Quantum physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English French |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2007
|
Ausgabe: | Reprint. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIX, 585 S. Ill., graph. Darst. |
ISBN: | 9780521852777 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022657143 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 070829s2007 ad|| b||| 00||| eng d | ||
020 | |a 9780521852777 |9 978-0-521-85277-7 | ||
035 | |a (OCoLC)315591422 | ||
035 | |a (DE-599)BVBBV022657143 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 1 | |a eng |h fre | |
049 | |a DE-19 |a DE-355 | ||
084 | |a UK 1000 |0 (DE-625)145785: |2 rvk | ||
084 | |a PHY 020f |2 stub | ||
100 | 1 | |a Le Bellac, Michel |e Verfasser |4 aut | |
240 | 1 | 0 | |a Physique quantique |
245 | 1 | 0 | |a Quantum physics |c Michel Le Bellac |
250 | |a Reprint. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2007 | |
300 | |a XIX, 585 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenmechanik |0 (DE-588)4047989-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4006432-3 |a Bibliografie |2 gnd-content | |
689 | 0 | 0 | |a Quantenmechanik |0 (DE-588)4047989-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015863060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015863060 |
Datensatz im Suchindex
_version_ | 1804136836912644096 |
---|---|
adam_text | Contents
Foreword by Claude Cohen-Tannoudji page
xiii
Preface
xv
Table of units and physical constants
xix
1
Introduction
1
1.1
The structure of matter
]
1.1.1
Length scales from cosmology to elementary particles
1
1.1.2
States of matter
2
1.1.3
Elementary constituents
5
1.1.4
The fundamental interactions
7
1.2
Classical and quantum physics
9
1.3
A bit of history
13
1.3.1
Black-body radiation
13
1.3.2
The photoelectric effect
16
1.4
Waves and particles: interference
17
1.4.1
The
de
Broglie hypothesis
17
1.4.2
Diffraction and interference of cold neutrons
18
1.4.3
Interpretation of the experiments
21
1.4.4 Heisenberg
inequalities I
24
1.5
Energy levels
27
1.5.1
Energy levels in classical mechanics and classical models
of the atom
27
1.5.2
The Bohr atom
29
1.5.3
Orders of magnitude in atomic physics
31
1.6
Exercises
33
1.7
Further reading
40
2
The mathematics of quantum mechanics I: finite dimension
42
2.1
Hubert spaces of finite dimension
42
2.2
Linear operators on
К
44
2.2.1
Linear, Hermitian, unitary operators
44
2.2.2
Projection operators and Dirac notation
46
Contents
2.3
Spectral
decomposition of Hermitian operators
48
2.3.1
Diagonalization of a Hermitian operator
48
2.3.2
Diagonalization of a
2
χ
2
Hermitian matrix
50
2.3.3
Complete sets of compatible operators
51
2.3.4
Unitary operators and Hermitian operators
52
2.3.5
Operator-valued functions
53
2.4
Exercises
54
2.5
Further reading
60
Polarization: photons and spin-
1/2
particles
61
3.1
The polarization of light and photon polarization
61
3.1.1
The polarization of an electromagnetic wave
61
3.1.2
The photon polarization
68
3.1.3
Quantum cryptography
73
3.2
Spin
1/2 75
3.2.1
Angular momentum and magnetic moment in classical physics
75
3.2.2
The Stern-Gerlach experiment and Stern-Gerlach filters
77
3.2.3
Spin states of arbitrary orientation
80
3.2.4
Rotation of spin
1/2 82
3.2.5
Dynamics and time evolution
87
3.3
Exercises
89
3.4
Further reading
95
Postulates of quantum physics
96
4.1
State vectors and physical properties
96
4.1.1
The superposition principle
96
4.1.2
Physical properties and measurement
98
4.1.3 Heisenberg
inequalities II
104
4.2
Time evolution
105
4.2.1
The evolution equation
