Estimating Functions
. 538
5
Explicit Inference
. 543
6
High Frequency Asymptotics and Efficient Estimation
. 548
References
. 551
Realized Volatility
. 555
Torben
G.
Andersen and
Luca Benzoni
1
Introduction
. 556
2
Measuring Mean Return versus Return Volatility
. 557
3
Quadratic Return Variation and Realized Volatility
. 559
4
Conditional Return Variance and Realized Volatility
. 561
5
Jumps and Bipower Variation
. 563
6
Efficient Sampling versus
Microstructure
Noise
. 564
7
Empirical Applications
. 566
7.1
Early work
. 566
7.2
Volatility forecasting
. 567
7.3
The distributional implications of the no-arbitrage
condition
. 568
7.4
Multivariate quadratic variation measures
. 568
7.5
Realized volatility, model specification and
estimation
. 569
8
Possible Directions for Future Research
. 569
References
. 570
Contents xvii
Estimating Volatility in the Presence of Market
Microstructure
Noise: A Review of the Theory and Practical
Considerations
. 577
Yacine Ai't-Sahalia and Per A. Mykland
1
Introduction
. 577
2
Estimators
. 579
2.1
The parametric volatility case
. 579
2.2
The nonparametric stochastic volatility case
. 582
3
Refinements
. 585
3.1
Multi-scale realized volatility
. 585
3.2
Non-equally spaced observations
. 586
3.3
Serially-correlated noise
. 587
3.4
Noise correlated with the price signal
. 589
3.5
Small sample edgeworth expansions
. 591
3.6
Robustness to departures from the data generating
process assumptions
. 591
4
Computational and Practical Implementation
Considerations
. 592
4.1
Calendar, tick and transaction time sampling
. 592
4.2
Transactions or quotes
. 592
4.3
Selecting the number of subsamples in practice
. 593
4.4
High versus low liquidity assets
. 594
4.5
Robustness to data cleaning procedures
. 594
4.6
Smoothing by averaging
. 595
5
Conclusions
. 596
References
. 596
Option Pricing
. 599
Jan Kallsen
1
Introduction
. 599
2
Arbitrage Theory from a Market Perspective
. 600
3
Martingale Modelling
. 603
4
Arbitrage Theory from an Individual Perspective
. 605
5
Quadratic Hedging
. 606
6
Utility Indifference Pricing
. 607
References
. 611
An Overview of Interest Rate Theory
. 615
Tomas Björk
1
General Background
. 615
2
Interest Rates and the Bond Market
. 618
3
Factor Models
. 620
4
Modeling under the Objective Measure
Ρ
. 621
4.1
The market price of risk
. 622
5
Martingale Modeling
. 623
5.1 Affine
term structures
. 624
xviii
Contents
5.2
Short rate models
. 625
5.3
Inverting the yield curve
. 627
6
Forward Rate Models
. 629
6.1
The HJM drift condition
. 629
6.2
The Musiela parameterization
. 631
7
Change of Numeraire
. 632
7.1
Generalities
. 632
7.2
Forward measures
. 635
7.3
Option pricing
. 635
8
LIBOR
Market Models
. 638
8.1
Caps: definition and market practice
. 638
8.2
The
LIBOR
market model
. 640
8.3
Pricing caps in the
LIBOR
model
. 641
8.4
Terminal measure dynamics and existence
. 641
9
Potentials and Positive Interest
. 642
9.1
Generalities
. 642
9.2
The Flesaker-Hughston fractional model
. 644
9.3
Connections to the Riesz decomposition
. 646
9.4
Conditional variance potentials
. 647
9.5
The Rogers Markov potential approach
. 648
10
Notes
. 650
References
. 651
Extremes of Continuous—Time Processes
. 653
Vicky
Fasen
1
Introduction
. 653
2
Extreme Value Theory
. 654
2.1
Extremes of discrete-time processes
. 655
2.2
Extremes of continuous-time processes
. 656
2.3
Extensions
. 656
3
The Generalized Ornstein-Uhlenbeck (GOU)-Model
. 657
3.1
The Ornstein-Uhlenbeck process
. 658
3.2
The non-Ornstein-Uhlenbeck process
. 659
3.3
Comparison of the models
. 661
4
Tail Behavior of the Sample Maximum
. 661
5
Running sample Maxima and Extremal Index Function
. 663
6
Conclusion
. 664
References
. 665
Part IV Topics in Cointegration and Unit Roots
Cointegration: Overview and Development
. 671
Soren Johansen
1
Introduction
. 671
1.1
Two examples of cointegration
. 672
Contents xix
1.2
Three ways of modeling
cointegration
. 673
1.3
The model analyzed in this article
. 674
2
Integration,
Cointegration
and Granger's Representation
Theorem
. 675
2.1
Definition of integration and
cointegration
. 675
2.2
The Granger Representation Theorem
. 677
2.3
Interpretation of cointegrating coefficients
. 678
3
Interpretation of the
1(1)
Model for
Cointegration
. 680
3.1
The models H(r)
. 680
3.2
Normalization of parameters of the J(l) model.
