Chaos and nonlinear dynamics: an introduction for scientists and engineers
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford Univ. Press
2006
|
Ausgabe: | 2. ed., reprint. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXI, 650 S. graf. Darst. |
ISBN: | 0198507232 9780198507239 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022616765 | ||
003 | DE-604 | ||
005 | 20081017 | ||
007 | t | ||
008 | 070821s2006 |||| |||| 00||| eng d | ||
020 | |a 0198507232 |9 0-19-850723-2 | ||
020 | |a 9780198507239 |9 978-0-19-850723-9 | ||
035 | |a (OCoLC)263647869 | ||
035 | |a (DE-599)BVBBV022616765 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-355 |a DE-83 | ||
082 | 0 | |a 003.75 | |
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
100 | 1 | |a Hilborn, Robert C. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chaos and nonlinear dynamics |b an introduction for scientists and engineers |c Robert C. Hilborn |
250 | |a 2. ed., reprint. | ||
264 | 1 | |a Oxford [u.a.] |b Oxford Univ. Press |c 2006 | |
300 | |a XXI, 650 S. |b graf. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Quantenchaos |0 (DE-588)4130849-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Chaostheorie |0 (DE-588)4009754-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Quantenchaos |0 (DE-588)4130849-9 |D s |
689 | 0 | 1 | |a Nichtlineares dynamisches System |0 (DE-588)4126142-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Chaostheorie |0 (DE-588)4009754-7 |D s |
689 | 1 | |8 1\p |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822892&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015822892 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136774994231296 |
---|---|
adam_text | Contents
First Edition
Preface
v
First
Edition Acknowledgments
xi
Second Edition Preface
xiii
Second Edition Acknowledgments
xv
I. THE PHENOMENOLOGY OF CHAOS
1
1
Three Chaotic Systems
3
1.1
Prelude
3
1.2
Linear and Nonlinear Systems
4
1.3
A Nonlinear Electrical System
8
1.4
A Mathematical Model of Biological Population Growth
17
1.5
A Model of Convecting Fluids: The
Lorenz
Model
27
1.6
Determinism, Unpredictability, and Divergence of Trajectories
37
1.7
Summary and Conclusions
39
1.8
Further Reading
40
2
The Universality of Chaos
47
2.1
Introduction
47
2.2
The
Feigenbaum
Numbers
47
2.3
Convergence Ratio for Real Systems
51
2.4
Using
б
to Make Predictions
53
2.5 Feigenbaum
Size Scaling
55
2.6
Self-Similarity
56
2.7
Other Universal Features
57
2.8
Models and the Universality of Chaos
58
2.9
Computers and Chaos
61
2.10
Further Reading
63
2.11
Computer Exercises
64
II. TOWARD A THEORY
OF NONLINEAR DYNAMICS AND CHAOS
69
3
Dynamics in State Space: One and Two Dimensions
71
3.1
Introduction
71
xviii
Contents
3.2 State Space 72
3.3 Systems
Described by First-Order
Differential
Equations
74
3.4
The No-Intersection
Theorem 77
3.5
Dissipative Systems and Attractors
78
3.6
One-Dimensional State Space
79
3.7
Taylor Series Linearization Near Fixed Points
83
3.8
Trajectories in a One-Dimensional State Space
84
3.9
Dissipation Revisited
86
3.10
Two-Dimensional State Space
87
3.11
Τ
wo-Dimensional State Space: The General Case
91
3.12
Dynamics and Complex Characteristic Values
94
3.13
Dissipation and the Divergence Theorem
96
3.14
The Jacobian Matrix for Characteristic Values
97
3.15
Limit Cycles
100
3.16
Poincaré
Sections and the Stability of Limit Cycles
102
3.17
Bifurcation Theory
106
3.18
Summary
113
3.19
Further Reading
114
3.20
Computer Exercises
116
4
Three-Dimensional State Space and Chaos
117
4.1
Overview
117
4.2
Heuristics
118
4.3
Routes to Chaos
121
4.4
Three-Dimensional Dynamical Systems
123
4.5
Fixed Points in Three Dimensions
124
4.6
Limit Cycles and
Poincaré
Sections
128
