Nanomaterials and nanochemistry:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English French |
Veröffentlicht: |
Berlin
Springer
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | XXX, 747 S. Ill., graph. Darst. 235 mm x 155 mm |
ISBN: | 9783540729921 3540729925 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022617217 | ||
003 | DE-604 | ||
005 | 20191105 | ||
007 | t | ||
008 | 070821s2007 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N22,0901 |2 dnb | ||
016 | 7 | |a 984065741 |2 DE-101 | |
020 | |a 9783540729921 |c Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 246.00 (freier Pr.) |9 978-3-540-72992-1 | ||
020 | |a 3540729925 |c Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 246.00 (freier Pr.) |9 3-540-72992-5 | ||
024 | 3 | |a 9783540729921 | |
028 | 5 | 2 | |a 11743941 |
035 | |a (OCoLC)226966368 | ||
035 | |a (DE-599)DNB984065741 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h fre | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-91G |a DE-1046 |a DE-M347 |a DE-19 |a DE-703 |a DE-29T |a DE-20 |a DE-634 |a DE-92 |a DE-11 |a DE-384 |a DE-355 |a DE-526 | ||
050 | 0 | |a TA418.9.N35 | |
082 | 0 | |a 620.1/1 |2 22 | |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |a WER 421f |2 stub | ||
084 | |a CHE 380f |2 stub | ||
084 | |a WER 035f |2 stub | ||
084 | |a 530 |2 sdnb | ||
130 | 0 | |a Les Nanosciences - Nanomatériaux et nanochimie | |
245 | 1 | 0 | |a Nanomaterials and nanochemistry |c C. Bréchignac ... (eds.) |
264 | 1 | |a Berlin |b Springer |c 2007 | |
300 | |a XXX, 747 S. |b Ill., graph. Darst. |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Nanochemistry | |
650 | 4 | |a Nanostructured materials | |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Bréchignac, Catherine |d 1946- |e Sonstige |0 (DE-588)1089848005 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2951234&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | |u http://d-nb.info/984065741/04 |3 Inhaltsverzeichnis | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823334&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015823334 |
Datensatz im Suchindex
_version_ | 1805089314704457728 |
---|---|
adam_text |
Contents
Part I Basic Principles and Fundamental Properties
1
Size Effects on Structure and Morphology
of Free or Supported Nanoparticles
С
Henry
. 3
1.1
Size and Confinement Effects
. 3
1.1.1
Introduction
. 3
1.1.2
Fraction of Surface Atoms
. 3
1.1.3
Specific Surface Energy and Surface Stress
. 4
1.1.4
Effect on the Lattice Parameter
. 5
1.1.5
Effect on the Phonon Density of States
. 8
1.2
Nanoparticle Morphology
. 8
1.2.1
Equilibrium Shape of a Macroscopic Crystal
. 8
1.2.2
Equilibrium Shape of Nanometric Crystals
. 10
1.2.3
Morphology of Supported Particles
. 17
References
. 32
2
Structure and Phase Transitions in Nanocrystals
J.-C.
Nièpce,
L. Pizzagalli
. 35
2.1
Introduction
. 35
2.2
Crystalline Phase Transitions in Nanocrystals
. 39
2.2.1
Phase Transitions and Grain Size Dependence
. 39
2.2.2
Elementary Thermodynamics of the Grain Size
Dependence of Phase Transitions
. 40
2.2.3
Influence of the Surface or Interface on Nanocrystals
. 42
2.2.4
Modification of Transition Barriers
. 44
2.3
Geometric Evolution of the Lattice in Nanocrystals
. 46
2.3.1
Grain Size Dependence
. 46
2.3.2
Theory
. 47
2.3.3
Influence of the Nanocrystal Surface or Interface
on the Lattice Parameter
. 50
XII Contents
2.3.4
Is There a Continuous Variation of the Crystal State
Within Nanocrystals?
. 51
References
. 53
3
Thermodynamics and Solid-Liquid Transitions
P. Labastie, F.
Calvo
. 55
3.1
Size Dependence of the Solid-Liquid Transition
. 56
3.1.1
Prom the Macroscopic to the Nanometric
. 56
3.1.2
From Nanoparticles to Molecules
. 64
3.2
Thermodynamics of Very Small Systems
. 67
3.2.1
General Considerations
. 67
3.2.2
Non-Equivalence of the Gibbs Ensembles
. 68
3.2.3
Dynamically Coexisting Phases
. 69
3.2.4
Stability of an Isolated Particle.
Thermodynamic Equilibrium
. 73
3.3
Evaporation: Consequences and Observations
. 74
3.3.1
Statistical Theories of Evaporation
. 74
3.3.2
Link with the Solid-Liquid Transition. Numerical Results
. 79
3.3.3
Experimental Investigation of Evaporation
. 80
3.3.4
Beyond Unimolecular Evaporation
. 81
3.3.5
Toward the Liquid-Gas Transition
. 82
References
. 86
4
Modelling and Simulating the Dynamics of Nano-Objects
A. Pimpinelli
. 89
4.1
Introduction
. 89
4.2
Free Clusters of Atoms.
Molecular Dynamics Simulations
. 90
4.3
Evolution of Free and Supported Nanoclusters
Toward Equilibrium. Kinetic Monte Carlo Simulations
. 93
References
. 97
Part II Physical and Chemical Properties on the Nanoscale
5
Magnetism in Nanomaterials
D. Givord
.101
5.1
Introduction
.101
5.2
Magnetism in Matter
.102
5.2.1
Magnetic Moment
.102
5.2.2
Magnetic Order
.105
5.2.3
Magnetocrystalline Anisotropy
.108
5.3
Magnetisation Process and Magnetic Materials
.110
5.3.1
Energy of the Demagnetising Field. Domains and Walls
.
Ill
5.3.2
The Magnetisation Process
.112
5.3.3
Magnetic Materials
.115
Contents XIII
5.4
Magnetism
in Small Systems
.116
5.4.1
Magnetic Moments in Clusters
.116
5.4.2
Magnetic Order in Nanoparticles
.119
5.4.3
Magnetic Anisotropy in Clusters and Nanoparticles
.120
5.5
Magnetostatics and Magnetisation Processes in Nanoparticles
. 121
5.5.1
Single-Domain Magnetic Particles
.121
5.5.2
Thermal Activation and Superparamagnetism
.122
5.5.3
Coherent Rotation in Nanoparticles
.123
5.5.4
From Thermal Activation to the Macroscopic Tunnel Effect
124
5.6
Magnetism in Coupled Nanosystems
.126
5.6.1
Exchange-Coupled Nanocrystals.
