Theoretical and numerical combustion:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Philadelphia, PA
Edwards
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIV, 522 S. Ill., graph. Darst. |
ISBN: | 1930217102 9781930217102 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022617794 | ||
003 | DE-604 | ||
005 | 20080212 | ||
007 | t | ||
008 | 070821s2005 ad|| |||| 00||| eng d | ||
020 | |a 1930217102 |9 1-930217-10-2 | ||
020 | |a 9781930217102 |9 978-1-930217-10-2 | ||
035 | |a (OCoLC)56661873 | ||
035 | |a (DE-599)BVBBV022617794 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-91G |a DE-634 |a DE-706 |a DE-83 | ||
050 | 0 | |a QD516 | |
082 | 0 | |a 541/.361/015118 |2 22 | |
084 | |a ERG 420f |2 stub | ||
100 | 1 | |a Poinsot, Thierry |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theoretical and numerical combustion |c Thierry Poinsot ; Denis Veynante |
250 | |a 2. ed. | ||
264 | 1 | |a Philadelphia, PA |b Edwards |c 2005 | |
300 | |a XIV, 522 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Combustão |2 larpcal | |
650 | 7 | |a Modelos matemáticos |2 larpcal | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Combustion |x Mathematical models | |
650 | 0 | 7 | |a Verbrennung |0 (DE-588)4062656-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Verbrennung |0 (DE-588)4062656-8 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Veynante, Denis |e Verfasser |4 aut | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823902&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015823902 |
Datensatz im Suchindex
_version_ | 1804136776486354944 |
---|---|
adam_text | Titel: Theoretical and numerical combustion
Autor: Poinsot, Thierry
Jahr: 2005
Contents
Preface
Conservation equations for reacting flows 1
1.1 General forms..................................... 1
1.1.1 Choice of primitive variables ........................ 1
1.1.2 Conservation of momentum......................... 13
1.1.3 Conservation of mass and species...................... 13
1.1.4 Diffusion velocities: full equations and approximations.......... 14
1.1.5 Conservation of energy............................ 17
1.2 Usual simplified forms................................ 22
1.2.1 Constant pressure flames .......................... 22
1.2.2 Equal heat capacities for all species .................... 23
1.2.3 Constant heat capacity for the mixture only................ 24
1.3 Summary of conservation equations......................... 25
Laminar prernixed flames 27
2.1 Introduction...................................... 27
2.2 Conservation equations and numerical solutions.................. 28
2.3 Steady one-dimensional laminar prernixed flames................. 30
2.3.1 One-dimensional flame codes........................ 30
2.3.2 Sensitivity analysis.............................. 32
2.4 Theoretical solutions for laminar prernixed flames................. 35
2.4.1 Derivation of one-step chemistry conservation equations......... 35
2.4.2 Thermochemistry and chemical rates.................... 37
2.4.3 The equivalence of temperature and fuel mass fraction ......... 40
2.4.4 The reaction rate............................... 41
2.4.5 Analytical solutions for flame speed .................... 44
2.4.6 Generalized expression for flame speeds.................. 51
2.4.7 Single step chemistry limitations and stiffness of reduced
schemes.................................... 54
2.4.8 Variations of flame speed with temperature and pressure......... 55
ru.MI-. MS
ii-.
2.5 Prernixed flame thicknesses.........
2.5.1 Simple chemistry.................
2.5.2 Complex chemistry..............
2.6 Flame stretch......................
2.6.1 Definition and expressions of st ret eh .
2.6.2 Stretch of stationary flames.........
2.6.3 Examples of flames with zero stretch
2.6.4 Examples of stretched flames.......
2.7 Flame speeds.....................
2.7.1 Flame speed definitions..........
2.7.2 Flame speeds of laminar planar uusf retched tlai
2.7.3 Flame speeds of stretched names
2.8 Instabilities of laminar flame fronts
Laminar diffusion flames
3.1 Diffusion flame configurations.......
3.2 Theoretical tools for diffusion flames
3.2.1 Passive scalars and mixture fraction
3.2.2 Flame structure in the --space
3.2.3 The steady flamclef assumption
3.2.4 Decomposition into mixing and flame structure problems
3.2.5 Models for diffusion flame structures
3.3 Flame structure for irreversible infinitely fast chemistiv
3.3.1 The Burke-Schumann flame structure
3.3.2 Maximum local flame temperature in a diffusion flame
3.3.3 Maximum flame temperature in diffusion and prernixed flames
3.3.4 Maximum and mean temperatures m diffusion burners
3.4 Full solutions for irreversible fast chemistrv flames
3.4.1 Unsteady unstrained one-dimension,il diffusion Maine with mhniteiv fast
chemistry and constant density........