105
4.2.2
The evolution operator
108
4.2.3
Stationary states
109
4.2.4
The temporal
Heisenberg
inequality
111
4.2.5
The
Schrödinger
and
Heisenberg
pictures
114
4.3
Approximations and modeling
115
4.4
Exercises
116
4.5
Further reading
124
Systems with a finite number of levels
125
5.1
Elementary quantum chemistry
125
5.1.1
The
ethylene
molecule
125
5.1.2
The benzene molecule
128
Contents
vii
5.2
Nuclear
magnetic
resonance
(NMR) 132
5.2.1
A spin
1/2
in a periodic magnetic field
132
5.2.2
Rabi
oscillations
133
5.2.3
Principles of NMR and
MRI
137
5.3
The ammonia molecule
139
5.3.1
The ammonia molecule as a two-level system
139
5.3.2
The molecule in an electric field: the ammonia
maser
141
5.3.3
Off-resonance transitions
146
5.4
The two-level atom
149
5.5
Exercises
152
5.6
Further reading
157
6
Entangled states
158
6.1
The tensor product of two vector spaces
158
6.1.1
Definition and properties of the tensor product
158
6.1.2
A system of two spins
1/2 160
6.2
The state operator (or density operator)
162
6.2.1
Definition and properties
162
6.2.2
The state operator for a two-level system
164
6.2.3
The reduced state operator
167
6.2.4
Time dependence of the state operator
169
6.2.5
General form of the postulates
171
6.3
Examples
171
6.3.1
The EPR argument
171
6.3.2
Bell inequalities
174
6.3.3
Interference and entangled states
179
6.3.4
Three-particle entangled states (GHZ states)
182
6.4
Applications
185
6.4.1
Measurement and decoherence
185
6.4.2
Quantum information
191
6.5
Exercises
198
6.6
Further reading
207
7
Mathematics of quantum mechanics II: infinite dimension
209
7.1
Hubert spaces
209
7.1.1
Definitions
209
7.1.2
Realizations of separable spaces of infinite dimension
211
7.2
Linear operators on CK
213
7.2.1
The domain and norm of an operator
213
7.2.2
Hermitian conjugation
215
7.3
Spectral decomposition
216
7.3.1
Hermitian operators
216
7.3.2
Unitary operators
219
Contents
7.4
Exercises
220
7.5
Further reading
221
Symmetries in quantum physics
222
8.1
Transformation of a state in a symmetry operation
223
8.1.1
Invariance
of probabilities in a symmetry operation
223
8.1.2
The Wigner theorem
225
8.2
Infinitesimal generators
227
8.2.1
Definitions
227
8.2.2
Conservation laws
228
8.2.3
Commutation relations of infinitesimal generators
230
8.3
Canonical commutation relations
234
8.3.1
Dimension d=
1 234
8.3.2
Explicit realization and
von
Neumann s theorem
236
8.3.3
The parity operator
237
8.4
Galilean
invariance
240
8.4.1
The Hamiltonian in dimension
d
= 1 240
8.4.2
The Hamiltonian in dimension
d
= 3 243
8.5
Exercises
245
8.6
Further reading
249
Wave mechanics
250
9.1
Diagonalization of X and
Ρ
and wave functions
250
9.1.1
Diagonalization of X
250
9.1.2
Realization in Lf]
(Џ)
252
9.1.3
Realization in
¿ј,2)(Ж)
254
9.1.4
Evolution of a free wave packet
256
9.2
The
Schrödinger
equation
260
9.2.1
The Hamiltonian of the
Schrödinger
equation
260
9.2.2
The probability density and the probability
current density
261
9.3
Solution of the time-independent
Schrödinger
equation
264
9.3.1
Generalities
264
9.3.2
Reflection and transmission by a potential step
265
9.3.3
The bound states of the square well
270
9.4
Potential scattering
273
9.4.1
The transmission matrix
273
9.4.2
The tunnel effect
277
9.4.3
The
S
matrix
280
9.5
The periodic potential
283
9.5.1
The Bloch theorem
283
9.5.2
Energy bands
285
Contents ix
9.6
Wave mechanics in dimension
d
= 3 289
9.6.1
Generalities
289
9.6.2
The phase space and level density
291
9.6.3
The Fermi Golden Rule
293
9.7
Exercises
297
9.8
Further reading
306
10
Angular momentum
307
10.1
Diagonalization of J2 and J.