4.7
Quasi-Periodic Behavior
134
4.8
The Routes to Chaos I: Period-Doubling
136
4.9
The Routes to Chaos II: Quasi-Periodicity
137
4.10
The Routes to Chaos III: Intermittency and Crises
138
4.11
The Routes to Chaos IV:
Chaotic Transients and Homoclinic Orbits
138
4.12
Homoclinic Tangles and Horseshoes
146
4.13
Lyapunov Exponents and Chaos
148
4.14
Further Reading
154
4.15
Computer Exercises
155
5
Iterated Maps
157
5.1
Introduction
157
5.2
Poincaré
Sections and Iterated Maps
158
5.3
One-Dimensional Iterated Maps
163
5.4
Bifurcations in Iterated Maps: Period-Doubling, Chaos,
and Lyapunov Exponents
166
Contents xix
5.5 Qualitative Universal
Behavior: The ¿/-Sequence
173
5.6 Feigenbaum
Universality
183
5.7
Tent Map
185
5.8
Shift Maps and Symbolic
Dynamics 188
5.9
The Gaussian Map
192
5.10
Two-Dimensional Iterated Maps
197
5.11
The
Smale
Horseshoe Map
199
5.12
Summary
204
5.13
Further Reading
204
5.14
Computer Exercises
207
6
Quasi-Periodicity and Chaos
210
6.1
Introduction
210
6.2
Quasi-Periodicity and
Poincaré
Sections
212
6.3
Quasi-Periodic Route to Chaos
214
6.4
Universality in the Quasi-Periodic Route to Chaos
215
6.5
Frequency-Locking
217
6.6
Winding Numbers
218
6.7
Circle Map
219
6.8
The Devil s Staircase and the Farey Tree
227
6.9
Continued Fractions and Fibonacci Numbers
231
6.10
On to Chaos and Universality
234
6.11
Some Applications
240
6.12
Further Reading
246
6.13
Computer Exercises
249
7
Intermittency and Crises
250
7.1
Introduction
250
7.2
What Is Intermittency?
250
7.3
The Cause of Intermittency
252
7.4
Quantitative Theory of Intermittency
256
7.5
Types of Intermittency and Experimental Observations
259
7.6
Crises
260
7.7
Some Conclusions
267
7.8
Further Reading
268
7.9
Computer Exercises
270
8
Hamiltonian Systems
272
8.1
Introduction
272
8.2
Hamilton s Equations and the Hamiltonian
273
8.3
Phase Space
276
8.4
Constants of the Motion and
Integrable
Hamiltonians
279
8.5
Nonintegrable Systems, the
KAM
Theorem, and Period-Doubling
289
8.6
The
Hénon-Heiles
Hamiltonian
296
xx
Contents
8.7
The Chirikov Standard Map 3O3
8.8
The Arnold Cat Map
308
8.9
The Dissipative Standard Map
309
8.10
Applications of Hamiltonian Dynamics
311
8.11
Further Reading
313
8.12
Computer Exercises
316
III. MEASURES OF CHAOS
317
9
Quantifying Chaos 319
9.1
Introduction
319
9.2
Time-Series of Dynamical Variables
320
9.3
Lyapunov Exponents
323
9.4
Universal Scaling of the Lyapunov Exponent
327
9.5
Invariant Measure
330
9.6
Kolmogorov-Sinai Entropy
335
9.7
Fractal
Dimension(s)
341
9.8
Correlation Dimension and a Computational Case History
354
9.9
Comments and Conclusions
368
9.10
Further Reading
369
9.11
Computer Exercises
374
10
Many Dimensions and
Multirraciais
375
10.1
General Comments and Introduction
375
10.2
Embedding (Reconstruction) Spaces
376
10.3
Practical Considerations for Embedding Calculations
383
10.4
Generalized Dimensions and Generalized Correlation Sums
389
10.5
Multifractals and the Spectrum of Scaling Indices
Да)
393
10.6
Generalized Entropy and the g(A) Spectrum
404
10.7
Characterizing Chaos via Periodic Orbits
413
10.8
*Statistical Mechanical and Thermodynamic Formalism
415
10.9
Wavelet Analysis,
ç-Calculus,
and Related Topics
420
10.10
Summary
421
10.11
Further Reading
422
10.12
Computer Exercises
429
IV. SPECIAL TOPICS
431
11
Pattern Formation and
Spatiotemporal
Chaos
433
11.1
Introduction
433
11.2
Two-Dimensional Fluid Flow
436
11.3
Coupled-Oscillator Models, Cellular Automata, and Networks
442
Contents xxi
11.4 Transport Models 450
11.5
Reaction-Diffusion
Systems:
A Paradigm for Pattern Formation
460
11.6
Diffusion-Limited Aggregation, Dielectric Breakdown,
and Viscous Fingering: Fractals Revisited
471
11.7
Self-Organized Criticality: The Physics of Fractals?