. 681
3.3
Hypotheses on long-run coefficients
. 681
3.4
Hypotheses on adjustment coefficients
. 682
4
Likelihood Analysis of the
/(1)
Model
. 683
4.1
Checking the specifications of the model
. 683
4.2
Reduced rank regression
. 683
4.3
Maximum likelihood estimation in the
1(1)
model
and derivation of the rank test
. 684
5
Asymptotic Analysis
. 686
5.1
Asymptotic distribution of the rank test
. 686
5.2
Asymptotic distribution of the estimators
. 687
6
Further Topics in the Area of Cointegration
. 689
6.1
Rational expectations
. 689
6.2
The
1(2)
model
. 690
7
Concluding Remarks
. 691
References
. 692
Time Series with Roots on or Near the Unit Circle
. 695
Ngai Hang Chan
1
Introduction
. 695
2
Unit Root Models
. 696
2.1
First order
. 697
2.2
AR(p) models
. 699
2.3
Model selection
. 702
3
Miscellaneous Developments and Conclusion
. 704
References
. 705
Fractional Cointegration
. 709
Willa W.
Chen and Clifford M. Hurvich
1
Introduction
. 709
2
Type I and Type II Definitions of I{d)
. 710
2.1
Univariate series
. 710
2.2
Multivariate series
. 713
3
Models for Fractional Cointegration
. 715
3.1
Parametric models
. 716
4
Tapering
. 717
5
Semiparametric Estimation of the Cointegrating Vectors
. 718
xx Contents
6
Testing
for
Cointegration;
Determination of Cointegrating
Rank
. 723
References
. 724
Part V Special Topics
-
Risk
Different Kinds of Risk
. 729
Paul Embrechts,
Hansjörg Furrer
and Roger
Kaufmann
1
Introduction
. 729
2
Preliminaries
. 732
2.1
Risk measures
. 732
2.2
Risk factor mapping and loss portfolios
. 735
3
Credit Risk
. 736
3.1
Structural models
. 737
3.2
Reduced form models
. 737
3.3
Credit risk for regulatory reporting
. 738
4
Market Risk
. 738
4.1
Market risk models
. 739
4.2
Conditional versus unconditional modeling
. 740
4.3
Scaling of market risks
. 740
5
Operational Risk
. 742
6
Insurance Risk
. 744
6.1
Life insurance risk
. 744
6.2
Modeling parametric life insurance risk
. 745
6.3
Non-life insurance risk
. 747
7
Aggregation of Risks
. 748
8
Summary
. 749
References
. 750
Value-at-Risk Models
. 753
Peter
Christoffersen
1
Introduction and Stylized Facts
. 753
2
A Univariate Portfolio Risk Model
. 755
2.1
The dynamic conditional variance model
. 756
2.2
Univariate filtered historical simulation
. 757
2.3
Univariate extensions and alternatives
. 759
3
Multivariate, Base-Asset Return Methods
. 760
3.1
The dynamic conditional correlation model
. 761
3.2
Multivariate filtered historical simulation
. 761
3.3
Multivariate extensions and alternatives
. 763
4
Summary and Further Issues
. 764
References
. 764
Contents xxi
Copula—
Based Models for Financial Time Series
. 767
Andrew J.