3.4.2 Steadv strained oiif -dimeiisioii.il diffusion flame with iiititiit.-h !-» » chem-
istry and constant density............
3.4.3 Unsteady strained one-dimensional diffusion flame with infinitely fa.-t
chemistry and constant density . .
3.4.4 Jet flame in an uniform flow held ......
3.4.5 Extensions to variable density ........
3.5 Extensions of theory to other flame structures......
3.5.1 Reversible equilibrium chemistry......
3.5.2 Finite rate chemistry................
3.5.3 Summary of flame structures.........
3.5.4 Extensions to variable Lewis numbers.......
3.6 Real laminar diffusion names.............
o.i
i.i.
hi,
l s
7li
7 ?
HI
VI
13
». ¦
?it.
Mi
i l
i ).
1111
li)!t
II!
112
112
112
116
1 If
CONTENTS
3.6.1 One-dimensional codes for laminar diffusion flames............118
3.6.2 Mixture fractions in real flames.......................118
Introduction to turbulent combustion 125
4.1 Interaction between flames and turbulence..................... 125
4.2 Elementary descriptions of turbulence....................... 126
4.3 Influence of turbulence on combustion....................... 130
4.3.1 One-dimensional turbulent prernixed flame ................ 130
4.3.2 Turbulent jet diffusion flame ........................ 131
4.4 Computational approaches for turbulent combustion............... 132
4.5 RANS simulations for turbulent combustion.................... 140
4.5.1 Averaging the balance equations...................... 140
4.5.2 Unclosed terms in Favre averaged balance equations........... 142
4.5.3 Classical turbulence models for the Reynolds stresses........... 143
4.5.4 A first attempt to close mean reaction rates................ 146
4.5.5 Physical approaches to model turbulent combustion........... 148
4.5.6 A challenge for turbulent combustion modeling: flame flapping and in-
termittency.................................. 149
4.6 Direct numerical simulations ............................ 152
4.6.1 The role of DNS in turbulent combustion studies............. 153
4.6.2 Numerical methods for direct simulation.................. 153
4.6.3 Spatial resolution and physical scales.................... 159
4.7 Large eddy simulations................................ 162
4.7.1 LES filters................................... 162
4.7.2 Filtered balance equations.......................... 164
4.7.3 Unresolved fluxes modeling......................... 165
4.7.4 Simple filtered reaction rate closures.................... 169
4.7.5 Dynamic modeling in turbulent combustion................ 171
4.7.6 Limits of large eddy simulations ...................... 172
4.7.7 Comparing large eddy simulations and experimental data........ 173
4.8 Chemistry for turbulent combustion........................ 177
4.8.1 Introduction ................................. 177
4.8.2 Global schemes................................ 177
4.8.3 Automatic reduction - Tabulated chemistries............... 180
4.8.4 In situ adaptive tabulation (ISAT)..................... 181
Turbulent prernixed flames 183
5.1 Phenomenological description............................183
5.1.1 The effect of turbulence on flame fronts: wrinkling............183
5.1.2 The effect of flame fronts on turbulence..................186
5.1.3 The infinitely thin flame front limit.....................189
5.2 Prernixed turbulent combustion regimes......................196
CONTENTS
5.2.1 A first difficulty: defining it ........................ 196
5.2.2 Classical turbulent prernixed combustion diagrams............ 197
5.2.3 Modified combustion diagrams....................... 200
5.3 RANS of turbulent prernixed flames ........................ 214
5.3.1 Prernixed turbulent combustion with single one-step chemistry..... 214
5.3.2 The no-model or Arrhenius approach .................. 216
5.3.3 The Eddy Break Up (EBU) model..................... 216
5.3.4 Models based on turbulent flame speed correlations............ 218
5.3.5 The Bray Moss Libby (BML) model.................... 219
5.3.6 Flame surface density models........................ 224
5.3.7 Probability density function (pdf) models................. 233
5.3.8 Modeling of turbulent scalar transport terms pu /B ........... 239
5.3.9 Modeling of the characteristic turbulent flame time............ 243
5.3.10 Kolmogorov-Petrovski-Piskunov (KPP) analysis ............. 246
5.3.11 Flame stabilization.............................. 248