307
10.2
Rotation matrices
311
10.3
Orbital angular momentum
316
10.3.1
The orbital angular momentum operator
316
10.3.2
Properties of the spherical harmonics
319
10.4
Particle in a central potential
323
10.4.1
The radial wave equation
323
10.4.2
The hydrogen atom
327
10.5
Angular distributions in decays
331
10.5.1
Rotations by
тт.
parity, and reflection with respect
to a plane
331
10.5.2 Dipole
transitions
332
10.5.3
Two-body decays: the general case
337
10.6
Addition of two angular momenta
339
10.6.1
Addition of two spins
1/2 339
10.6.2
The general case: addition of two angular momenta
J¡
and X
341
10.6.3
Composition of rotation matrices
344
10.6.4
The Wigner-Eckart theorem (scalar and vector operators)
345
10.7
Exercises
347
10.8
Further reading
357
11
The harmonic oscillator
358
11.1
The simple harmonic oscillator
359
11.1.1
Creation and annihilation operators
359
11.1.2
Diagonalization of the Hamiltonian
360
11.1.3
Wave functions of the harmonic oscillator
362
11.2
Coherent states
364
11.3
Introduction to quantized fields
367
11.3.1
Sound waves and phonons
367
11.3.2
Quantization of a scalar field in one dimension
371
11.3.3
Quantization of the electromagnetic field
375
11.3.4
Quantum fluctuations of the electromagnetic field
380
11.4
Motion in a magnetic field
384
11.4.1
Local gauge
invariance
384
11.4.2
A uniform magnetic field: Landau levels
387
x
Contents
11.5
Exercises
390
11.6
Further reading
402
12
Elementary scattering theory
404
12.1
The cross section and scattering amplitude
404
12.1.1
The differential and total cross sections
404
12.1.2
The scattering amplitude
406
12.2
Partial waves and phase shifts
409
12.2.1
The partial-wave expansion
409
12.2.2
Low-energy scattering
413
12.2.3
The effective potential
417
12.2.4
Low-energy neutron-proton scattering
419
12.3
Inelastic scattering
420
12.3.1
The optical theorem
420
12.3.2
The optical potential
423
12.4
Formal aspects
425
12.4.1
The integral equation of scattering
425
12.4.2
Scattering of a wave packet
427
12.5
Exercises
429
12.6
Further reading
437
13
Identical particles
438
13.1
Bosons and
fermions
438
13.1.1
Symmetry or antisymmetry of the state vector
438
13.1.2
Spin and statistics
441
13.2
The scattering of identical particles
446
13.3
Collective states
448
13.4
Exercises
450
13.5
Further reading
454
14
Atomic physics
455
14.1
Approximation methods
455
14.1.1
Generalities
455
14.1.2
Nondegenerate
perturbation theory
457
14.1.3
Degenerate perturbation theory
458
14.1.4
The variational method
459
14.2
One-electron atoms
460
14.2.1
Energy levels in the absence of spin
460
14.2.2
The fine structure
461
14.2.3
The
Zeeman
effect
463
14.2.4
The hyperfine structure
465
14.3
Atomic interactions with an electromagnetic field
467
14.3.1
The semiclassical theory
467
14.3.2
The
dipole
approximation
469
Contents
15
14.3.3
The photoelectric effect
14.3.4
The quantized electromagnetic field: spontaneous emission
14.4
Laser cooling and trapping of atoms
14.4.1
The optical Bloch equations
14.4.2
Dissipati ve
forces and reactive forces
14.4.3
Doppler
cooling
14.4.4
A magneto-optical trap
14.5
The two-electron atom
14.5.1
The ground state of the helium atom
14.5.2
The excited states of the helium atom
14.6
Exercises
14.7
Further reading
Open quantum systems
15.1
Generalized measurements
15.1.1
Schmidt
s
decomposition
15.1.2
Positive operator-valued measures
15.1.3
Example: a POVM with spins
1/2
15.2
Superoperators
15.2.1 Kraus
decomposition
15.2.2
The depolarizing channel
15.2.3
The phase-damping channel
15.2.4
The amplitude-damping channel
15.3
Master equations: the
Lindblad
form
15.3.1
The Markovian approximation
15.3.2
The
Lindblad
equation
15.3.3
Example: the damped harmonic oscillator
15.4
Coupling to a thermal bath of oscillators
15.4.1
Exact evolution equations
The Markovian approximation
Relaxation of a two-level system
Quantum Brownian motion
Decoherence and
Schrödinger s
cats
15.5
15.6
15.4.2
15.4.3
15.4.4
15.4.5
Exercises
Further reading
Appendix A The Wigner theorem and time reversal
A.