477
11.8
Summary
479
11.9
Further Reading
480
11.10
Computer Exercises
489
12
Quantum Chaos, The Theory of Complexity, and Other Topics
490
12.1
Introduction
490
12.2
Quantum Mechanics and Chaos
490
12.3
Chaos and Algorithmic Complexity
508
12.4
Miscellaneous Topics: Piece-wise Linear Models,
Time-Delay Models, Information Theory, Stochastic
Resonance, Computer Networks, Controlling
and Synchronizing Chaos
510
12.5
Roll Your Own: Some Simple Chaos Experiments
517
12.6
General Comments and Overview: The Future of Chaos
517
12.7
Further Reading
519
Appendix A: Fourier Power Spectra
533
Appendix
В
:
Bifurcation Theory
541
Appendix C: The
Lorenz
Model
547
Appendix D: The Research Literature on Chaos
559
Appendix E: Computer Programs
560
Appendix F: Theory of the Universal
Feigenbaum
Numbers
568
Appendix G: The Duffing Double-Well Oscillator
579
Appendix H: Other Universal Features for
One-Dimensional Iterated Maps
584
Appendix I: The van
der
Pol Oscillator
589
Appendix J: Simple Laser Dynamics Models
598
References
605
Index
643
|
adam_txt |
Contents
First Edition
Preface
v
First
Edition Acknowledgments
xi
Second Edition Preface
xiii
Second Edition Acknowledgments
xv
I. THE PHENOMENOLOGY OF CHAOS
1
1
Three Chaotic Systems
3
1.1
Prelude
3
1.2
Linear and Nonlinear Systems
4
1.3
A Nonlinear Electrical System
8
1.4
A Mathematical Model of Biological Population Growth
17
1.5
A Model of Convecting Fluids: The
Lorenz
Model
27
1.6
Determinism, Unpredictability, and Divergence of Trajectories
37
1.7
Summary and Conclusions
39
1.8
Further Reading
40
2
The Universality of Chaos
47
2.1
Introduction
47
2.2
The
Feigenbaum
Numbers
47
2.3
Convergence Ratio for Real Systems
51
2.4
Using
б
to Make Predictions
53
2.5 Feigenbaum
Size Scaling
55
2.6
Self-Similarity
56
2.7
Other Universal Features
57
2.8
Models and the Universality of Chaos
58
2.9
Computers and Chaos
61
2.10
Further Reading
63
2.11
Computer Exercises
64
II. TOWARD A THEORY
OF NONLINEAR DYNAMICS AND CHAOS
69
3
Dynamics in State Space: One and Two Dimensions
71
3.1
Introduction
71
xviii
Contents
3.2 State Space 72
3.3 Systems
Described by First-Order
Differential
Equations
74
3.4
The No-Intersection
Theorem 77
3.5
Dissipative Systems and Attractors
78
3.6
One-Dimensional State Space
79
3.7
Taylor Series Linearization Near Fixed Points
83
3.8
Trajectories in a One-Dimensional State Space
84
3.9
Dissipation Revisited
86
3.10
Two-Dimensional State Space
87
3.11
Τ
wo-Dimensional State Space: The General Case
91
3.12
Dynamics and Complex Characteristic Values
94
3.13
Dissipation and the Divergence Theorem
96
3.14
The Jacobian Matrix for Characteristic Values
97
3.15
Limit Cycles
100
3.16
Poincaré
Sections and the Stability of Limit Cycles
102
3.17
Bifurcation Theory
106
3.18
Summary
113
3.19
Further Reading
114
3.20
Computer Exercises
116
4
Three-Dimensional State Space and Chaos
117
4.1
Overview
117
4.2
Heuristics
118
4.3
Routes to Chaos
121
4.4
Three-Dimensional Dynamical Systems
123
4.5
Fixed Points in Three Dimensions
124
4.6
Limit Cycles and
Poincaré
Sections
128
4.7
Quasi-Periodic Behavior
134
4.8
The Routes to Chaos I: Period-Doubling
136
4.9
The Routes to Chaos II: Quasi-Periodicity
137
4.10
The Routes to Chaos III: Intermittency and Crises
138
4.11
The Routes to Chaos IV:
Chaotic Transients and Homoclinic Orbits
138
4.12
Homoclinic Tangles and Horseshoes
146
4.13
Lyapunov Exponents and Chaos
148
4.14
Further Reading
154
4.15
Computer Exercises
155
5
Iterated Maps
157
5.1
Introduction
157
5.2
Poincaré
Sections and Iterated Maps
158
5.3
One-Dimensional Iterated Maps
163
5.4
Bifurcations in Iterated Maps: Period-Doubling, Chaos,
and Lyapunov Exponents
166
Contents xix
5.5 Qualitative Universal
Behavior: The ¿/-Sequence
173
5.6 Feigenbaum
Universality
183
5.7
Tent Map
185
5.8
Shift Maps and Symbolic
Dynamics 188
5.9
The Gaussian Map
192
5.10
Two-Dimensional Iterated Maps
197
5.11
The
Smale
Horseshoe Map
199
5.12
Summary
204
5.13
Further Reading
204
5.14
Computer Exercises
207
6
Quasi-Periodicity and Chaos
210
6.1
Introduction
210
6.2
Quasi-Periodicity and
Poincaré
Sections
212
6.3
Quasi-Periodic Route to Chaos
214
6.4
Universality in the Quasi-Periodic Route to Chaos
215
6.5
Frequency-Locking
217
6.6
Winding Numbers
218
6.7
Circle Map
219
6.8
The Devil's Staircase and the Farey Tree
227
6.9
Continued Fractions and Fibonacci Numbers
231
6.10
On to Chaos and Universality
234
6.11
Some Applications
240
6.12
Further Reading
246
6.13
Computer Exercises
249
7
Intermittency and Crises
250
7.1
Introduction
250
7.2
What Is Intermittency?