5.4 LES of turbulent prernixed flames.......................... 252
5.4.1 Introduction ................................. 252
5.4.2 Extension of RANS models: the LES-EBU model............. 253
5.4.3 Artificially thickened flames......................... 253
5.4.4 G-equation.................................. 255
5.4.5 Flame surface density LES formulations.................. 257
5.4.6 Scalar fluxes modeling in LES........................ 258
5.5 DNS of turbulent prernixed flames......................... 262
5.5.1 The role of DNS in turbulent combustion studies............. 262
5.5.2 DNS database analysis............................ 263
5.5.3 Studies of local flame structures using DNS................ 267
5.5.4 Complex chemistry simulations....................... 273
5.5.5 Studying the global structure of turbulent flames with DNS....... 276
5.5.6 DNS analysis for large eddy simulations.................. 285
Turbulent non-premixed flames 287
6.1 Introduction......................................287
6.2 Phenomenological description............................288
6.2.1 Typical flame structure: jet flame......................288
6.2.2 Specific features of turbulent non-premixed flames............288
6.2.3 Turbulent non-premixed flame stabilization................289
6.2.4 An example of turbulent non-premixed flame stabilization........297
6.3 Turbulent non-premixed combustion regimes ...................300
6.3.1 Flame/vortex interactions in DNS.....................301
6.3.2 Scales in turbulent non-premixed combustion...............306
6.3.3 Combustion regimes.............................309
6.4 RANS of turbulent non-premixed flames......................311
CONTENTS
6.4.1 Assumptions and averaged equations.................... 311
6.4.2 Models for primitive variables with infinitely fast chemistry....... 314
6.4.3 Mixture fraction variance and scalar dissipation rate........... 317
6.4.4 Models for mean reaction rate with infinitely fast chemistry....... 320
6.4.5 Models for primitive variables with finite rate chemistry......... 321
6.4.6 Models for mean reaction rate with finite rate chemistry......... 327
6.5 LES of turbulent non-premixed flames....................... 333
6.5.1 Linear Eddy Model.............................. 333
6.5.2 Infinitely fast chemistry........................... 334
6.5.3 Finite rate chemistry............................. 335
6.6 DNS of turbulent non-premixed flames....................... 337
6.6.1 Studies of local flame structure....................... 337
6.6.2 Autoignition of a turbulent non-premixed flame.............. 341
6.6.3 Studies of global flame structure...................... 343
6.6.4 Three-dimensional turbulent hydrogen jet lifted flame with complex
chemistry................................... 346
Flame/wall interactions 349
7.1 Introduction...................................... 349
7.2 Flame?wall interaction in laminar flows ...................... 352
7.2.1 Phenomenological description........................ 352
7.2.2 Simple chemistry flame/wall interaction.................. 355
7.2.3 Computing complex chemistry flame/wall interaction........... 356
7.3 Flame/wall interaction in turbulent flows ..................... 359
7.3.1 Introduction ................................. 359
7.3.2 DNS of turbulent flame/wall interaction.................. 360
7.3.3 Flame/wall interaction and turbulent combustion models........ 364
7.3.4 Flame/wall interaction and wall heat transfer models........... 365
Flame/acoustics interactions 375
8.1 Introduction...................................... 375
8.2 Acoustics for non-reacting flows........................... 376
8.2.1 Fundamental equations ........................... 376
8.2.2 Plane waves in one dimension........................ 378
8.2.3 Harmonic waves and guided waves..................... 380
8.2.4 Longitudinal modes in constant cross section ducts............ 382
8.2.5 Longitudinal modes in variable cross section ducts............ 383
8.2.6 Longitudinal/transverse modes in rectangular ducts ........... 384
8.2.7 Longitudinal modes in a series of constant cross section ducts...... 387
8.2.8 The double duct and the Helmholtz resonator............... 390
8.2.9 Multidimensional acoustic modes in cavities................ 393
8.2.10 Acoustic energv density and flux...................... 395
COS IKS IS
h.3 Acoustics for reacting Hows................