Ultrasoft
Materials
and Enhanced
Remanence
.126
5.6.2
Coercivity in Nanocomposites
.128
5.6.3
Exchange Bias in Systems of Ferromagnetic Nanoparticles
Coupled with an Antiferromagnetic Matrix
.130
References
.132
6
Electronic Structure in Clusters and Nanoparticles
F. Spiegelman
.135
6.1
Introduction
.135
6.2
Liquid-Drop Model
.139
6.3
Methods for Calculating Electronic Structure
.141
6.3.1
Born-Oppenheimer Approximation. Surface Potential
.142
6.3.2 Ab Initio
Calculation of Electronic Structure
.144
6.3.3
Density Functional Theory
.147
6.3.4
Charge Analysis
.149
6.3.5
Approximate and Semi-Empirical Descriptions
.150
6.3.6
Energy Bands and Densities of States
.152
6.4
Applications to Some Typical Examples
.154
6.4.1
Metallic Nanoparticles
.154
6.4.2
Molecular Clusters
.162
6.4.3
Ionic and Ionocovalent Clusters
.170
6.4.4
Covalent Systems
.175
6.5
Valence Changes
.178
6.5.1
Transitions with Size
.178
6.5.2
Transitions with Stoichiometry
.179
6.6
Nanotubes
.182
6.7
Prospects
.185
References
.188
7
Optical Properties of Metallic Nanoparticles
F. Vallée
.197
7.1
Optical Response for Free Clusters
and Composite Materials
.198
XIV Contents
7.2
Optical Response
in the Quasi-Static Approximation: Nanospheres
.199
7.3
Dielectric Constant of a Metal:
Nanometric Size Effect
.203
7.4
Surface Plasmon Resonance
in the Quasi-Static Approximation: Nanospheres
.207
7.5
Surface Plasmon Resonance:
Quantum Effects for Small Sizes (D
<
5nm)
.211
7.6
General Case for Nanospheres: The
Mie
Model
.213
7.7
Non-Spherical or Inhomogeneous Nanoparticles
in the Quasi-Static Model
.216
7.7.1
Shape Effects: Ellipsoids
.216
7.7.2
Structure Effects: Core-Shell System
.217
7.8
Optical Response of a Single Metal Nanoparticle
.219
7.9
Electromagnetic Field Enhancement: Applications
.221
7.9.1
Nonlinear Optical Response
.221
7.9.2
Time-Resolved Spectroscopy
.222
7.9.3
Local Enhancement of Raman Scattering:
SERS
.223
7.10
Conclusion
.224
References
.226
8
Mechanical and Nanomechanical Properties
C. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng,
M.
Zei,
P.
Joli
.229
8.1
Macroscopic Mechanical Properties
.229
8.1.1
Introduction
.229
8.1.2
Elastic Properties
.229
8.1.3
Hardness
.231
8.1.4
Ductility
.234
8.1.5
Numerical Modelling
.236
8.2
Nanomechanical Properties
.238
8.2.1
Experimentation
.238
8.2.2
Computer Modelling
.254
References
.265
9
Superplasticity
T. Rouxel
.269
9.1
Introduction
.269
9.2
Mechanism
.270
9.3
Superplastic Nanostructured
Materials
.276
9.4
Industrial Applications
.277
References
.280
Contents
XV
10
Reactivity of Metal Nanoparticles
J.-C. Bertolini, J.-L. Rousset
.281
10.1
Size Effects
.282
10.1.1
Structural Properties
.282
10.1.2
Electronic Properties
.286
10.1.3
Reactivity in Chemisorption and Catalysis
of Monometallic Nanoparticles
.288
10.2
Support Effects
.293
10.3
Alloying Effects
.295
10.3.1
Effect of Surface Segregation
.296
10.3.2
Geometric Effects
.297
10.3.3
Electronic Effects
.298
10.4
Preparation and Implementation in the Laboratory
and in Industry
.299
References
.302
11
Inverse Systems
-
Nanoporous Solids
J. Patarin, O.
Spalla,
F.
Di Renzo
.305
11.1
Introduction
.305
11.2
Nomenclature:
The Main Families
of Porous Materials
.305
11.3
Zeolites and Related Microporous Solids.
Definition and Structure
.307
11.4
Ordered Mesoporous Solids
.309
11.5
Disordered Nanoporous Solids
.311
References
.314
12
Inverse Systems
-
Confined Fluids:
Phase Diagram and Metastability
E. Charlaix, R. Denoyel
.315
12.1
Displacement of First Order Transitions: Evaporation and
Condensation
.315
12.1.1
Adsorption Isotherms
.315
12.1.2
Capillary Condensation
.317
12.1.3
Capillary Pressure and the Kelvin Radius
.319
12.1.4
Non-
Wetting Fluid
.320
12.1.5
Perfectly Wetting Fluid
.320
12.1.6
Hysteresis, Metastability and Nucleation
.322
12.2
Melting-Solidification
.325
12.3
Modification of the Critical Temperature
.329
12.4
Ultraconfmement: Microporous Materials
.331
References
.334
XVI Contents
13
Supramolecular
Chemistry:
Applications
and Prospects
N.
Solladié,
J.
-F. Nierengarten.335
13.1
From Molecular to Supramolecular Chemistry
.335
13.2
Molecular Recognition
.335
13.3
Anionie
Coordination Chemistry
and Recognition of
Anionie
Substrates
.338
13.4
Multiple Recognition
.338
13.5
Applications
.341
13.6
Prospects
.343
References
.344
14
Nanocomposites: The End of Compromise
H. Van Damme
.347
14.1
Composites and Nanocomposites
.347
14.2
Introduction to Polymers
.351
14.2.1
Ideal Chains
.352
14.2.2
The Glass Transition
.354
14.2.3
Entropie
Elasticity
.357
14.3
Nanoffllers
.359
14.3.1
Clays
.359
14.3.2
Carbon Nanotubes
.363
14.4
Strengthening and Permeability Control: Models
.364
14.4.1
Strengthening: Increasing the Modulus
.364
14.4.2
Impermeability: Reducing the Diffusivity
.367
14.5
Strengthening and Permeability
of Nanocomposites: Facts and Explanations
.369
14.5.1
Strengthening: Successes and Failures
.369
14.5.2
Impermeability
.376
14.5.3
Dimensional Stability
.377
14.5.4
Fire Resistance
.379
14.6
Conclusion
.379
References
.380
Part III Synthesis of Nanomaterials and Nanoparticles
15
Specific Features of Nanoscale Growth
J. Livage, D.
Roux
.383
15.1
Introduction
.383
15.2
Thermodynamics of Phase Transitions
.383
15.3
Dynamics of Phase Transitions
.385
15.3.1
Thermodynamics of Spinodal Decomposition
.386
15.3.2
Thermodynamics of Nucleation-Growth
.388
15.4
Size Control
.389
15.5
Triggering the Phase Transition
.391
Contents XVII
15.6 Application
to
Solid
Nanoparticles
.392
15.6.1 Controlling Nucleation.392
15.6.2 Controlling
Growth
.393
15.6.3 Controlling
Aggregation. Stability of Colloidal Dispersions
. 393
15.7
Breaking Matter into Pieces
.393
References
.394
16
Gas Phase Synthesis of Nanopowders
Y. Champion
.395
16.1
Introduction
.395
16.2
The Need for Gas State Processing
.397
16.3
Main Stages of Gas Phase Synthesis
.400
16.4
Spontaneous Condensation of Nanoparticles: Homogeneous
Nucleation
.401
16.5
Undesirable Post-Condensation Effects
and Control of the Nanometric State
.408
16.5.1
Why Do These Effects Occur?