Patton
1
Introduction
. 767
2
Copula-Based Models for Time Series
. 771
2.1
Copula-based models for multivariate time series
. 772
2.2
Copula-based models for univariate time series
. 773
2.3
Estimation and evaluation of copula—based models
for time series
. 775
3
Applications of Copulas in Finance and Economics
. 778
4
Conclusions and Areas for Future Research
. 780
References
. 781
Credit Risk Modeling
. 787
David
Lando
1
Introduction
. 787
2
Modeling the Probability of Default and Recovery
. 788
3
Two Modeling Frameworks
. 789
4
Credit Default Swap Spreads
. 792
5
Corporate Bond Spreads and Bond Returns
. 795
6
Credit Risk Correlation
. 795
References
. 797
Part V Special Topics
-
Time Series Methods
Evaluating Volatility and Correlation Forecasts
. 801
Andrew J.
Patton
and Kevin Sheppard
1
Introduction
. 801
1.1
Notation
. 803
2
Direct Evaluation of Volatility Forecasts
. 804
2.1
Forecast optimality tests for univariate volatility
forecasts
. 805
2.2
MZ regressions on transformations of 3f
. 806
2.3
Forecast optimality tests for multivariate volatility
forecasts
. 807
2.4
Improved MZ regressions using generalised least
squares
. 808
2.5
Simulation study
. 810
3
Direct Comparison of Volatility Forecasts
. 815
3.1
Pair-wise comparison of volatility forecasts
. 816
3.2
Comparison of many volatility forecasts
. 817
3.3
'Robust' loss functions for forecast comparison
. 818
3.4
Problems arising from 'non-robust' loss functions
. 819
3.5
Choosing a "robust" loss function
. 823
3.6
Robust loss functions for multivariate volatility
comparison
. 825
xxii
Contents
3.7
Direct comparison via encompassing tests
. 828
4
Indirect Evaluation of Volatility Forecasts
. 830
4.1
Portfolio optimisation
. 831
4.2
Tracking error minimisation
. 832
4.3
Other methods of indirect evaluation
. 833
5
Conclusion
. 835
References
. 835
Structural Breaks in Financial Time Series
. 839
Elena
Andreou
and Eric Ghysels
1
Introduction
. 839
2
Consequences of Structural Breaks in Financial Time Series
840
3
Methods for Detecting Structural Breaks
. 843
3.1
Assumptions
. 844
3.2
Historical and sequential partial-sums
change-point statistics
. 845
3.3
Multiple breaks tests
. 848
4
Change-Point Tests in Returns and Volatility
. 851
4.1
Tests based on empirical volatility processes
. 851
4.2
Empirical processes and the SV class of models
. 854
4.3
Tests based on parametric volatility models
. 858
4.4
Change-point tests in long memory
. 861
4.5
Change-point in the distribution
. 863
5
Conclusions
. 865
References
. 866
An Introduction to Regime Switching Time Series Models
. 871
Theis
Lange
and Anders Rahbek
1
Introduction
. 871
1.1
Markov and observation switching
. 872
2
Switching ARCH and CVAR
. 874
2.1
Switching ARCH and GARCH
. 875
2.2
Switching CVAR
. 877
3
Likelihood-Based Estimation
. 879
4
Hypothesis Testing
. 881
5
Conclusion
. 883
References
. 883
Model Selection
. 889
Hannes
Leeb and
Benedikt
M.
