Spread spectrum systems for GNSS and wireless communications:
Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchroni...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Artech House
2007
|
Schriftenreihe: | The GNSS technology and applications series
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchronization of SS systems, including initial acquisition and tracking. The book discusses correlation loss to help you determine the impact of filters on the correlation process. Moreover, for the first time in any book, you find details on code acquisition and code tracking with channel filtering. This comprehensive volume presents the principles of design and analysis for all SS systems, and places special emphasis on wireless systems and global navigation satellite systems (GNSS). The book considers all the common coherent and non-coherent modulations, including BPSK, QPSK, DPSK, MSK, MFSK, OFDM, and UWB. Other key topics discussed include multiple access methods for SS, characterization of radio channels, the theory of lock detectors, and low probability of detection (LPD) systems |
Beschreibung: | xvii, 855 Seiten Illustrationen |
ISBN: | 9781596930834 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022578934 | ||
003 | DE-604 | ||
005 | 20210713 | ||
007 | t | ||
008 | 070814s2007 a||| |||| 00||| eng d | ||
020 | |a 9781596930834 |9 978-1-59693-083-4 | ||
035 | |a (OCoLC)148802071 | ||
035 | |a (DE-599)BVBBV022578934 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-706 |a DE-91 |a DE-83 | ||
050 | 0 | |a TK5102.5 | |
082 | 0 | |a 621.382 |2 22 | |
084 | |a ZN 6155 |0 (DE-625)157513: |2 rvk | ||
084 | |a ZN 6230 |0 (DE-625)157531: |2 rvk | ||
084 | |a BAU 936f |2 stub | ||
084 | |a ELT 558f |2 stub | ||
100 | 1 | |a Holmes, Jack K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spread spectrum systems for GNSS and wireless communications |c Jack K. Holmes |
264 | 1 | |a Boston [u.a.] |b Artech House |c 2007 | |
300 | |a xvii, 855 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a The GNSS technology and applications series | |
520 | 3 | |a Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchronization of SS systems, including initial acquisition and tracking. The book discusses correlation loss to help you determine the impact of filters on the correlation process. Moreover, for the first time in any book, you find details on code acquisition and code tracking with channel filtering. This comprehensive volume presents the principles of design and analysis for all SS systems, and places special emphasis on wireless systems and global navigation satellite systems (GNSS). The book considers all the common coherent and non-coherent modulations, including BPSK, QPSK, DPSK, MSK, MFSK, OFDM, and UWB. Other key topics discussed include multiple access methods for SS, characterization of radio channels, the theory of lock detectors, and low probability of detection (LPD) systems | |
650 | 4 | |a Communications par étalement du spectre | |
650 | 4 | |a Transmission sans fil | |
650 | 4 | |a Global Positioning System | |
650 | 4 | |a Spread spectrum communications | |
650 | 4 | |a Wireless communication systems | |
650 | 0 | 7 | |a GNSS-2 |0 (DE-588)4713269-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funknetz |0 (DE-588)4216130-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bandspreiztechnik |0 (DE-588)4181277-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bandspreiztechnik |0 (DE-588)4181277-3 |D s |
689 | 0 | 1 | |a Funknetz |0 (DE-588)4216130-7 |D s |
689 | 0 | 2 | |a GNSS-2 |0 (DE-588)4713269-3 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015785151&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015785151 |
Datensatz im Suchindex
_version_ | 1804136715925848064 |
---|---|
adam_text | SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS JACK K.
HOLMES ARTECH HOUSE BOSTON|LONDON ARTECHHOUSE. COM CONTENTS CHAPTER 1 AN
INTRODUCTION TO SPREAD SPECTRUM SYSTEMS 1.0 INTRODUCTION 1.1 A VERY
BRIEF HISTORY OF SPREAD SPECTRUM COMMUNICATIONS 1.2 A DIGITAL SPREAD