.409
16.5.2
Particle Growth by Gas Condensation
.410
16.5.3
Coalescent Coagulation
.411
16.6
Vapour Formation
and the Production of Nanopowders
.416
16.6.1
Physical Processes
.416
16.6.2
Chemical Processing: Laser Pyrolysis
.424
16.7
Conclusion
.426
References
.426
17
Synthesis of Nanocomposite Powders
by Gas-Solid Reaction and by Precipitation
С
Laurent
.429
17.1
Introduction
.429
17.2
Synthesis of Nanocomposite Powders
by Gas-Solid Reactions
.430
17.2.1
Synthesis of Intergranular Nanocomposite
and
Nano-Nano
Composite Powders
.430
17.2.2
Synthesis of Intragranular and Hybrid
Nanocomposite Powders
.433
17.3
Conclusion
.438
References
.438
18
Colloidal Methods and Shape Anisotropy
D.
Ingert
.441
18.1
Introduction
.441
18.2
Surfactants
.442
18.3
Reverse Micelles: Spherical Nanoreactors
.445
18.4
Factors Affecting Shape Control
.448
18.4.1
Effect of the Colloidal Template on Shape Control
.448
XVIII
Contents
18.4.2
Effect
of Anions on Nanocrystal Growth
.449
18.4.3
Effect of Molecular Adsorption on Nanocrystalline Growth.
451
18.5
Conclusion
.452
References
.453
19
Mechanical Milling
E.
Gaffet,
G. Le Caër
.455
19.1
Introduction
.455
19.1.1
Mechanosynthesis
.455
19.1.2
Mechanical Activation
.455
19.2
Ball Mills
.456
19.3
Mechanisms
.458
19.3.1
Reducing Cristallite Sizes
.458
19.3.2
Parameters Relevant to Mechanical Alloying
and Activation
.459
19.3.3
Mechanics of Mechanical Alloying
.461
19.4
Materials and Their Applications
.462
19.4.1
Mechanical Alloying
.462
19.4.2
Mechanical Activation
.462
19.5
Shaping and Densifying Nanomaterials
.464
19.5.1
Standard Processes
.464
19.5.2
Mechanically-Activated Field-Activated Pressure-Assisted
Synthesis (MAFAPAS)
.464
19.6
Severe Plastic Deformation
(SPD).466
19.6.1
High-Pressure Torsion (HPT)
.467
19.6.2
Equal Channel Angular Pressing (ECAP)
.468
19.7
Bulk Mechanical Alloying
.468
19.8
Synthesis of Nanocomposites by Extrusion, Drawing,
and Embossing
.468
References
.469
20
Supercritical Fluids
A. Taleb
.473
20.1
Definition
.473
20.2
Physicochemical Properties
.475
20.2.1
Solubility
.475
20.2.2
Viscosity
.477
20.2.3
Diffusion
.477
20.2.4
Thermal Conductivity
.479
20.3
Applications
.479
20.3.1
Purification and Extraction
.479
20.3.2
Synthesis
.480
References
.484
Contents XIX
Part IV Fabrication of Nanostructured Bulk Materials
and Nanoporous Materials
21
Bulk Nanostructured Materials
Obtained by Powder Sintering
F. Bernard, J.-C.
Nièpce
.489
21.1
Sintering
.489
21.1.1
Definition
.489
21.1.2
The Physical Phenomena of Sintering
.489
21.1.3
Different Sintering Conditions
.489
21.1.4
Preserving Nanostructure During Sintering
.491
21.2
Spark Plasma Sintering (SPS)
.491
21.2.1
Basic Principle
.491
21.2.2
Advantages of the SPS Process
.493
21.2.3
Illustrations in the Field of Nanomaterials
.493
References
.495
22
Self-Assembly of Nanomaterials at Macroscopic Scales
A. Courty
.497
22.1
Fabrication of Nanomaterials
.498
22.2
2D and
3D
Nanomaterial Structures
.500
22.2.1
Depositing Nanomaterials on a Solid Substrate
.500
22.2.2
Forces Inducing Self-Organisation
.502
22.2.3
Crystal Structure of 2D and
3D
Nanomaterials
.508
22.3
Conclusion
.513
References
.513
23
Assemblies of Magnetic Nanoparticles
J.
Richardi
.515
23.1
Magnetic Properties of Nanoparticle Assemblies
.515
23.2
Structure of Magnetic Nanoparticle Assemblies Deposited
Without Field
.519
23.3
Structure of Magnetic Nanoparticle Assemblies Deposited with
Field
.523
23.3.1
Perpendicular Field
.523
23.3.2
Parallel Field
.526
References
.527
24
Nanostructured Coatings
J. -P. Riviere
.529
24.1
Methodology for Making Superhard Nanostructured Coatings
. 530
24.1.1
Multilayers with Nanometric Period
.530
24.1.2
Nanocomposites
.532
24.2
Methods of Synthesis
.536
24.2.1
General Principles
.536
XX
Contents
24.2.2
Plasma-Activated
Chemical
Vapour Deposition (PACVD)
. 539
24.2.3
Physical Vapour Deposition
by Sputtering and Cathodic Arc
.540
24.2.4
PVD by Ion Beam Sputtering
.544
References
.546
25
Dispersion in Solids
D. Babonneau
.549
25.1
Chemical Methods
.550
25.1.1
Synthesis of Doped Glasses
.550
25.1.2
Sol-Gel Method
.551
25.2
Physical Methods
.554
25.2.1
Ion Implantation
.555
25.2.2
Vapour Deposition and Sputtering Methods
.559
25.2.3
Pulsed Laser Deposition
.562
25.2.4
Low Energy Cluster Beam Deposition (LECBD)
.563
References
.565
26
Nanoporous Media
J. Patarin, O.
Spalla,
F.
Di Renzo
.569
26.1
Introduction
.569
26.2
Synthesis of Crystalline Microporous Solids
.569
26.2.1
Methods of Synthesis
.569
26.2.2
The Crystallisation Process Exemplified by Zeolites
.571
26.2.3
Main Organic Structure-Directing Agents
Used to Synthesise Crystalline Microporous Solids
.573
26.2.4
Role of Inorganic Cations and Organic Species
.573
26.2.5
Organic Species and the Template Effect
.574
26.2.6
Porosity of Zeolites and Related Solids
.576
26.2.7
Applications of Zeolitic Materials
.577
26.3
Synthesis of Ordered Mesoporous Solids
.579
26.3.1
Methods of Synthesis
.579
26.3.2
Definition and Role of the Surfactant
.581
26.3.3
Mechanisms for the Formation of MCM-41 Phase
.582
26.3.4
Characteristics of Mesoporous Silicas
Obtained in the Presence of Amphiphilic Molecules
.588
26.3.5
Structural Characterisation of Nanoporous Solids
by
Х
-Ray and Neutron Scattering
.589
26.4
Conclusion
.593
References
.593
27
Molecular Imprinting
V. Dufaud, L. Bonneviot
.597
27.1
Introduction
.597
27.2
Fundamental Considerations
.598
27.2.1
General Principles
.598
Contents XXI
27.2.2
Role of Complexation
Sites
During the Imprinting Process
. 599
27.2.3
Structure and Properties of the Polymer Matrix
.602
27.3
Procedures and Methods for Molecular Imprinting
.603
27.3.1
Imprinted Organic Polymers
.603
27.3.2
Imprinted Inorganic Matrices
.604
27.4
Applications
.608
27.4.1
Separating a Mixture of Herbicides
.609
27.4.2
Synthesis of a-Aspartame
.609
27.4.3
Chiral Separation of
Amino
Acids by Ligand Exchange
at a Metal Site
.610
27.4.4
Specific Elimination of
Lanthanides
and Actinides
in a Highly Radioactive Effluent
.610
27.5
Recent Challenges and Progress
.612
References
.613
Part V Applications of Nanomaterials
28
Electronics and
Electromagnetism
J.-C.