8.3.1 An rquat.ion for IniPi in reactmg Hows ? ,
8.3.2 A wave equation in low Mach-inunl er reacting Hows ¦ »
8.3.3 Acoustic velocity and pressure in low-speed reacting tlt w- * M
H.3.4 Acoustic jump eonditions for thin Haines i 1
8.3.5 Longitudinal mode* in a series of duct.-, with ? ¦¦ mlxisti. » l 3
8.3.6 Three-dimensional Helmholtz tools »
8.3.7 The acoustic energy balance in reacting Hows
8.3.8 About energies in reacting Hows
8.4 Combustion instabilities
8.4.1 Stable versus unstable combustion........
8.4.2 Interaction of longitudinal waves and thin Haim-s
8.4.3 The in - r) formulation for flame transfer function ^
8.4.4 Complete solution in a simplified case si
8.4.5 Vortices in combustion instabilities............ -
8.5 Large eddy simulations of combustion instabilities -
8.5.1 Introduction ....................... -*
8.5.2 LES strategies to studv combustion instabilities -*
tin
Boundary conditions *?*
9.1 Introduction...............................
9.2 Classification of compressible Navier-Sfokes equations formulations » -4
9.3 Description of characteristic boundary conditions ......
9.3.1 Theory ............................... i:U
9.3.2 Reacting Navier-Stokes equations near a boundary ??*
9.3.3 The Local One Dimensional Inviscid (LODI) relations * l°
9.3.4 The NSCBC strategy for the Euler equations.......... 1J-
9.3.5 The NSCBC strategy for Navier-Stokes equations.......... * ^
9.3.6 Edges and corners........................ **
9.4 Examples of implementation............................*
9.4.1 A subsonic inflow with fixed velocities and temperature (SI-l i **s
9.4.2 A subsonic non-reflecting inflow (SI-4)............ *
9.4.3 Subsonic non-reflecting outflows (B2 and B3)........ ,1 1
9.4.4 A subsonic reflecting outflow (B4) ................... }, 1
9.4.5 An isothernial no-slip wall (NSW) .............. il!
9.4.6 An adiabatic slip wall (ASW).................... 4 2
9.5 Applications to steady non-reacting flows................ ~t: -
9.6 Applications to steady reacting flows................... *
9.7 Unsteady flows and numerical waves control................. ^ ,l
9.7.1 Physical and numerical waves....................... ^
9.7.2 Vortex/boundary interactions..................... ^
9.8 Applications to low Reynolds number flews............. W)
CONTENTS ix
10 Examples of LES applications 473
10.1 Introduction...................................... 473
10.2 Case 1: small scale gas turbine burner....................... 474
10.2.1 Configuration and boundary conditions .................. 474
10.2.2 Non reacting flow............................... 475
10.2.3 Stable reacting flow ............................. 480
10.3 Case 2: large-scale gas turbine burner....................... 484
10.3.1 Configuration................................. 484
10.3.2 Boundary conditions............................. 484
10.3.3 Comparison of cold and hot flow structures................ 485
10.3.4 A low-frequency forced mode........................ 486
10.3.5 A high-frequency self-excited mode..................... 489
10.4 Case 3: self-excited laboratory-scale burner.................... 491
10.4.1 Configuration................................. 491
10.4.2 Stable flow.................................. 492
10.4.3 Controlling oscillations through boundary conditions........... 492
References 497
Index 519
|
adam_txt |
Titel: Theoretical and numerical combustion
Autor: Poinsot, Thierry
Jahr: 2005
Contents
Preface
Conservation equations for reacting flows 1
1.1 General forms. 1
1.1.1 Choice of primitive variables . 1
1.1.2 Conservation of momentum. 13
1.1.3 Conservation of mass and species. 13
1.1.4 Diffusion velocities: full equations and approximations. 14
1.1.5 Conservation of energy. 17
1.2 Usual simplified forms. 22
1.2.1 Constant pressure flames . 22
1.2.2 Equal heat capacities for all species . 23
1.2.3 Constant heat capacity for the mixture only. 24
1.3 Summary of conservation equations. 25
Laminar prernixed flames 27
2.1 Introduction. 27
2.2 Conservation equations and numerical solutions. 28
2.3 Steady one-dimensional laminar prernixed flames. 30
2.3.1 One-dimensional flame codes. 30
2.3.2 Sensitivity analysis. 32
2.4 Theoretical solutions for laminar prernixed flames. 35
2.4.1 Derivation of one-step chemistry conservation equations. 35
2.4.2 Thermochemistry and chemical rates. 37
2.4.3 The equivalence of temperature and fuel mass fraction . 40
2.4.4 The reaction rate. 41
2.4.5 Analytical solutions for flame speed . 44
2.4.6 Generalized expression for flame speeds. 51
2.4.7 Single step chemistry limitations and stiffness of reduced
schemes. 54
2.4.8 Variations of flame speed with temperature and pressure. 55
ru.MI-.'MS
ii-.