1
Proof of the theorem
A.2 Time reversal
Appendix
В
Measurement and decoherence
B.I An elementary model of measurement
B.2 Ramsey fringes
471
473
478
478
482
484
489
491
491
493
495
506
507
509
509
511
513
517
517
522
523
524
526
526
527
529
530
530
533
535
538
542
544
550
552
553
555
561
561
564
xii Contents
В.
3
Interaction
with a field inside the cavity
567
B.4 Decoherence
569
Appendix
С
The Wigner-Weisskopf method
573
References
578
Index
579
|
adam_txt |
Contents
Foreword by Claude Cohen-Tannoudji page
xiii
Preface
xv
Table of units and physical constants
xix
1
Introduction
1
1.1
The structure of matter
]
1.1.1
Length scales from cosmology to elementary particles
1
1.1.2
States of matter
2
1.1.3
Elementary constituents
5
1.1.4
The fundamental interactions
7
1.2
Classical and quantum physics
9
1.3
A bit of history
13
1.3.1
Black-body radiation
13
1.3.2
The photoelectric effect
16
1.4
Waves and particles: interference
17
1.4.1
The
de
Broglie hypothesis
17
1.4.2
Diffraction and interference of cold neutrons
18
1.4.3
Interpretation of the experiments
21
1.4.4 Heisenberg
inequalities I
24
1.5
Energy levels
27
1.5.1
Energy levels in classical mechanics and classical models
of the atom
27
1.5.2
The Bohr atom
29
1.5.3
Orders of magnitude in atomic physics
31
1.6
Exercises
33
1.7
Further reading
40
2
The mathematics of quantum mechanics I: finite dimension
42
2.1
Hubert spaces of finite dimension
42
2.2
Linear operators on
К
44
2.2.1
Linear, Hermitian, unitary operators
44
2.2.2
Projection operators and Dirac notation
46
Contents
2.3
Spectral
decomposition of Hermitian operators
48
2.3.1
Diagonalization of a Hermitian operator
48
2.3.2
Diagonalization of a
2
χ
2
Hermitian matrix
50
2.3.3
Complete sets of compatible operators
51
2.3.4
Unitary operators and Hermitian operators
52
2.3.5
Operator-valued functions
53
2.4
Exercises
54
2.5
Further reading
60
Polarization: photons and spin-
1/2
particles
61
3.1
The polarization of light and photon polarization
61
3.1.1
The polarization of an electromagnetic wave
61
3.1.2
The photon polarization
68
3.1.3
Quantum cryptography
73
3.2
Spin
1/2 75
3.2.1
Angular momentum and magnetic moment in classical physics
75
3.2.2
The Stern-Gerlach experiment and Stern-Gerlach filters
77
3.2.3
Spin states of arbitrary orientation
80
3.2.4
Rotation of spin
1/2 82
3.2.5
Dynamics and time evolution
87
3.3
Exercises
89
3.4
Further reading
95
Postulates of quantum physics
96
4.1
State vectors and physical properties
96
4.1.1
The superposition principle
96
4.1.2
Physical properties and measurement
98
4.1.3 Heisenberg
inequalities II
104
4.2
Time evolution
105
4.2.1
The evolution equation
105
4.2.2
The evolution operator
108
4.2.3
Stationary states
109
4.2.4
The temporal
Heisenberg
inequality
111
4.2.5
The
Schrödinger
and
Heisenberg
pictures
114
4.3
Approximations and modeling
115
4.4
Exercises
116
4.5
Further reading
124
Systems with a finite number of levels
125
5.1
Elementary quantum chemistry
125
5.1.1
The
ethylene
molecule
125
5.1.2
The benzene molecule
128
Contents
vii
5.2
Nuclear
magnetic
resonance
(NMR) 132
5.2.1
A spin
1/2
in a periodic magnetic field