Nièpce, D.
Givord
.617
28.1
Multilayer Ceramic Capacitors
.617
28.1.1
What Is a Multilayer Ceramic Capacitor?
.617
28.1.2
Market Requirements
.619
28.1.3
Constraints Laid Down by these Requirements
.620
28.1.4
ВаТіОз
Ceramic Dielectrics with Nanograins:
The Favoured Solution
.621
28.2
Magnetic Recording
.626
28.2.1
General Operation
.626
28.2.2
Recording Materials.
Longitudinal and Perpendicular Recording
.627
28.2.3
Write Heads
.629
28.2.4
Read Heads
.629
28.2.5
Disk Drive Motor
.630
References
.631
29
Optics
P. Maestro, M. Chagny, P.-P.
J
oberi.
, Η.
Van Damme,
S. Berthier
.633
29.1
Cosmetics
.633
29.1.1
Introduction
.633
29.1.2
Nano-Titanium Oxides in Cosmetics: Solar Skin Protection
633
29.1.3
Conclusion
.635
29.2
Nanophosphors
.635
29.2.1
Introduction
.635
29.2.2
Phosphors: General Considerations
.636
29.2.3
Operating Principle
.638
XXII Contents
29.2.4
Industrial Applications
.638
29.2.5
Conclusion .
640
29.3
Surface Nanoengineering
.640
29.3.1
What Is the Surface Area of a Town?
.640
29.3.2
Superhydrophobic Surfaces
.641
29.3.3
Self-Cleaning and Superhydrophilic Surfaces
.644
29.3.4
When Concrete Cleans the Air We Breathe
.648
29.4
Photonic Crystals
.649
29.4.1
The Colourful World of Birds and Insects
.649
29.4.2
Photonic Crystals and Photonic Band Gaps
.650
29.4.3
Guides and Cavities
.653
29.4.4
Prom Colloidal Crystals to Photonic Crystals
.654
References
.658
30
Mechanics
P. Maestro, E.
Gaffet,
G. Le Caër,
A. Mocellin,
E.
Reynaud,
T. Rouxel, M.
Soulard,
J. Patarin, L.
Thilly, F. Lecouturier.661
30.1
Silica
Precipitates for High-Performance Tyres
.661
30.1.1
Fabrication of Silica Precipitates
.661
30.1.2
Tyres and Other Applications
.662
30.2
Ceramic-Metal Composite Welding Supports
.663
30.2.1
Ceramics
.664
30.2.2
Reactive Mechanical Alloying
and High-Energy Ball Milling
.665
30.2.3
Improving Properties
.667
30.3
Reinforced Amorphous Matrices
.668
30.3.1
Not All Materials Are Ordered
.668
30.3.2
Incorporating Nanoparticles into Amorphous Matrices
. 669
30.3.3
Prospects
.673
30.3.4
The Long Road
.675
30.4
Nanoporous Solids as Molecular Springs,
Shock Absorbers and Bumpers
.676
30.4.1
Introduction
.676
30.4.2
Basic Idea
.676
30.4.3
Pressure-Volume Diagram
.677
30.4.4
Stored Energy and Restored Energy
.678
30.4.5
Causes of Irreversibility
.679
30.4.6
Behaviour of the Solid and Liquid
.680
30.4.7
Practical Applications
.683
30.5
High Field Coils
.
№b
30.5.1
Specifications for Generating High Pulsed Magnetic Fields
. 685
30.5.2
Synthesis of Reinforced Copper Matrix Conductors
.687
30.5.3
Geometry and
Microstructure
of Cu/Nb Nanofilamentary Conductors
.688
Contents XXIII
30.5.4
Physical Properties
of Cu/Nb Nanofilamentary Conductors
.690
30.5.5
Conclusion
.693
References
.693
31
Biology and the Environment
P. Maestro, P.
Couvreur,
D.
Roux,
D.
Givord,
J.-
A.
Dalmon,
J.-C. Bertolini, F. J.
Cadete Santos
Aires
.695
31.1
Inorganic Catalysts for Diesel Engines
.695
31.2
Nanotechnology and New Medicines
.697
31.2.1
Introduction
.697
31.2.2
Artificial Carriers:
Liposomes
and Nanoparticles
.697
31.2.3
Conclusion
.701
31.3
Magnetic Nanoparticles
and
Biomedical
Applications
.701
31.3.1
Magnetotactic Bacteria
.702
31.3.2
Homing Pigeons
.702
31.3.3
Magnetic Separation
.703
31.3.4
Magnetic Nanoparticles as
MRI
Contrast Agents
.704
31.3.5
Magnetic Nanoparticles and Treatment of Tumours
.705
31.4
Zeolitic Membranes for Separation Processes
and Catalytic Reactors
.706
31.4.1
Introduction
.706
31.4.2
Microporous Membranes
.707
31.4.3
Zeolitic Membranes: Synthesis and Characterisation
.707
31.4.4
Application to Gas Separation
.708
31.4.5
Application to a Catalytic Reactor
.709
31.5
Metal Nanoparticles and Catalysis
.710
31.5.1
Synthesis and Characterisation of Pd/Si3N4 Catalysts
.711
31.5.2
Total Oxidation of Methane:
Implementation in the Laboratory
.713
31.5.3
Application to Radiant Panels (Infrared Energy Emission)
. 713
References
.715
Index
.717 |
adam_txt |
Contents
Part I Basic Principles and Fundamental Properties
1
Size Effects on Structure and Morphology
of Free or Supported Nanoparticles
С
Henry
. 3
1.1
Size and Confinement Effects
. 3
1.1.1
Introduction
. 3
1.1.2
Fraction of Surface Atoms
. 3
1.1.3
Specific Surface Energy and Surface Stress
. 4
1.1.4
Effect on the Lattice Parameter
. 5
1.1.5
Effect on the Phonon Density of States
. 8
1.2
Nanoparticle Morphology
. 8
1.2.1
Equilibrium Shape of a Macroscopic Crystal
. 8
1.2.2
Equilibrium Shape of Nanometric Crystals
. 10
1.2.3
Morphology of Supported Particles
. 17
References
. 32
2
Structure and Phase Transitions in Nanocrystals
J.-C.