2.5 Prernixed flame thicknesses.
2.5.1 Simple chemistry.
2.5.2 Complex chemistry.
2.6 Flame stretch.
2.6.1 Definition and expressions of st ret eh .
2.6.2 Stretch of stationary flames.
2.6.3 Examples of flames with zero stretch
2.6.4 Examples of stretched flames.
2.7 Flame speeds.
2.7.1 Flame speed definitions.
2.7.2 Flame speeds of laminar planar uusf retched tlai
2.7.3 Flame speeds of stretched names
2.8 Instabilities of laminar flame fronts
Laminar diffusion flames
3.1 Diffusion flame configurations.
3.2 Theoretical tools for diffusion flames
3.2.1 Passive scalars and mixture fraction
3.2.2 Flame structure in the --space
3.2.3 The steady flamclef assumption
3.2.4 Decomposition into mixing and flame structure problems
3.2.5 Models for diffusion flame structures
3.3 Flame structure for irreversible infinitely fast chemistiv
3.3.1 The Burke-Schumann flame structure
3.3.2 Maximum local flame temperature in a diffusion flame
3.3.3 Maximum flame temperature in diffusion and prernixed flames
3.3.4 Maximum and mean temperatures m diffusion burners
3.4 Full solutions for irreversible fast chemistrv flames
3.4.1 Unsteady unstrained one-dimension,il diffusion Maine with mhniteiv fast
chemistry and constant density.
3.4.2 Steadv strained oiif'-dimeiisioii.il diffusion flame with iiititiit.-h !-» » chem-
istry and constant density.
3.4.3 Unsteady strained one-dimensional diffusion flame with infinitely fa.-t
chemistry and constant density . .
3.4.4 Jet flame in an uniform flow held .
3.4.5 Extensions to variable density .
3.5 Extensions of theory to other flame structures.
3.5.1 Reversible equilibrium chemistry.
3.5.2 Finite rate chemistry.
3.5.3 Summary of flame structures.
3.5.4 Extensions to variable Lewis numbers.
3.6 Real laminar diffusion names.
o.i
i.i.
hi,
l s
7li
7'?
HI
VI
'13
'»."¦
?it.
'Mi
'i'l
\ i ).\
1111
li)!t
II!
112
112
112
116
1 If
CONTENTS
3.6.1 One-dimensional codes for laminar diffusion flames.118
3.6.2 Mixture fractions in real flames.118
Introduction to turbulent combustion 125
4.1 Interaction between flames and turbulence. 125
4.2 Elementary descriptions of turbulence. 126
4.3 Influence of turbulence on combustion. 130
4.3.1 One-dimensional turbulent prernixed flame . 130
4.3.2 Turbulent jet diffusion flame . 131
4.4 Computational approaches for turbulent combustion. 132
4.5 RANS simulations for turbulent combustion. 140
4.5.1 Averaging the balance equations. 140
4.5.2 Unclosed terms in Favre averaged balance equations. 142
4.5.3 Classical turbulence models for the Reynolds stresses. 143
4.5.4 A first attempt to close mean reaction rates. 146
4.5.5 Physical approaches to model turbulent combustion. 148
4.5.6 A challenge for turbulent combustion modeling: flame flapping and in-
termittency. 149
4.6 Direct numerical simulations . 152
4.6.1 The role of DNS in turbulent combustion studies. 153
4.6.2 Numerical methods for direct simulation. 153
4.6.3 Spatial resolution and physical scales. 159
4.7 Large eddy simulations. 162
4.7.1 LES filters. 162
4.7.2 Filtered balance equations. 164
4.7.3 Unresolved fluxes modeling. 165
4.7.4 Simple filtered reaction rate closures. 169
4.7.5 Dynamic modeling in turbulent combustion. 171
4.7.6 Limits of large eddy simulations . 172
4.7.7 Comparing large eddy simulations and experimental data. 173
4.8 Chemistry for turbulent combustion. 177
4.8.1 Introduction . 177
4.8.2 Global schemes. 177
4.8.3 Automatic reduction - Tabulated chemistries. 180
4.8.4 In situ adaptive tabulation (ISAT). 181
Turbulent prernixed flames 183
5.1 Phenomenological description.183
5.1.1 The effect of turbulence on flame fronts: wrinkling.183
5.1.2 The effect of flame fronts on turbulence.186
5.1.3 The infinitely thin flame front limit.189
5.2 Prernixed turbulent combustion regimes.196
CONTENTS
5.2.1 A first difficulty: defining it' . 196
5.2.2 Classical turbulent prernixed combustion diagrams. 197