132
5.2.2
Rabi
oscillations
133
5.2.3
Principles of NMR and
MRI
137
5.3
The ammonia molecule
139
5.3.1
The ammonia molecule as a two-level system
139
5.3.2
The molecule in an electric field: the ammonia
maser
141
5.3.3
Off-resonance transitions
146
5.4
The two-level atom
149
5.5
Exercises
152
5.6
Further reading
157
6
Entangled states
158
6.1
The tensor product of two vector spaces
158
6.1.1
Definition and properties of the tensor product
158
6.1.2
A system of two spins
1/2 160
6.2
The state operator (or density operator)
162
6.2.1
Definition and properties
162
6.2.2
The state operator for a two-level system
164
6.2.3
The reduced state operator
167
6.2.4
Time dependence of the state operator
169
6.2.5
General form of the postulates
171
6.3
Examples
171
6.3.1
The EPR argument
171
6.3.2
Bell inequalities
174
6.3.3
Interference and entangled states
179
6.3.4
Three-particle entangled states (GHZ states)
182
6.4
Applications
185
6.4.1
Measurement and decoherence
185
6.4.2
Quantum information
191
6.5
Exercises
198
6.6
Further reading
207
7
Mathematics of quantum mechanics II: infinite dimension
209
7.1
Hubert spaces
209
7.1.1
Definitions
209
7.1.2
Realizations of separable spaces of infinite dimension
211
7.2
Linear operators on CK
213
7.2.1
The domain and norm of an operator
213
7.2.2
Hermitian conjugation
215
7.3
Spectral decomposition
216
7.3.1
Hermitian operators
216
7.3.2
Unitary operators
219
Contents
7.4
Exercises
220
7.5
Further reading
221
Symmetries in quantum physics
222
8.1
Transformation of a state in a symmetry operation
223
8.1.1
Invariance
of probabilities in a symmetry operation
223
8.1.2
The Wigner theorem
225
8.2
Infinitesimal generators
227
8.2.1
Definitions
227
8.2.2
Conservation laws
228
8.2.3
Commutation relations of infinitesimal generators
230
8.3
Canonical commutation relations
234
8.3.1
Dimension d=
1 234
8.3.2
Explicit realization and
von
Neumann's theorem
236
8.3.3
The parity operator
237
8.4
Galilean
invariance
240
8.4.1
The Hamiltonian in dimension
d
= 1 240
8.4.2
The Hamiltonian in dimension
d
= 3 243
8.5
Exercises
245
8.6
Further reading
249
Wave mechanics
250
9.1
Diagonalization of X and
Ρ
and wave functions
250
9.1.1
Diagonalization of X
250
9.1.2
Realization in Lf]
(Џ)
252
9.1.3
Realization in
¿ј,2)(Ж)
254
9.1.4
Evolution of a free wave packet
256
9.2
The
Schrödinger
equation
260
9.2.1
The Hamiltonian of the
Schrödinger
equation
260
9.2.2
The probability density and the probability
current density
261
9.3
Solution of the time-independent
Schrödinger
equation
264
9.3.1
Generalities
264
9.3.2
Reflection and transmission by a potential step
265
9.3.3
The bound states of the square well
270
9.4
Potential scattering
273
9.4.1
The transmission matrix
273
9.4.2
The tunnel effect
277
9.4.3
The
S
matrix
280
9.5
The periodic potential
283
9.5.1
The Bloch theorem
283
9.5.2
Energy bands
285
Contents ix
9.6
Wave mechanics in dimension
d
= 3 289
9.6.1
Generalities
289
9.6.2
The phase space and level density
291
9.6.3
The Fermi Golden Rule
293
9.7
Exercises
297
9.8
Further reading
306
10
Angular momentum
307
10.1
Diagonalization of J2 and J.