Nièpce,
L. Pizzagalli
. 35
2.1
Introduction
. 35
2.2
Crystalline Phase Transitions in Nanocrystals
. 39
2.2.1
Phase Transitions and Grain Size Dependence
. 39
2.2.2
Elementary Thermodynamics of the Grain Size
Dependence of Phase Transitions
. 40
2.2.3
Influence of the Surface or Interface on Nanocrystals
. 42
2.2.4
Modification of Transition Barriers
. 44
2.3
Geometric Evolution of the Lattice in Nanocrystals
. 46
2.3.1
Grain Size Dependence
. 46
2.3.2
Theory
. 47
2.3.3
Influence of the Nanocrystal Surface or Interface
on the Lattice Parameter
. 50
XII Contents
2.3.4
Is There a Continuous Variation of the Crystal State
Within Nanocrystals?
. 51
References
. 53
3
Thermodynamics and Solid-Liquid Transitions
P. Labastie, F.
Calvo
. 55
3.1
Size Dependence of the Solid-Liquid Transition
. 56
3.1.1
Prom the Macroscopic to the Nanometric
. 56
3.1.2
From Nanoparticles to Molecules
. 64
3.2
Thermodynamics of Very Small Systems
. 67
3.2.1
General Considerations
. 67
3.2.2
Non-Equivalence of the Gibbs Ensembles
. 68
3.2.3
Dynamically Coexisting Phases
. 69
3.2.4
Stability of an Isolated Particle.
Thermodynamic Equilibrium
. 73
3.3
Evaporation: Consequences and Observations
. 74
3.3.1
Statistical Theories of Evaporation
. 74
3.3.2
Link with the Solid-Liquid Transition. Numerical Results
. 79
3.3.3
Experimental Investigation of Evaporation
. 80
3.3.4
Beyond Unimolecular Evaporation
. 81
3.3.5
Toward the Liquid-Gas Transition
. 82
References
. 86
4
Modelling and Simulating the Dynamics of Nano-Objects
A. Pimpinelli
. 89
4.1
Introduction
. 89
4.2
Free Clusters of Atoms.
Molecular Dynamics Simulations
. 90
4.3
Evolution of Free and Supported Nanoclusters
Toward Equilibrium. Kinetic Monte Carlo Simulations
. 93
References
. 97
Part II Physical and Chemical Properties on the Nanoscale
5
Magnetism in Nanomaterials
D. Givord
.101
5.1
Introduction
.101
5.2
Magnetism in Matter
.102
5.2.1
Magnetic Moment
.102
5.2.2
Magnetic Order
.105
5.2.3
Magnetocrystalline Anisotropy
.108
5.3
Magnetisation Process and Magnetic Materials
.110
5.3.1
Energy of the Demagnetising Field. Domains and Walls
.
Ill
5.3.2
The Magnetisation Process
.112
5.3.3
Magnetic Materials
.115
Contents XIII
5.4
Magnetism
in Small Systems
.116
5.4.1
Magnetic Moments in Clusters
.116
5.4.2
Magnetic Order in Nanoparticles
.119
5.4.3
Magnetic Anisotropy in Clusters and Nanoparticles
.120
5.5
Magnetostatics and Magnetisation Processes in Nanoparticles
. 121
5.5.1
Single-Domain Magnetic Particles
.121
5.5.2
Thermal Activation and Superparamagnetism
.122
5.5.3
Coherent Rotation in Nanoparticles
.123
5.5.4
From Thermal Activation to the Macroscopic Tunnel Effect
124
5.6
Magnetism in Coupled Nanosystems
.126
5.6.1
Exchange-Coupled Nanocrystals.
Ultrasoft
Materials
and Enhanced
Remanence
.126
5.6.2
Coercivity in Nanocomposites
.128
5.6.3
Exchange Bias in Systems of Ferromagnetic Nanoparticles
Coupled with an Antiferromagnetic Matrix
.130
References
.132
6
Electronic Structure in Clusters and Nanoparticles
F. Spiegelman
.135
6.1
Introduction
.135
6.2
Liquid-Drop Model
.139
6.3
Methods for Calculating Electronic Structure
.141
6.3.1
Born-Oppenheimer Approximation. Surface Potential
.142
6.3.2 Ab Initio
Calculation of Electronic Structure
.144
6.3.3
Density Functional Theory
.147
6.3.4
Charge Analysis
.149
6.3.5
Approximate and Semi-Empirical Descriptions
.150
6.3.6
Energy Bands and Densities of States
.152
6.4
Applications to Some Typical Examples
.154
6.4.1
Metallic Nanoparticles
.154
6.4.2
Molecular Clusters
.162
6.4.3
Ionic and Ionocovalent Clusters
.170
6.4.4
Covalent Systems
.175
6.5
Valence Changes
.178
6.5.1
Transitions with Size
.178
6.5.2
Transitions with Stoichiometry
.179
6.6
Nanotubes
.182
6.7
Prospects
.185
References
.188
7
Optical Properties of Metallic Nanoparticles
F. Vallée
.197
7.1
Optical Response for Free Clusters
and Composite Materials
.198
XIV Contents
7.2
Optical Response
in the Quasi-Static Approximation: Nanospheres
.199
7.3
Dielectric Constant of a Metal:
Nanometric Size Effect
.203
7.4
Surface Plasmon Resonance
in the Quasi-Static Approximation: Nanospheres
.207
7.5
Surface Plasmon Resonance:
Quantum Effects for Small Sizes (D
<
5nm)
.211
7.6
General Case for Nanospheres: The
Mie
Model
.213
7.7
Non-Spherical or Inhomogeneous Nanoparticles
in the Quasi-Static Model
.216
7.7.1
Shape Effects: Ellipsoids
.216
7.7.2
Structure Effects: Core-Shell System
.217
7.8
Optical Response of a Single Metal Nanoparticle
.219
7.9
Electromagnetic Field Enhancement: Applications
.221
7.9.1
Nonlinear Optical Response
.221
7.9.2
Time-Resolved Spectroscopy
.222
7.9.3
Local Enhancement of Raman Scattering:
SERS
.223
7.10
Conclusion
.224
References
.226
8
Mechanical and Nanomechanical Properties
C. Tromas, M. Verdier, M. Fivel, P. Aubert, S. Labdi, Z.-Q. Feng,
M.
Zei,
P.
Joli
.229
8.1
Macroscopic Mechanical Properties
.229
8.1.1
Introduction
.229
8.1.2
Elastic Properties
.229
8.1.3
Hardness
.231
8.1.4
Ductility
.234
8.1.5
Numerical Modelling
.236
8.2
Nanomechanical Properties
.238
8.2.1
Experimentation
.238
8.2.2
Computer Modelling
.254
References
.265
9
Superplasticity
T. Rouxel
.269
9.1
Introduction
.269
9.2
Mechanism
.270
9.3
Superplastic Nanostructured
Materials
.276
9.4
Industrial Applications
.277
References
.280
Contents
XV
10
Reactivity of Metal Nanoparticles
J.-C. Bertolini, J.-L. Rousset
.281
10.1
Size Effects
.282
10.1.1
Structural Properties
.282
10.1.2
Electronic Properties
.286
10.1.3
Reactivity in Chemisorption and Catalysis
of Monometallic Nanoparticles
.288
10.2
Support Effects
.293
10.3
Alloying Effects
.295
10.3.1
Effect of Surface Segregation
.296
10.3.2
Geometric Effects
.297
10.3.3
Electronic Effects
.298
10.4
Preparation and Implementation in the Laboratory
and in Industry
.299
References
.302
11
Inverse Systems
-
Nanoporous Solids
J. Patarin, O.
Spalla,
F.