Pötscher
1
The Model Selection Problem
. 889
1.1
A general formulation
. 889
1.2
Model selection procedures
. 892
2
Properties of Model Selection Procedures and of
Post-Model-Selection Estimators
. 900
2.1
Selection probabilities and consistency
. 900
Contents xxiii
2.2
Risk properties of post-model-selection estimators
903
2.3
Distributional properties of post-model-selection
estimators
. 906
3
Model Selection in Large- or Infinite-Dimensional Models
. 908
4
Related Procedures Based on Shrinkage and Model
Averaging
. 915
5
Further Reading
. 916
References
. 916
Nonparametric Modeling in Financial Time Series
. 927
Jürgen Franke,
Jens-Peter Kreiss and Enno
Mammen
1
Introduction
. 927
2
Nonparametric Smoothing for Time Series
. 929
2.1
Density estimation via kernel smoothing
. 929
2.2
Kernel smoothing regression
. 932
2.3
Diffusions
. 935
3
Testing
. 937
4
Nonparametric Quantile Estimation
. 940
5
Advanced Nonparametric Modeling
. 942
6
Sieve Methods
. 944
References
. 947
Modelling Financial High Frequency Data Using Point
Processes
. 953
Luc Bauwens and
Nikolaus Hautsch
1
Introduction
. 953
2
Fundamental Concepts of Point Process Theory
. 954
2.1
Notation and definitions
. 955
2.2
Compensators, intensities, and hazard rates
. 955
2.3
Types and representations of point processes
. 956
2.4
The random time change theorem
. 959
3
Dynamic Duration Models
. 960
3.1
ACD models
. 960
3.2
Statistical inference
. 963
3.3
Other models
. 964
3.4
Applications
. 965
4
Dynamic Intensity Models
. 967
4.1
Hawkes processes
. 967
4.2
Autoregressive
intensity processes
. 969
4.3
Statistical inference
. 973
4.4
Applications
. 975
References
. 976
xxiv
Contents
Part V Special Topics
-
Simulation Based Methods
Resampling and
Subsampling
for Financial Time Series
. 983
Efstathios Paparoditis and Dimitris
N.
Politis
1
Introduction
. 983
2
Resampling the Time Series of Log-Returns
. 986
2.1
Parametric methods based on i.i.d. resampling of
residuals
. 986
2.2
Nonparametric methods based on i.i.d. resampling
of residuals
. 988
2.3
Markovian bootstrap
. 990
3
Resampling Statistics Based on the Time Series of
Log-Returns
. 992
3.1
Regression bootstrap
. 992
3.2
Wild bootstrap
. 993
3.3
Local bootstrap
. 994
4
Subsampling
and Self—Normalization
. 995
References
. 997
Markov Chain Monte Carlo
.1001
Michael Johannes and Nicholas Poison
1
Introduction
.1001
2
Overview of MCMC Methods
.1002
2.1
Clifford-Hammersley theorem
.1002
2.2
Constructing Markov chains
.1003
2.3
Convergence theory
.1007
3
Financial Time Series Examples
.1008
3.1
Geometric Brownian motion
.1008
3.2
Time-varying expected returns
.1009
3.3
Stochastic volatility models
.1010
4
Further Reading
.1011
References
.1012
Particle Filtering
.1015
Michael Johannes and Nicholas Poison
1
Introduction
.1015
2
A Motivating Example
.1017
3
Particle Filters
.1019
3.1
Exact particle filtering
.1021
3.2
SIR
.1024
3.3
Auxiliary particle filtering algorithms
.1026
4
Further Reading
.1027
References
.1028
Index
.1031 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Andersen, Torben Davis, Richard A. 1952- Kreiß, Jens-Peter 1958- Mikosch, Thomas 1955- |
author2_role | edt edt edt edt |
author2_variant | t a ta r a d ra rad j p k jpk t m tm |
author_GND | (DE-588)128603259 (DE-588)173920608 (DE-588)110698444 (DE-588)141029412 (DE-588)128388528 |
author_facet | Andersen, Torben Davis, Richard A. 1952- Kreiß, Jens-Peter 1958- Mikosch, Thomas 1955- |
building | Verbundindex |
bvnumber | BV022717337 |
classification_rvk | QH 237 SK 845 |
classification_tum | WIR 170f MAT 634f |
ctrlnum | (OCoLC)320532088 (DE-599)DNB984910786 |
dewey-full | 332.0151955 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 332 - Financial economics |
dewey-raw | 332.0151955 |
dewey-search | 332.0151955 |
dewey-sort | 3332.0151955 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200529 c 4500</leader><controlfield tag="001">BV022717337</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220411 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070905s2009 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984910786</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540712961</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-540-71296-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662518373</subfield><subfield code="c">softcover</subfield><subfield code="9">978-3-662-51837-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)320532088</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984910786</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-945</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">332.0151955</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 845</subfield><subfield