Mathematicall magick: or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
London
Printed by M.F. for Sa: Gellibrand at the brasen Serpent in Pauls Church-yard
1648
|
Schlagworte: | |
Online-Zugang: | BSB01 LCO01 SBR01 UBA01 UBG01 UBM01 UBR01 UBT01 UEI01 UER01 Volltext |
Beschreibung: | "The epistle" signed: John Wilkins. - Reproduction of the original in the British Library. - Thomason, E.1095[1]. - Wing (2nd ed.), W2198 Archimedes, or mechanicall powers -- Dædalus, or mechanicall motions |
Beschreibung: | Online-Ressource ill |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV022703847 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 070831s1648 |||| o||u| ||||||eng d | ||
035 | |a (OCoLC)644516042 | ||
035 | |a (DE-599)BVBBV022703847 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-384 |a DE-473 |a DE-703 |a DE-824 |a DE-29 |a DE-19 |a DE-355 |a DE-155 |a DE-70 | ||
100 | 1 | |a Wilkins, John |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematicall magick |b or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |c By I.W., M.A |
246 | 1 | 3 | |a Vvonders that may be performed by mechanicall geometry |
246 | 1 | 3 | |a Wonders that may be performed by mechanicall geometry |
246 | 1 | 3 | |a Archimedes, or mechanicall powers |
246 | 1 | 3 | |a Dædalus, or mechanicall motions |
264 | 1 | |a London |b Printed by M.F. for Sa: Gellibrand at the brasen Serpent in Pauls Church-yard |c 1648 | |
300 | |a Online-Ressource |b ill | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a "The epistle" signed: John Wilkins. - Reproduction of the original in the British Library. - Thomason, E.1095[1]. - Wing (2nd ed.), W2198 | ||
500 | |a Archimedes, or mechanicall powers -- Dædalus, or mechanicall motions | ||
533 | |a Online-Ausgabe |b Ann Arbor, Mich |c UMI |d 1999- |f Early English books online |n Sonstige Standardnummer des Gesamttitels: 20723581 |n Digital version of: (Thomason Tracts ; 162:E1095[1]) |7 s1999 | ||
650 | 4 | |a Geometry - Early works to 1800 | |
650 | 4 | |a Mechanics - Early works to 1800 | |
650 | 4 | |a Physics - Early works to 1800 | |
650 | 4 | |a Geometry |v Early works to 1800 | |
650 | 4 | |a Mechanics |v Early works to 1800 | |
650 | 4 | |a Physics |v Early works to 1800 | |
776 | 0 | 8 | |i Reproduktion von |a Wilkins, John |t Mathematicall magick |d 1648 |
856 | 4 | 0 | |u https://search.proquest.com/docview/2240949323 |3 Volltext |
912 | |a ZDB-1-EEB | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015909706 | ||
966 | e | |u https://search.proquest.com/docview/2240949323 |l BSB01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l LCO01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l SBR01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UBA01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UBG01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UBM01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UBR01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UBT01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UEI01 |p ZDB-1-EEB |x Verlag |3 Volltext | |
966 | e | |u https://search.proquest.com/docview/2240949323 |l UER01 |p ZDB-1-EEB |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804136920116101120 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wilkins, John |
author_facet | Wilkins, John |
author_role | aut |
author_sort | Wilkins, John |
author_variant | j w jw |
building | Verbundindex |
bvnumber | BV022703847 |
collection | ZDB-1-EEB |
ctrlnum | (OCoLC)644516042 (DE-599)BVBBV022703847 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03161nmm a2200553 c 4500</leader><controlfield tag="001">BV022703847</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070831s1648 |||| o||u| ||||||eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)644516042</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022703847</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-70</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wilkins, John</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematicall magick</subfield><subfield code="b">or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language</subfield><subfield code="c">By I.W., M.A</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Vvonders that may be performed by mechanicall geometry</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Wonders that may be performed by mechanicall geometry</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Archimedes, or mechanicall powers</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Dædalus, or mechanicall motions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">Printed by M.F. for Sa: Gellibrand at the brasen Serpent in Pauls Church-yard</subfield><subfield code="c">1648</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">ill</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"The epistle" signed: John Wilkins. - Reproduction of the original in the British Library. - Thomason, E.1095[1]. - Wing (2nd ed.), W2198</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Archimedes, or mechanicall powers -- Dædalus, or mechanicall motions</subfield></datafield><datafield tag="533" ind1=" " ind2=" "><subfield code="a">Online-Ausgabe</subfield><subfield code="b">Ann Arbor, Mich</subfield><subfield code="c">UMI</subfield><subfield code="d">1999-</subfield><subfield code="f">Early English books online</subfield><subfield code="n">Sonstige Standardnummer des Gesamttitels: 20723581</subfield><subfield code="n">Digital version of: (Thomason Tracts ; 162:E1095[1])</subfield><subfield code="7">s1999</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry - Early works to 1800</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics - Early works to 1800</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics - Early works to 1800</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield><subfield code="v">Early works to 1800</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mechanics</subfield><subfield code="v">Early works to 1800</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield><subfield code="v">Early works to 1800</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Reproduktion von</subfield><subfield code="a">Wilkins, John</subfield><subfield code="t">Mathematicall magick</subfield><subfield code="d">1648</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-EEB</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015909706</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">LCO01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">SBR01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UEI01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.proquest.com/docview/2240949323</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-1-EEB</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022703847 |
illustrated | Not Illustrated |
index_date | 2024-07-02T18:26:18Z |
indexdate | 2024-07-09T21:04:03Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015909706 |
oclc_num | 644516042 |
open_access_boolean | |
owner | DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-824 DE-29 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-155 DE-BY-UBR DE-70 |
owner_facet | DE-12 DE-384 DE-473 DE-BY-UBG DE-703 DE-824 DE-29 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-155 DE-BY-UBR DE-70 |
physical | Online-Ressource ill |
psigel | ZDB-1-EEB |
publishDate | 1648 |
publishDateSearch | 1648 |
publishDateSort | 1648 |
publisher | Printed by M.F. for Sa: Gellibrand at the brasen Serpent in Pauls Church-yard |
record_format | marc |
spelling | Wilkins, John Verfasser aut Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language By I.W., M.A Vvonders that may be performed by mechanicall geometry Wonders that may be performed by mechanicall geometry Archimedes, or mechanicall powers Dædalus, or mechanicall motions London Printed by M.F. for Sa: Gellibrand at the brasen Serpent in Pauls Church-yard 1648 Online-Ressource ill txt rdacontent c rdamedia cr rdacarrier "The epistle" signed: John Wilkins. - Reproduction of the original in the British Library. - Thomason, E.1095[1]. - Wing (2nd ed.), W2198 Archimedes, or mechanicall powers -- Dædalus, or mechanicall motions Online-Ausgabe Ann Arbor, Mich UMI 1999- Early English books online Sonstige Standardnummer des Gesamttitels: 20723581 Digital version of: (Thomason Tracts ; 162:E1095[1]) s1999 Geometry - Early works to 1800 Mechanics - Early works to 1800 Physics - Early works to 1800 Geometry Early works to 1800 Mechanics Early works to 1800 Physics Early works to 1800 Reproduktion von Wilkins, John Mathematicall magick 1648 https://search.proquest.com/docview/2240949323 Volltext |
spellingShingle | Wilkins, John Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language Geometry - Early works to 1800 Mechanics - Early works to 1800 Physics - Early works to 1800 Geometry Early works to 1800 Mechanics Early works to 1800 Physics Early works to 1800 |
title | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |
title_alt | Vvonders that may be performed by mechanicall geometry Wonders that may be performed by mechanicall geometry Archimedes, or mechanicall powers Dædalus, or mechanicall motions |
title_auth | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |
title_exact_search | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |
title_exact_search_txtP | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |
title_full | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language By I.W., M.A |
title_fullStr | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language By I.W., M.A |
title_full_unstemmed | Mathematicall magick or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language By I.W., M.A |
title_short | Mathematicall magick |
title_sort | mathematicall magick or the vvonders that may be performed by mechanicall geometry in two books concerning mechanicall povvers motions being one of the most easie pleasant usefull and yet most neglected part of mathematicks not before treated of in this language |
title_sub | or, the vvonders that may be performed by mechanicall geometry. In two books. Concerning mechanicall povvers. motions. Being one of the most easie, pleasant, usefull, (and yet most neglected) part of mathematicks. Not before treated of in this language |
topic | Geometry - Early works to 1800 Mechanics - Early works to 1800 Physics - Early works to 1800 Geometry Early works to 1800 Mechanics Early works to 1800 Physics Early works to 1800 |
topic_facet | Geometry - Early works to 1800 Mechanics - Early works to 1800 Physics - Early works to 1800 Geometry Early works to 1800 Mechanics Early works to 1800 Physics Early works to 1800 |
url | https://search.proquest.com/docview/2240949323 |
work_keys_str_mv | AT wilkinsjohn mathematicallmagickorthevvondersthatmaybeperformedbymechanicallgeometryintwobooksconcerningmechanicallpovversmotionsbeingoneofthemosteasiepleasantusefullandyetmostneglectedpartofmathematicksnotbeforetreatedofinthislanguage AT wilkinsjohn vvondersthatmaybeperformedbymechanicallgeometry AT wilkinsjohn wondersthatmaybeperformedbymechanicallgeometry AT wilkinsjohn archimedesormechanicallpowers AT wilkinsjohn dædalusormechanicallmotions |