Di Renzo
.305
11.1
Introduction
.305
11.2
Nomenclature:
The Main Families
of Porous Materials
.305
11.3
Zeolites and Related Microporous Solids.
Definition and Structure
.307
11.4
Ordered Mesoporous Solids
.309
11.5
Disordered Nanoporous Solids
.311
References
.314
12
Inverse Systems
-
Confined Fluids:
Phase Diagram and Metastability
E. Charlaix, R. Denoyel
.315
12.1
Displacement of First Order Transitions: Evaporation and
Condensation
.315
12.1.1
Adsorption Isotherms
.315
12.1.2
Capillary Condensation
.317
12.1.3
Capillary Pressure and the Kelvin Radius
.319
12.1.4
Non-
Wetting Fluid
.320
12.1.5
Perfectly Wetting Fluid
.320
12.1.6
Hysteresis, Metastability and Nucleation
.322
12.2
Melting-Solidification
.325
12.3
Modification of the Critical Temperature
.329
12.4
Ultraconfmement: Microporous Materials
.331
References
.334
XVI Contents
13
Supramolecular
Chemistry:
Applications
and Prospects
N.
Solladié,
J.
-F. Nierengarten.335
13.1
From Molecular to Supramolecular Chemistry
.335
13.2
Molecular Recognition
.335
13.3
Anionie
Coordination Chemistry
and Recognition of
Anionie
Substrates
.338
13.4
Multiple Recognition
.338
13.5
Applications
.341
13.6
Prospects
.343
References
.344
14
Nanocomposites: The End of Compromise
H. Van Damme
.347
14.1
Composites and Nanocomposites
.347
14.2
Introduction to Polymers
.351
14.2.1
Ideal Chains
.352
14.2.2
The Glass Transition
.354
14.2.3
Entropie
Elasticity
.357
14.3
Nanoffllers
.359
14.3.1
Clays
.359
14.3.2
Carbon Nanotubes
.363
14.4
Strengthening and Permeability Control: Models
.364
14.4.1
Strengthening: Increasing the Modulus
.364
14.4.2
Impermeability: Reducing the Diffusivity
.367
14.5
Strengthening and Permeability
of Nanocomposites: Facts and Explanations
.369
14.5.1
Strengthening: Successes and Failures
.369
14.5.2
Impermeability
.376
14.5.3
Dimensional Stability
.377
14.5.4
Fire Resistance
.379
14.6
Conclusion
.379
References
.380
Part III Synthesis of Nanomaterials and Nanoparticles
15
Specific Features of Nanoscale Growth
J. Livage, D.
Roux
.383
15.1
Introduction
.383
15.2
Thermodynamics of Phase Transitions
.383
15.3
Dynamics of Phase Transitions
.385
15.3.1
Thermodynamics of Spinodal Decomposition
.386
15.3.2
Thermodynamics of Nucleation-Growth
.388
15.4
Size Control
.389
15.5
Triggering the Phase Transition
.391
Contents XVII
15.6 Application
to
Solid
Nanoparticles
.392
15.6.1 Controlling Nucleation.392
15.6.2 Controlling
Growth
.393
15.6.3 Controlling
Aggregation. Stability of Colloidal Dispersions
. 393
15.7
Breaking Matter into Pieces
.393
References
.394
16
Gas Phase Synthesis of Nanopowders
Y. Champion
.395
16.1
Introduction
.395
16.2
The Need for Gas State Processing
.397
16.3
Main Stages of Gas Phase Synthesis
.400
16.4
Spontaneous Condensation of Nanoparticles: Homogeneous
Nucleation
.401
16.5
Undesirable Post-Condensation Effects
and Control of the Nanometric State
.408
16.5.1
Why Do These Effects Occur?
.409
16.5.2
Particle Growth by Gas Condensation
.410
16.5.3
Coalescent Coagulation
.411
16.6
Vapour Formation
and the Production of Nanopowders
.416
16.6.1
Physical Processes
.416
16.6.2
Chemical Processing: Laser Pyrolysis
.424
16.7
Conclusion
.426
References
.426
17
Synthesis of Nanocomposite Powders
by Gas-Solid Reaction and by Precipitation
С
Laurent
.429
17.1
Introduction
.429
17.2
Synthesis of Nanocomposite Powders
by Gas-Solid Reactions
.430
17.2.1
Synthesis of Intergranular Nanocomposite
and
Nano-Nano
Composite Powders
.430
17.2.2
Synthesis of Intragranular and Hybrid
Nanocomposite Powders
.433
17.3
Conclusion
.438
References
.438
18
Colloidal Methods and Shape Anisotropy
D.
Ingert
.441
18.1
Introduction
.441
18.2
Surfactants
.442
18.3
Reverse Micelles: Spherical Nanoreactors
.445
18.4
Factors Affecting Shape Control
.448
18.4.1
Effect of the Colloidal Template on Shape Control
.448
XVIII
Contents
18.4.2
Effect
of Anions on Nanocrystal Growth
.449
18.4.3
Effect of Molecular Adsorption on Nanocrystalline Growth.
451
18.5
Conclusion
.452
References
.453
19
Mechanical Milling
E.
Gaffet,
G. Le Caër
.455
19.1
Introduction
.455
19.1.1
Mechanosynthesis
.455
19.1.2
Mechanical Activation
.455
19.2
Ball Mills
.456
19.3
Mechanisms
.458
19.3.1
Reducing Cristallite Sizes
.458
19.3.2
Parameters Relevant to Mechanical Alloying
and Activation
.459
19.3.3
Mechanics of Mechanical Alloying
.461
19.4
Materials and Their Applications
.462
19.4.1
Mechanical Alloying
.462
19.4.2
Mechanical Activation
.462
19.5
Shaping and Densifying Nanomaterials
.464
19.5.1
Standard Processes
.464
19.5.2
Mechanically-Activated Field-Activated Pressure-Assisted
Synthesis (MAFAPAS)
.464
19.6
Severe Plastic Deformation
(SPD).466
19.6.1
High-Pressure Torsion (HPT)
.467
19.6.2
Equal Channel Angular Pressing (ECAP)
.468
19.7
Bulk Mechanical Alloying
.468
19.8
Synthesis of Nanocomposites by Extrusion, Drawing,
and Embossing
.468
References
.469
20
Supercritical Fluids
A. Taleb
.473
20.1
Definition
.473
20.2
Physicochemical Properties
.475
20.2.1
Solubility
.475
20.2.2
Viscosity
.477
20.2.3
Diffusion
.477
20.2.4
Thermal Conductivity
.479
20.3
Applications
.479
20.3.1
Purification and Extraction
.479
20.3.2
Synthesis
.480
References
.484
Contents XIX
Part IV Fabrication of Nanostructured Bulk Materials
and Nanoporous Materials
21
Bulk Nanostructured Materials
Obtained by Powder Sintering
F. Bernard, J.-C.
Nièpce
.489
21.1
Sintering
.489
21.1.1
Definition
.489
21.1.2
The Physical Phenomena of Sintering
.489
21.1.3
Different Sintering Conditions
.489
21.1.4
Preserving Nanostructure During Sintering
.491
21.2
Spark Plasma Sintering (SPS)
.491
21.2.1
Basic Principle
.491
21.2.2
Advantages of the SPS Process
.493
21.2.3
Illustrations in the Field of Nanomaterials
.493
References
.495
22
Self-Assembly of Nanomaterials at Macroscopic Scales
A. Courty
.497
22.1
Fabrication of Nanomaterials
.498
22.2
2D and
3D
Nanomaterial Structures
.500
22.2.1
Depositing Nanomaterials on a Solid Substrate
.500
22.2.2
Forces Inducing Self-Organisation
.502
22.2.3
Crystal Structure of 2D and
3D
Nanomaterials
.508
22.3
Conclusion
.513
References
.513
23
Assemblies of Magnetic Nanoparticles
J.