5.2.3 Modified combustion diagrams. 200
5.3 RANS of turbulent prernixed flames . 214
5.3.1 Prernixed turbulent combustion with single one-step chemistry. 214
5.3.2 The "'no-model" or Arrhenius approach . 216
5.3.3 The Eddy Break Up (EBU) model. 216
5.3.4 Models based on turbulent flame speed correlations. 218
5.3.5 The Bray Moss Libby (BML) model. 219
5.3.6 Flame surface density models. 224
5.3.7 Probability density function (pdf) models. 233
5.3.8 Modeling of turbulent scalar transport terms pu'/B". 239
5.3.9 Modeling of the characteristic turbulent flame time. 243
5.3.10 Kolmogorov-Petrovski-Piskunov (KPP) analysis . 246
5.3.11 Flame stabilization. 248
5.4 LES of turbulent prernixed flames. 252
5.4.1 Introduction . 252
5.4.2 Extension of RANS models: the LES-EBU model. 253
5.4.3 Artificially thickened flames. 253
5.4.4 G-equation. 255
5.4.5 Flame surface density LES formulations. 257
5.4.6 Scalar fluxes modeling in LES. 258
5.5 DNS of turbulent prernixed flames. 262
5.5.1 The role of DNS in turbulent combustion studies. 262
5.5.2 DNS database analysis. 263
5.5.3 Studies of local flame structures using DNS. 267
5.5.4 Complex chemistry simulations. 273
5.5.5 Studying the global structure of turbulent flames with DNS. 276
5.5.6 DNS analysis for large eddy simulations. 285
Turbulent non-premixed flames 287
6.1 Introduction.287
6.2 Phenomenological description.288
6.2.1 Typical flame structure: jet flame.288
6.2.2 Specific features of turbulent non-premixed flames.288
6.2.3 Turbulent non-premixed flame stabilization.289
6.2.4 An example of turbulent non-premixed flame stabilization.297
6.3 Turbulent non-premixed combustion regimes .300
6.3.1 Flame/vortex interactions in DNS.301
6.3.2 Scales in turbulent non-premixed combustion.306
6.3.3 Combustion regimes.309
6.4 RANS of turbulent non-premixed flames.311
CONTENTS
6.4.1 Assumptions and averaged equations. 311
6.4.2 Models for primitive variables with infinitely fast chemistry. 314
6.4.3 Mixture fraction variance and scalar dissipation rate. 317
6.4.4 Models for mean reaction rate with infinitely fast chemistry. 320
6.4.5 Models for primitive variables with finite rate chemistry. 321
6.4.6 Models for mean reaction rate with finite rate chemistry. 327
6.5 LES of turbulent non-premixed flames. 333
6.5.1 Linear Eddy Model. 333
6.5.2 Infinitely fast chemistry. 334
6.5.3 Finite rate chemistry. 335
6.6 DNS of turbulent non-premixed flames. 337
6.6.1 Studies of local flame structure. 337
6.6.2 Autoignition of a turbulent non-premixed flame. 341
6.6.3 Studies of global flame structure. 343
6.6.4 Three-dimensional turbulent hydrogen jet lifted flame with complex
chemistry. 346
Flame/wall interactions 349
7.1 Introduction. 349
7.2 Flame?wall interaction in laminar flows . 352
7.2.1 Phenomenological description. 352
7.2.2 Simple chemistry flame/wall interaction. 355
7.2.3 Computing complex chemistry flame/wall interaction. 356
7.3 Flame/wall interaction in turbulent flows . 359
7.3.1 Introduction . 359
7.3.2 DNS of turbulent flame/wall interaction. 360
7.3.3 Flame/wall interaction and turbulent combustion models. 364
7.3.4 Flame/wall interaction and wall heat transfer models. 365
Flame/acoustics interactions 375
8.1 Introduction. 375
8.2 Acoustics for non-reacting flows. 376
8.2.1 Fundamental equations . 376
8.2.2 Plane waves in one dimension. 378
8.2.3 Harmonic waves and guided waves. 380
8.2.4 Longitudinal modes in constant cross section ducts. 382
8.2.5 Longitudinal modes in variable cross section ducts. 383
8.2.6 Longitudinal/transverse modes in rectangular ducts . 384
8.2.7 Longitudinal modes in a series of constant cross section ducts. 387
8.2.8 The double duct and the Helmholtz resonator. 390
8.2.9 Multidimensional acoustic modes in cavities. 393
8.2.10 Acoustic energv density and flux. 395
COS IKS IS
h.3 Acoustics for reacting Hows. '