307
10.2
Rotation matrices
311
10.3
Orbital angular momentum
316
10.3.1
The orbital angular momentum operator
316
10.3.2
Properties of the spherical harmonics
319
10.4
Particle in a central potential
323
10.4.1
The radial wave equation
323
10.4.2
The hydrogen atom
327
10.5
Angular distributions in decays
331
10.5.1
Rotations by
тт.
parity, and reflection with respect
to a plane
331
10.5.2 Dipole
transitions
332
10.5.3
Two-body decays: the general case
337
10.6
Addition of two angular momenta
339
10.6.1
Addition of two spins
1/2 339
10.6.2
The general case: addition of two angular momenta
J¡
and X
341
10.6.3
Composition of rotation matrices
344
10.6.4
The Wigner-Eckart theorem (scalar and vector operators)
345
10.7
Exercises
347
10.8
Further reading
357
11
The harmonic oscillator
358
11.1
The simple harmonic oscillator
359
11.1.1
Creation and annihilation operators
359
11.1.2
Diagonalization of the Hamiltonian
360
11.1.3
Wave functions of the harmonic oscillator
362
11.2
Coherent states
364
11.3
Introduction to quantized fields
367
11.3.1
Sound waves and phonons
367
11.3.2
Quantization of a scalar field in one dimension
371
11.3.3
Quantization of the electromagnetic field
375
11.3.4
Quantum fluctuations of the electromagnetic field
380
11.4
Motion in a magnetic field
384
11.4.1
Local gauge
invariance
384
11.4.2
A uniform magnetic field: Landau levels
387
x
Contents
11.5
Exercises
390
11.6
Further reading
402
12
Elementary scattering theory
404
12.1
The cross section and scattering amplitude
404
12.1.1
The differential and total cross sections
404
12.1.2
The scattering amplitude
406
12.2
Partial waves and phase shifts
409
12.2.1
The partial-wave expansion
409
12.2.2
Low-energy scattering
413
12.2.3
The effective potential
417
12.2.4
Low-energy neutron-proton scattering
419
12.3
Inelastic scattering
420
12.3.1
The optical theorem
420
12.3.2
The optical potential
423
12.4
Formal aspects
425
12.4.1
The integral equation of scattering
425
12.4.2
Scattering of a wave packet
427
12.5
Exercises
429
12.6
Further reading
437
13
Identical particles
438
13.1
Bosons and
fermions
438
13.1.1
Symmetry or antisymmetry of the state vector
438
13.1.2
Spin and statistics
441
13.2
The scattering of identical particles
446
13.3
Collective states
448
13.4
Exercises
450
13.5
Further reading
454
14
Atomic physics
455
14.1
Approximation methods
455
14.1.1
Generalities
455
14.1.2
Nondegenerate
perturbation theory
457
14.1.3
Degenerate perturbation theory
458
14.1.4
The variational method
459
14.2
One-electron atoms
460
14.2.1
Energy levels in the absence of spin
460
14.2.2
The fine structure
461
14.2.3
The
Zeeman
effect
463
14.2.4
The hyperfine structure
465
14.3
Atomic interactions with an electromagnetic field
467
14.3.1
The semiclassical theory
467
14.3.2
The
dipole
approximation
469
Contents
15
14.3.3
The photoelectric effect
14.3.4
The quantized electromagnetic field: spontaneous emission
14.4
Laser cooling and trapping of atoms
14.4.1
The optical Bloch equations
14.4.2
Dissipati ve
forces and reactive forces
14.4.3
Doppler
cooling
14.4.4
A magneto-optical trap
14.5
The two-electron atom
14.5.1
The ground state of the helium atom
14.5.2
The excited states of the helium atom
14.6
Exercises
14.7
Further reading
Open quantum systems
15.1
Generalized measurements
15.1.1
Schmidt'
s
decomposition
15.1.2
Positive operator-valued measures
15.1.3
Example: a POVM with spins
1/2
15.2
Superoperators
15.2.1 Kraus
decomposition
15.2.2
The depolarizing channel
15.2.3
The phase-damping channel
15.2.4
The amplitude-damping channel
15.3
Master equations: the
Lindblad
form
15.3.1
The Markovian approximation
15.3.2
The
Lindblad
equation
15.3.3
Example: the damped harmonic oscillator
15.4
Coupling to a thermal bath of oscillators
15.4.1
Exact evolution equations
The Markovian approximation
Relaxation of a two-level system
Quantum Brownian motion
Decoherence and
Schrödinger's
cats
15.5
15.6
15.4.2
15.4.3
15.4.4
15.4.5
Exercises
Further reading
Appendix A The Wigner theorem and time reversal
A.