Richardi
.515
23.1
Magnetic Properties of Nanoparticle Assemblies
.515
23.2
Structure of Magnetic Nanoparticle Assemblies Deposited
Without Field
.519
23.3
Structure of Magnetic Nanoparticle Assemblies Deposited with
Field
.523
23.3.1
Perpendicular Field
.523
23.3.2
Parallel Field
.526
References
.527
24
Nanostructured Coatings
J. -P. Riviere
.529
24.1
Methodology for Making Superhard Nanostructured Coatings
. 530
24.1.1
Multilayers with Nanometric Period
.530
24.1.2
Nanocomposites
.532
24.2
Methods of Synthesis
.536
24.2.1
General Principles
.536
XX
Contents
24.2.2
Plasma-Activated
Chemical
Vapour Deposition (PACVD)
. 539
24.2.3
Physical Vapour Deposition
by Sputtering and Cathodic Arc
.540
24.2.4
PVD by Ion Beam Sputtering
.544
References
.546
25
Dispersion in Solids
D. Babonneau
.549
25.1
Chemical Methods
.550
25.1.1
Synthesis of Doped Glasses
.550
25.1.2
Sol-Gel Method
.551
25.2
Physical Methods
.554
25.2.1
Ion Implantation
.555
25.2.2
Vapour Deposition and Sputtering Methods
.559
25.2.3
Pulsed Laser Deposition
.562
25.2.4
Low Energy Cluster Beam Deposition (LECBD)
.563
References
.565
26
Nanoporous Media
J. Patarin, O.
Spalla,
F.
Di Renzo
.569
26.1
Introduction
.569
26.2
Synthesis of Crystalline Microporous Solids
.569
26.2.1
Methods of Synthesis
.569
26.2.2
The Crystallisation Process Exemplified by Zeolites
.571
26.2.3
Main Organic Structure-Directing Agents
Used to Synthesise Crystalline Microporous Solids
.573
26.2.4
Role of Inorganic Cations and Organic Species
.573
26.2.5
Organic Species and the Template Effect
.574
26.2.6
Porosity of Zeolites and Related Solids
.576
26.2.7
Applications of Zeolitic Materials
.577
26.3
Synthesis of Ordered Mesoporous Solids
.579
26.3.1
Methods of Synthesis
.579
26.3.2
Definition and Role of the Surfactant
.581
26.3.3
Mechanisms for the Formation of MCM-41 Phase
.582
26.3.4
Characteristics of Mesoporous Silicas
Obtained in the Presence of Amphiphilic Molecules
.588
26.3.5
Structural Characterisation of Nanoporous Solids
by
Х
-Ray and Neutron Scattering
.589
26.4
Conclusion
.593
References
.593
27
Molecular Imprinting
V. Dufaud, L. Bonneviot
.597
27.1
Introduction
.597
27.2
Fundamental Considerations
.598
27.2.1
General Principles
.598
Contents XXI
27.2.2
Role of Complexation
Sites
During the Imprinting Process
. 599
27.2.3
Structure and Properties of the Polymer Matrix
.602
27.3
Procedures and Methods for Molecular Imprinting
.603
27.3.1
Imprinted Organic Polymers
.603
27.3.2
Imprinted Inorganic Matrices
.604
27.4
Applications
.608
27.4.1
Separating a Mixture of Herbicides
.609
27.4.2
Synthesis of a-Aspartame
.609
27.4.3
Chiral Separation of
Amino
Acids by Ligand Exchange
at a Metal Site
.610
27.4.4
Specific Elimination of
Lanthanides
and Actinides
in a Highly Radioactive Effluent
.610
27.5
Recent Challenges and Progress
.612
References
.613
Part V Applications of Nanomaterials
28
Electronics and
Electromagnetism
J.-C.
Nièpce, D.
Givord
.617
28.1
Multilayer Ceramic Capacitors
.617
28.1.1
What Is a Multilayer Ceramic Capacitor?
.617
28.1.2
Market Requirements
.619
28.1.3
Constraints Laid Down by these Requirements
.620
28.1.4
ВаТіОз
Ceramic Dielectrics with Nanograins:
The Favoured Solution
.621
28.2
Magnetic Recording
.626
28.2.1
General Operation
.626
28.2.2
Recording Materials.
Longitudinal and Perpendicular Recording
.627
28.2.3
Write Heads
.629
28.2.4
Read Heads
.629
28.2.5
Disk Drive Motor
.630
References
.631
29
Optics
P. Maestro, M. Chagny, P.-P.
J
oberi.
, Η.
Van Damme,
S. Berthier
.633
29.1
Cosmetics
.633
29.1.1
Introduction
.633
29.1.2
Nano-Titanium Oxides in Cosmetics: Solar Skin Protection
633
29.1.3
Conclusion
.635
29.2
Nanophosphors
.635
29.2.1
Introduction
.635
29.2.2
Phosphors: General Considerations
.636
29.2.3
Operating Principle
.638
XXII Contents
29.2.4
Industrial Applications
.638
29.2.5
Conclusion .
640
29.3
Surface Nanoengineering
.640
29.3.1
What Is the Surface Area of a Town?
.640
29.3.2
Superhydrophobic Surfaces
.641
29.3.3
Self-Cleaning and Superhydrophilic Surfaces
.644
29.3.4
When Concrete Cleans the Air We Breathe
.648
29.4
Photonic Crystals
.649
29.4.1
The Colourful World of Birds and Insects
.649
29.4.2
Photonic Crystals and Photonic Band Gaps
.650
29.4.3
Guides and Cavities
.653
29.4.4
Prom Colloidal Crystals to Photonic Crystals
.654
References
.658
30
Mechanics
P. Maestro, E.
Gaffet,
G. Le Caër,
A. Mocellin,
E.