250
7.3
The Cause of Intermittency
252
7.4
Quantitative Theory of Intermittency
256
7.5
Types of Intermittency and Experimental Observations
259
7.6
Crises
260
7.7
Some Conclusions
267
7.8
Further Reading
268
7.9
Computer Exercises
270
8
Hamiltonian Systems
272
8.1
Introduction
272
8.2
Hamilton's Equations and the Hamiltonian
273
8.3
Phase Space
276
8.4
Constants of the Motion and
Integrable
Hamiltonians
279
8.5
Nonintegrable Systems, the
KAM
Theorem, and Period-Doubling
289
8.6
The
Hénon-Heiles
Hamiltonian
296
xx
Contents
8.7
The Chirikov Standard Map 3O3
8.8
The Arnold Cat Map
308
8.9
The Dissipative Standard Map
309
8.10
Applications of Hamiltonian Dynamics
311
8.11
Further Reading
313
8.12
Computer Exercises
316
III. MEASURES OF CHAOS
317
9
Quantifying Chaos 319
9.1
Introduction
319
9.2
Time-Series of Dynamical Variables
320
9.3
Lyapunov Exponents
323
9.4
Universal Scaling of the Lyapunov Exponent
327
9.5
Invariant Measure
330
9.6
Kolmogorov-Sinai Entropy
335
9.7
Fractal
Dimension(s)
341
9.8
Correlation Dimension and a Computational Case History
354
9.9
Comments and Conclusions
368
9.10
Further Reading
369
9.11
Computer Exercises
374
10
Many Dimensions and
Multirraciais
375
10.1
General Comments and Introduction
375
10.2
Embedding (Reconstruction) Spaces
376
10.3
Practical Considerations for Embedding Calculations
383
10.4
Generalized Dimensions and Generalized Correlation Sums
389
10.5
Multifractals and the Spectrum of Scaling Indices
Да)
393
10.6
Generalized Entropy and the g(A) Spectrum
404
10.7
Characterizing Chaos via Periodic Orbits
413
10.8
*Statistical Mechanical and Thermodynamic Formalism
415
10.9
Wavelet Analysis,
ç-Calculus,
and Related Topics
420
10.10
Summary
421
10.11
Further Reading
422
10.12
Computer Exercises
429
IV. SPECIAL TOPICS
431
11
Pattern Formation and
Spatiotemporal
Chaos
433
11.1
Introduction
433
11.2
Two-Dimensional Fluid Flow
436
11.3
Coupled-Oscillator Models, Cellular Automata, and Networks
442
Contents xxi
11.4 Transport Models 450
11.5
Reaction-Diffusion
Systems:
A Paradigm for Pattern Formation
460
11.6
Diffusion-Limited Aggregation, Dielectric Breakdown,
and Viscous Fingering: Fractals Revisited
471
11.7
Self-Organized Criticality: The Physics of Fractals?