8.3.1 An rquat.ion for IniPi in reactmg Hows ?'''",
8.3.2 A wave equation in low Mach-inunl er reacting Hows ¦''»'
8.3.3 Acoustic velocity and pressure in low-speed reacting tlt w- *'M'
H.3.4 Acoustic jump eonditions for thin Haines i"1
8.3.5 Longitudinal mode* in a series of duct.-, with ? ¦¦ mlxisti. » l"3
8.3.6 Three-dimensional Helmholtz tools '"»
8.3.7 The acoustic energy balance in reacting Hows '"
8.3.8 About energies in reacting Hows
8.4 Combustion instabilities
8.4.1 Stable versus unstable combustion. "
8.4.2 Interaction of longitudinal waves and thin Haim-s '''
8.4.3 The in - r) formulation for flame transfer function "^
8.4.4 Complete solution in a simplified case si'
8.4.5 Vortices in combustion instabilities. '-'
8.5 Large eddy simulations of combustion instabilities '-
8.5.1 Introduction . '-*'
8.5.2 LES strategies to studv combustion instabilities '-*
tin
Boundary conditions "*?*
9.1 Introduction.
9.2 Classification of compressible Navier-Sfokes equations formulations »'-4
9.3 Description of characteristic boundary conditions . '
9.3.1 Theory . i:U
9.3.2 Reacting Navier-Stokes equations near a boundary ??*''
9.3.3 The Local One Dimensional Inviscid (LODI) relations * l°
9.3.4 The NSCBC strategy for the Euler equations. 1J-
9.3.5 The NSCBC strategy for Navier-Stokes equations. *'^
9.3.6 Edges and corners. **'
9.4 Examples of implementation.*''
9.4.1 A subsonic inflow with fixed velocities and temperature (SI-l'i **s
9.4.2 A subsonic non-reflecting inflow (SI-4). *
9.4.3 Subsonic non-reflecting outflows (B2 and B3). ,1'1
9.4.4 A subsonic reflecting outflow (B4) . }, 1
9.4.5 An isothernial no-slip wall (NSW) . il!
9.4.6 An adiabatic slip wall (ASW). 4' 2
9.5 Applications to steady non-reacting flows. ~t:'-
9.6 Applications to steady reacting flows. *'''
9.7 Unsteady flows and numerical waves control. ^',l
9.7.1 Physical and numerical waves. ^ '"
9.7.2 Vortex/boundary interactions. ^
9.8 Applications to low Reynolds number flews. 'W)
CONTENTS ix
10 Examples of LES applications 473
10.1 Introduction. 473
10.2 Case 1: small scale gas turbine burner. 474
10.2.1 Configuration and boundary conditions . 474
10.2.2 Non reacting flow. 475
10.2.3 Stable reacting flow . 480
10.3 Case 2: large-scale gas turbine burner. 484
10.3.1 Configuration. 484
10.3.2 Boundary conditions. 484
10.3.3 Comparison of cold and hot flow structures. 485
10.3.4 A low-frequency forced mode. 486
10.3.5 A high-frequency self-excited mode. 489
10.4 Case 3: self-excited laboratory-scale burner. 491
10.4.1 Configuration. 491
10.4.2 Stable flow. 492
10.4.3 Controlling oscillations through boundary conditions. 492
References 497
Index 519 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Poinsot, Thierry Veynante, Denis |
author_facet | Poinsot, Thierry Veynante, Denis |
author_role | aut aut |
author_sort | Poinsot, Thierry |
author_variant | t p tp d v dv |
building | Verbundindex |
bvnumber | BV022617794 |
callnumber-first | Q - Science |
callnumber-label | QD516 |
callnumber-raw | QD516 |
callnumber-search | QD516 |
callnumber-sort | QD 3516 |
callnumber-subject | QD - Chemistry |
classification_tum | ERG 420f |
ctrlnum | (OCoLC)56661873 (DE-599)BVBBV022617794 |
dewey-full | 541/.361/015118 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 541 - Physical chemistry |
dewey-raw | 541/.361/015118 |
dewey-search | 541/.361/015118 |
dewey-sort | 3541 3361 515118 |
dewey-tens | 540 - Chemistry and allied sciences |
discipline | Chemie / Pharmazie Energietechnik, Energiewirtschaft |
discipline_str_mv | Chemie / Pharmazie Energietechnik, Energiewirtschaft |