Reynaud,
T. Rouxel, M.
Soulard,
J. Patarin, L.
Thilly, F. Lecouturier.661
30.1
Silica
Precipitates for High-Performance Tyres
.661
30.1.1
Fabrication of Silica Precipitates
.661
30.1.2
Tyres and Other Applications
.662
30.2
Ceramic-Metal Composite Welding Supports
.663
30.2.1
Ceramics
.664
30.2.2
Reactive Mechanical Alloying
and High-Energy Ball Milling
.665
30.2.3
Improving Properties
.667
30.3
Reinforced Amorphous Matrices
.668
30.3.1
Not All Materials Are Ordered
.668
30.3.2
Incorporating Nanoparticles into Amorphous Matrices
. 669
30.3.3
Prospects
.673
30.3.4
The Long Road
.675
30.4
Nanoporous Solids as Molecular Springs,
Shock Absorbers and Bumpers
.676
30.4.1
Introduction
.676
30.4.2
Basic Idea
.676
30.4.3
Pressure-Volume Diagram
.677
30.4.4
Stored Energy and Restored Energy
.678
30.4.5
Causes of Irreversibility
.679
30.4.6
Behaviour of the Solid and Liquid
.680
30.4.7
Practical Applications
.683
30.5
High Field Coils
.
№b
30.5.1
Specifications for Generating High Pulsed Magnetic Fields
. 685
30.5.2
Synthesis of Reinforced Copper Matrix Conductors
.687
30.5.3
Geometry and
Microstructure
of Cu/Nb Nanofilamentary Conductors
.688
Contents XXIII
30.5.4
Physical Properties
of Cu/Nb Nanofilamentary Conductors
.690
30.5.5
Conclusion
.693
References
.693
31
Biology and the Environment
P. Maestro, P.
Couvreur,
D.
Roux,
D.
Givord,
J.-
A.
Dalmon,
J.-C. Bertolini, F. J.
Cadete Santos
Aires
.695
31.1
Inorganic Catalysts for Diesel Engines
.695
31.2
Nanotechnology and New Medicines
.697
31.2.1
Introduction
.697
31.2.2
Artificial Carriers:
Liposomes
and Nanoparticles
.697
31.2.3
Conclusion
.701
31.3
Magnetic Nanoparticles
and
Biomedical
Applications
.701
31.3.1
Magnetotactic Bacteria
.702
31.3.2
Homing Pigeons
.702
31.3.3
Magnetic Separation
.703
31.3.4
Magnetic Nanoparticles as
MRI
Contrast Agents
.704
31.3.5
Magnetic Nanoparticles and Treatment of Tumours
.705
31.4
Zeolitic Membranes for Separation Processes
and Catalytic Reactors
.706
31.4.1
Introduction
.706
31.4.2
Microporous Membranes
.707
31.4.3
Zeolitic Membranes: Synthesis and Characterisation
.707
31.4.4
Application to Gas Separation
.708
31.4.5
Application to a Catalytic Reactor
.709
31.5
Metal Nanoparticles and Catalysis
.710
31.5.1
Synthesis and Characterisation of Pd/Si3N4 Catalysts
.711
31.5.2
Total Oxidation of Methane:
Implementation in the Laboratory
.713
31.5.3
Application to Radiant Panels (Infrared Energy Emission)
. 713
References
.715
Index
.717 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1089848005 |
building | Verbundindex |
bvnumber | BV022617217 |
callnumber-first | T - Technology |
callnumber-label | TA418 |
callnumber-raw | TA418.9.N35 |
callnumber-search | TA418.9.N35 |
callnumber-sort | TA 3418.9 N35 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | VE 9850 ZN 3700 |
classification_tum | WER 421f CHE 380f WER 035f |
ctrlnum | (OCoLC)226966368 (DE-599)DNB984065741 |
dewey-full | 620.1/1 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.1/1 |
dewey-search | 620.1/1 |
dewey-sort | 3620.1 11 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik Werkstoffwissenschaften Chemie Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Physik Werkstoffwissenschaften Chemie Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022617217</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20191105</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070821s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N22,0901</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984065741</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540729921</subfield><subfield code="c">Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 246.00 (freier Pr.)</subfield><subfield code="9">978-3-540-72992-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540729925</subfield><subfield code="c">Gb. : ca. EUR 160.45 (freier Pr.), ca. sfr 246.00 (freier Pr.)</subfield><subfield code="9">3-540-72992-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540729921</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11743941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226966368</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984065741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">fre</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-526</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA418.9.N35</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.1/1</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 421f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">CHE 380f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WER 035f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="130" ind1="0" ind2=" "><subfield code="a">Les Nanosciences - Nanomatériaux et nanochimie</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanomaterials and nanochemistry</subfield><subfield code="c">C. Bréchignac ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXX, 747 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanochemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructured materials</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bréchignac, Catherine</subfield><subfield code="d">1946-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1089848005</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2951234&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://d-nb.info/984065741/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823334&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015823334</subfield></datafield></record></collection> |
id | DE-604.BV022617217 |
illustrated | Illustrated |
index_date | 2024-07-02T18:18:39Z |
indexdate | 2024-07-20T09:21:57Z |
institution | BVB |
isbn | 9783540729921 3540729925 |
language | English French |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015823334 |
oclc_num | 226966368 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-1046 DE-M347 DE-19 DE-BY-UBM DE-703 DE-29T DE-20 DE-634 DE-92 DE-11 DE-384 DE-355 DE-BY-UBR DE-526 |
owner_facet | DE-91G DE-BY-TUM DE-1046 DE-M347 DE-19 DE-BY-UBM DE-703 DE-29T DE-20 DE-634 DE-92 DE-11 DE-384 DE-355 DE-BY-UBR DE-526 |
physical | XXX, 747 S. Ill., graph. Darst. 235 mm x 155 mm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Les Nanosciences - Nanomatériaux et nanochimie Nanomaterials and nanochemistry C. Bréchignac ... (eds.) Berlin Springer 2007 XXX, 747 S. Ill., graph. Darst. 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Nanochemistry Nanostructured materials Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Nanostrukturiertes Material (DE-588)4342626-8 s DE-604 Nanotechnologie (DE-588)4327470-5 s Bréchignac, Catherine 1946- Sonstige (DE-588)1089848005 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2951234&prov=M&dok_var=1&dok_ext=htm Inhaltstext http://d-nb.info/984065741/04 Inhaltsverzeichnis Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823334&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanomaterials and nanochemistry Nanochemistry Nanostructured materials Nanotechnologie (DE-588)4327470-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
subject_GND | (DE-588)4327470-5 (DE-588)4342626-8 |
title | Nanomaterials and nanochemistry |
title_alt | Les Nanosciences - Nanomatériaux et nanochimie |
title_auth | Nanomaterials and nanochemistry |
title_exact_search | Nanomaterials and nanochemistry |
title_exact_search_txtP | Nanomaterials and nanochemistry |
title_full | Nanomaterials and nanochemistry C. Bréchignac ... (eds.) |
title_fullStr | Nanomaterials and nanochemistry C. Bréchignac ... (eds.) |
title_full_unstemmed | Nanomaterials and nanochemistry C. Bréchignac ... (eds.) |
title_short | Nanomaterials and nanochemistry |
title_sort | nanomaterials and nanochemistry |
topic | Nanochemistry Nanostructured materials Nanotechnologie (DE-588)4327470-5 gnd Nanostrukturiertes Material (DE-588)4342626-8 gnd |
topic_facet | Nanochemistry Nanostructured materials Nanotechnologie Nanostrukturiertes Material |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2951234&prov=M&dok_var=1&dok_ext=htm http://d-nb.info/984065741/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015823334&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | UT lesnanosciencesnanomateriauxetnanochimie AT brechignaccatherine nanomaterialsandnanochemistry |