477
11.8
Summary
479
11.9
Further Reading
480
11.10
Computer Exercises
489
12
Quantum Chaos, The Theory of Complexity, and Other Topics
490
12.1
Introduction
490
12.2
Quantum Mechanics and Chaos
490
12.3
Chaos and Algorithmic Complexity
508
12.4
Miscellaneous Topics: Piece-wise Linear Models,
Time-Delay Models, Information Theory, Stochastic
Resonance, Computer Networks, Controlling
and Synchronizing Chaos
510
12.5
Roll Your Own: Some Simple Chaos Experiments
517
12.6
General Comments and Overview: The Future of Chaos
517
12.7
Further Reading
519
Appendix A: Fourier Power Spectra
533
Appendix
В
:
Bifurcation Theory
541
Appendix C: The
Lorenz
Model
547
Appendix D: The Research Literature on Chaos
559
Appendix E: Computer Programs
560
Appendix F: Theory of the Universal
Feigenbaum
Numbers
568
Appendix G: The Duffing Double-Well Oscillator
579
Appendix H: Other Universal Features for
One-Dimensional Iterated Maps
584
Appendix I: The van
der
Pol Oscillator
589
Appendix J: Simple Laser Dynamics Models
598
References
605
Index
643 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Hilborn, Robert C. |
author_facet | Hilborn, Robert C. |
author_role | aut |
author_sort | Hilborn, Robert C. |
author_variant | r c h rc rch |
building | Verbundindex |
bvnumber | BV022616765 |
classification_rvk | QH 300 |
ctrlnum | (OCoLC)263647869 (DE-599)BVBBV022616765 |
dewey-full | 003.75 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.75 |
dewey-search | 003.75 |
dewey-sort | 13.75 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
edition | 2. ed., reprint. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01700nam a2200421zc 4500</leader><controlfield tag="001">BV022616765</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081017 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070821s2006 |||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198507232</subfield><subfield code="9">0-19-850723-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198507239</subfield><subfield code="9">978-0-19-850723-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)263647869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022616765</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.75</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hilborn, Robert C.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chaos and nonlinear dynamics</subfield><subfield code="b">an introduction for scientists and engineers</subfield><subfield code="c">Robert C. Hilborn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., reprint.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXI, 650 S.</subfield><subfield code="b">graf. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenchaos</subfield><subfield code="0">(DE-588)4130849-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenchaos</subfield><subfield code="0">(DE-588)4130849-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares dynamisches System</subfield><subfield code="0">(DE-588)4126142-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Chaostheorie</subfield><subfield code="0">(DE-588)4009754-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822892&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015822892</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022616765 |
illustrated | Not Illustrated |
index_date | 2024-07-02T18:18:26Z |
indexdate | 2024-07-09T21:01:45Z |
institution | BVB |
isbn | 0198507232 9780198507239 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015822892 |
oclc_num | 263647869 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-83 |
physical | XXI, 650 S. graf. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Oxford Univ. Press |
record_format | marc |
spelling | Hilborn, Robert C. Verfasser aut Chaos and nonlinear dynamics an introduction for scientists and engineers Robert C. Hilborn 2. ed., reprint. Oxford [u.a.] Oxford Univ. Press 2006 XXI, 650 S. graf. Darst. txt rdacontent n rdamedia nc rdacarrier Quantenchaos (DE-588)4130849-9 gnd rswk-swf Nichtlineares dynamisches System (DE-588)4126142-2 gnd rswk-swf Chaostheorie (DE-588)4009754-7 gnd rswk-swf Quantenchaos (DE-588)4130849-9 s Nichtlineares dynamisches System (DE-588)4126142-2 s DE-604 Chaostheorie (DE-588)4009754-7 s 1\p DE-604 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822892&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hilborn, Robert C. Chaos and nonlinear dynamics an introduction for scientists and engineers Quantenchaos (DE-588)4130849-9 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd Chaostheorie (DE-588)4009754-7 gnd |
subject_GND | (DE-588)4130849-9 (DE-588)4126142-2 (DE-588)4009754-7 |
title | Chaos and nonlinear dynamics an introduction for scientists and engineers |
title_auth | Chaos and nonlinear dynamics an introduction for scientists and engineers |
title_exact_search | Chaos and nonlinear dynamics an introduction for scientists and engineers |
title_exact_search_txtP | Chaos and nonlinear dynamics an introduction for scientists and engineers |
title_full | Chaos and nonlinear dynamics an introduction for scientists and engineers Robert C. Hilborn |
title_fullStr | Chaos and nonlinear dynamics an introduction for scientists and engineers Robert C. Hilborn |
title_full_unstemmed | Chaos and nonlinear dynamics an introduction for scientists and engineers Robert C. Hilborn |
title_short | Chaos and nonlinear dynamics |
title_sort | chaos and nonlinear dynamics an introduction for scientists and engineers |
title_sub | an introduction for scientists and engineers |
topic | Quantenchaos (DE-588)4130849-9 gnd Nichtlineares dynamisches System (DE-588)4126142-2 gnd Chaostheorie (DE-588)4009754-7 gnd |
topic_facet | Quantenchaos Nichtlineares dynamisches System Chaostheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015822892&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT hilbornrobertc chaosandnonlineardynamicsanintroductionforscientistsandengineers |