1
Proof of the theorem
A.2 Time reversal
Appendix
В
Measurement and decoherence
B.I An elementary model of measurement
B.2 Ramsey fringes
471
473
478
478
482
484
489
491
491
493
495
506
507
509
509
511
513
517
517
522
523
524
526
526
527
529
530
530
533
535
538
542
544
550
552
553
555
561
561
564
xii Contents
В.
3
Interaction
with a field inside the cavity
567
B.4 Decoherence
569
Appendix
С
The Wigner-Weisskopf method
573
References
578
Index
579 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Le Bellac, Michel |
author_facet | Le Bellac, Michel |
author_role | aut |
author_sort | Le Bellac, Michel |
author_variant | b m l bm bml |
building | Verbundindex |
bvnumber | BV022657143 |
classification_rvk | UK 1000 |
classification_tum | PHY 020f |
ctrlnum | (OCoLC)315591422 (DE-599)BVBBV022657143 |
discipline | Physik |
discipline_str_mv | Physik |
edition | Reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01327nam a2200361 c 4500</leader><controlfield tag="001">BV022657143</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070829s2007 ad|| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521852777</subfield><subfield code="9">978-0-521-85277-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315591422</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022657143</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UK 1000</subfield><subfield code="0">(DE-625)145785:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 020f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Le Bellac, Michel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Physique quantique</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum physics</subfield><subfield code="c">Michel Le Bellac</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 585 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4006432-3</subfield><subfield code="a">Bibliografie</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenmechanik</subfield><subfield code="0">(DE-588)4047989-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015863060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015863060</subfield></datafield></record></collection> |
genre | (DE-588)4006432-3 Bibliografie gnd-content |
genre_facet | Bibliografie |
id | DE-604.BV022657143 |
illustrated | Illustrated |
index_date | 2024-07-02T18:23:49Z |
indexdate | 2024-07-09T21:02:44Z |
institution | BVB |
isbn | 9780521852777 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015863060 |
oclc_num | 315591422 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
owner_facet | DE-19 DE-BY-UBM DE-355 DE-BY-UBR |
physical | XIX, 585 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Le Bellac, Michel Verfasser aut Physique quantique Quantum physics Michel Le Bellac Reprint. Cambridge [u.a.] Cambridge Univ. Press 2007 XIX, 585 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Quantenmechanik (DE-588)4047989-4 gnd rswk-swf (DE-588)4006432-3 Bibliografie gnd-content Quantenmechanik (DE-588)4047989-4 s DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015863060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Le Bellac, Michel Quantum physics Quantenmechanik (DE-588)4047989-4 gnd |
subject_GND | (DE-588)4047989-4 (DE-588)4006432-3 |
title | Quantum physics |
title_alt | Physique quantique |
title_auth | Quantum physics |
title_exact_search | Quantum physics |
title_exact_search_txtP | Quantum physics |
title_full | Quantum physics Michel Le Bellac |
title_fullStr | Quantum physics Michel Le Bellac |
title_full_unstemmed | Quantum physics Michel Le Bellac |
title_short | Quantum physics |
title_sort | quantum physics |
topic | Quantenmechanik (DE-588)4047989-4 gnd |
topic_facet | Quantenmechanik Bibliografie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015863060&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lebellacmichel physiquequantique AT lebellacmichel quantumphysics |