code="0">(DE-625)143262:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WIR 170f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 634f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">330</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of financial time series</subfield><subfield code="c">Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Heidelberg</subfield><subfield code="b">Springer</subfield><subfield code="c">[2009]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxix, 1050 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finance</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-series analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kreditmarkt</subfield><subfield code="0">(DE-588)4073788-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andersen, Torben</subfield><subfield code="0">(DE-588)128603259</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Davis, Richard A.</subfield><subfield code="d">1952-</subfield><subfield code="0">(DE-588)173920608</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kreiß, Jens-Peter</subfield><subfield code="d">1958-</subfield><subfield code="0">(DE-588)110698444</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikosch, Thomas</subfield><subfield code="d">1955-</subfield><subfield code="0">(DE-588)141029412</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Engle, Robert F.</subfield><subfield code="d">1942-</subfield><subfield code="0">(DE-588)128388528</subfield><subfield code="4">wpr</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-71297-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015923107&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015923107</subfield></datafield></record></collection> |
id | DE-604.BV022717337 |
illustrated | Illustrated |
index_date | 2024-07-02T18:28:55Z |
indexdate | 2024-07-09T21:04:23Z |
institution | BVB |
isbn | 9783540712961 9783662518373 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015923107 |
oclc_num | 320532088 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-384 DE-521 DE-20 DE-N2 DE-11 DE-945 DE-19 DE-BY-UBM DE-703 DE-91G DE-BY-TUM DE-188 |
owner_facet | DE-355 DE-BY-UBR DE-384 DE-521 DE-20 DE-N2 DE-11 DE-945 DE-19 DE-BY-UBM DE-703 DE-91G DE-BY-TUM DE-188 |
physical | xxix, 1050 Seiten Illustrationen, Diagramme |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | Springer |
record_format | marc |
spelling | Handbook of financial time series Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle Berlin ; Heidelberg Springer [2009] © 2009 xxix, 1050 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Finance Statistical methods Time-series analysis Zeitreihenanalyse (DE-588)4067486-1 gnd rswk-swf Kreditmarkt (DE-588)4073788-3 gnd rswk-swf Kreditmarkt (DE-588)4073788-3 s Zeitreihenanalyse (DE-588)4067486-1 s b DE-604 Andersen, Torben (DE-588)128603259 edt Davis, Richard A. 1952- (DE-588)173920608 edt Kreiß, Jens-Peter 1958- (DE-588)110698444 edt Mikosch, Thomas 1955- (DE-588)141029412 edt Engle, Robert F. 1942- (DE-588)128388528 wpr Erscheint auch als Online-Ausgabe 978-3-540-71297-8 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015923107&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Handbook of financial time series Finance Statistical methods Time-series analysis Zeitreihenanalyse (DE-588)4067486-1 gnd Kreditmarkt (DE-588)4073788-3 gnd |
subject_GND | (DE-588)4067486-1 (DE-588)4073788-3 |
title | Handbook of financial time series |
title_auth | Handbook of financial time series |
title_exact_search | Handbook of financial time series |
title_exact_search_txtP | Handbook of financial time series |
title_full | Handbook of financial time series Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle |
title_fullStr | Handbook of financial time series Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle |
title_full_unstemmed | Handbook of financial time series Torben G. Andersen, Richard A. Davis, Jens-Peter Kreiß, Thomas Mikosch, editors. Preamble by Nobel prize winner Robert F. Engle |
title_short | Handbook of financial time series |
title_sort | handbook of financial time series |
topic | Finance Statistical methods Time-series analysis Zeitreihenanalyse (DE-588)4067486-1 gnd Kreditmarkt (DE-588)4073788-3 gnd |
topic_facet | Finance Statistical methods Time-series analysis Zeitreihenanalyse Kreditmarkt |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015923107&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT andersentorben handbookoffinancialtimeseries AT davisricharda handbookoffinancialtimeseries AT kreißjenspeter handbookoffinancialtimeseries AT mikoschthomas handbookoffinancialtimeseries AT englerobertf handbookoffinancialtimeseries |