edition | 2. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01653nam a2200445 c 4500</leader><controlfield tag="001">BV022617794</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080212 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070821s2005 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1930217102</subfield><subfield code="9">1-930217-10-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781930217102</subfield><subfield code="9">978-1-930217-10-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)56661873</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022617794</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QD516</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">541/.361/015118</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ERG 420f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poinsot, Thierry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theoretical and numerical combustion</subfield><subfield code="c">Thierry Poinsot ; Denis Veynante</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Philadelphia, PA</subfield><subfield code="b">Edwards</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIV, 522 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Combustão</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modelos matemáticos</subfield><subfield code="2">larpcal</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combustion</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Verbrennung</subfield><subfield code="0">(DE-588)4062656-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Veynante, Denis</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823902&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015823902</subfield></datafield></record></collection> |
id | DE-604.BV022617794 |
illustrated | Illustrated |
index_date | 2024-07-02T18:18:55Z |
indexdate | 2024-07-09T21:01:46Z |
institution | BVB |
isbn | 1930217102 9781930217102 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015823902 |
oclc_num | 56661873 |
open_access_boolean | |
owner | DE-29T DE-91G DE-BY-TUM DE-634 DE-706 DE-83 |
owner_facet | DE-29T DE-91G DE-BY-TUM DE-634 DE-706 DE-83 |
physical | XIV, 522 S. Ill., graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Edwards |
record_format | marc |
spelling | Poinsot, Thierry Verfasser aut Theoretical and numerical combustion Thierry Poinsot ; Denis Veynante 2. ed. Philadelphia, PA Edwards 2005 XIV, 522 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Combustão larpcal Modelos matemáticos larpcal Mathematisches Modell Combustion Mathematical models Verbrennung (DE-588)4062656-8 gnd rswk-swf Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Verbrennung (DE-588)4062656-8 s Mathematisches Modell (DE-588)4114528-8 s DE-604 Veynante, Denis Verfasser aut HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823902&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Poinsot, Thierry Veynante, Denis Theoretical and numerical combustion Combustão larpcal Modelos matemáticos larpcal Mathematisches Modell Combustion Mathematical models Verbrennung (DE-588)4062656-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
subject_GND | (DE-588)4062656-8 (DE-588)4114528-8 |
title | Theoretical and numerical combustion |
title_auth | Theoretical and numerical combustion |
title_exact_search | Theoretical and numerical combustion |
title_exact_search_txtP | Theoretical and numerical combustion |
title_full | Theoretical and numerical combustion Thierry Poinsot ; Denis Veynante |
title_fullStr | Theoretical and numerical combustion Thierry Poinsot ; Denis Veynante |
title_full_unstemmed | Theoretical and numerical combustion Thierry Poinsot ; Denis Veynante |
title_short | Theoretical and numerical combustion |
title_sort | theoretical and numerical combustion |
topic | Combustão larpcal Modelos matemáticos larpcal Mathematisches Modell Combustion Mathematical models Verbrennung (DE-588)4062656-8 gnd Mathematisches Modell (DE-588)4114528-8 gnd |
topic_facet | Combustão Modelos matemáticos Mathematisches Modell Combustion Mathematical models Verbrennung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823902&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT poinsotthierry theoreticalandnumericalcombustion AT veynantedenis theoreticalandnumericalcombustion |