SPECTRUM COMMUNICATION SYSTEMS MODEL 1.3 NARROWBAND SIGNALS 1.3.1
NARROWBAND PROCESS VIA THE COMPLEX ENVELOPE 1.3.2 NARROWBAND SIGNALS
THROUGH NARROWBAND SYSTEMS 1.3.3 COMPLEX ENVELOPE CHARACTERIZATION FOR
DIRECT SEQUENCE AND FREQUENCY-HOPPING SIGNALS 1.4 DIRECT SEQUENCE SPREAD
SPECTRUM SYSTEMS 1.4.1 DIRECT SEQUENCE SPREADING WITH BINARY PHASE SHIFT
KEYING (BPSK) 1.4.2 QUADRIPHASE DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS
1.4.3 MINIMUM SHIFT KEYING (MSK) 1.5 FREQUENCY-HOPPED SPREAD SPECTRUM
SYSTEMS 1.5.1 NONCOHERENT SLOW FREQUENCY-HOPPED SYSTEMS WITH MFSK DATA
MODULATION 1.5.2 NONCOHERENT FAST FREQUENCY-HOPPED SYSTEMS WITH MFSK
DATA MODULATION 1.5.3 NONCOHERENT SLOW FREQUENCY-HOPPED SYSTEMS WITH
DPSK DATA MODULATION 1.5.4 NONCOHERENT SLOW FREQUENCY-HOPPED SIGNALS
WITH BPSK DATA MODULATION 1.6 HYBRID SPREAD SPECTRUM SYSTEMS 1.6.1
HYBRID DS WITH SLOW FREQUENCY HOPPING WITH BPSK DATA 1.6.2 HYBRID OQPSK
DS WITH SFH WITH BPSK DATA 1.7 TIME HOPPING SPREAD SPECTRUM SIGNALS 1.8
AN INTRODUCTION TO OFDM 1.8.1 OFDM COMMUNICATION SYSTEM IMPLEMENTED VIA
THE FFT 1.8.2 OFDM INTERSYMBOL INTERFERENCE REDUCTION TECHNIQUES 1.8.3
OFDM POWER SPECTRAL DENSITY 1.9 AN INTRODUCTION TO ULTRAWIDEBAND
COMMUNICATIONS 1.9.1 A BRIEF EARLY HISTORY OF UWB COMMUNICATIONS .9.2
DESCRIPTION OF UWB SIGNALS .9.3 REGULATORY CONSTRAINTS AND SPECTRAL
MASKS FOR VARIOUS UWB APPLICATIONS .9.4 IMPACT OF THE TRANSMIT ANTENNA
ON THE TRANSMITTED SIGNAL .9.5 THE ADVANTAGES AND THE DISADVANTAGES OF
IMPULSE VERSUS MULTICARRIER UWB .9.6 ADVANTAGES OF UWB SYSTEMS .9.7
APPLICATIONS OF UWB 1.10 THE NEAR-FAR PROBLEM 1.11 LOW PROBABILITY OF
INTERCEPTION 1.12 SUMMARY REFERENCES PROBLEMS 1 1 2 3 4 4 5 8 23 28 30
33 34 36 39 40 40 41 42 44 45 46 46 47 47 48 53 53 56 56 56 57 57 58 58
60 VN VIII SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS
CHAPTER 2 BINARY SHIFT REGISTER CODES FOR SPREAD SPECTRUM SYSTEMS 63 2.0
INTRODUCTION 63 2.1 FINITE FIELD ARITHMETIC 63 2.1.1 POLYNOMIAL
ARITHMETIC 65 2.2 SHIFT REGISTER SEQUENCES 66 2.2.1 EQUIVALENCE OF THE
FIBONACCI AND GALOIS FORMS OF A LINEAR SRG 70 2.3 MATHEMATICAL
CHARACTERIZATION OF SRGS 72 2.3.1 THE SHIFT REGISTER MATRIX 72 2.3.2 THE
CHARACTERISTIC EQUATION AND CHARACTERISTIC POLYNOMIAL 73 2.4 THE
GENERATING FUNCTION 75 2.5 THE CORRELATION FUNCTION OF SEQUENCES 78
2.5.1 PERIODIC CORRELATION FUNCTIONS FOR SEQUENCES 81 2.5.2 APERIODIC
CORRELATION FUNCTIONS FOR SEQUENCES 83 2.6 CODES FOR SPREAD SPECTRUM
MULTIPLE ACCESS APPLICATIONS 84 2.6.1 BINARY MAXIMAL LENGTH SEQUENCES 84
2.6.2 GOLD CODES 94 2.6.3 GOLD-LIKE SEQUENCES AND DUAL BCH SEQUENCES 103
2.6.4 KASAMI SEQUENCES 104 2.6.5 BENT SEQUENCES 106 2.6.6 COMPARISON OF
CDMA CODE PERFORMANCE 106 2.7 SEQUENCES WITH GOOD APERIODIC CORRELATION
107 2.7.1 BARKER AND WILLIARD SEQUENCES 108 2.7.2 NEUMAN-HOFMAN
SEQUENCES 109 2.7.3 PARTIAL PERIOD CORRELATION FOR M-SEQUENCES 109 2.7.4
FREQUENCY-HOPPING MULTIPLE ACCESS CODE GENERATORS 111 2.8 SUMMARY 114
REFERENCES 114 PROBLEMS 116 CHAPTER 3 JAMMING PERFORMANCE OF UNCODED
SPREAD SPECTRUM SYSTEMS 121 3.0 INTRODUCTION 121 3.1 JAMMER TYPES 123
3.2 BIT ERROR RATE PERFORMANCE IN BROADBAND NOISE JAMMING 125 3.2.1
DS/PSK IN BROADBAND NOISE JAMMING 125 3.2.2 SFH/DPSK IN BROADBAND NOISE
JAMMING 129 3.2.3 SFH/PSK IN BROADBAND NOISE JAMMING 132 3.2.4 SFH/MFSK
IN BROADBAND NOISE JAMMING 133 3.2.5 FFH/BFSK IN BROADBAND NOISE JAMMING
137 3.2.6 HYBRID DS-SFH SS MODULATION IN BROADBAND NOISE JAMMING 138 3.3
BER PERFORMANCE IN PARTIAL BAND NOISE JAMMING 140 3.3.1 DS/PSK IN
PARTIAL BAND NOISE JAMMING 140 3.3.2 SFH/DPSK SYSTEMS IN PARTIAL BAND
NOISE JAMMING 144 3.3.3 SFH/PSK BER IN PARTIAL BAND NOISE JAMMING 146
3.3.4 SFH/MFSK IN PARTIAL BAND NOISE JAMMING 148 3.3.5 FFH/MFSK IN
PARTIAL BAND NOISE JAMMING 151 3.3.6 HYBRID DS-SFH/MFSK IN PARTIAL BAND
NOISE JAMMING 154 3.3.7 HYBRID DS-SFH/DPSK IN PARTIAL BAND NOISE JAMMING
157 3.4 BIT ERROR RATE PERFORMANCE IN PULSED JAMMING 157 3.4.1 BIT ERROR
RATE PERFORMANCE FOR DS/PSK IN PULSED JAMMING - 157 3.4.2 PERFORMANCE OF
SFH/MFSK IN PULSED JAMMING 159 3.4.3 PERFORMANCE OF SFH/DPSK IN PULSED
JAMMING 160 3.4.4 PERFORMANCE OF HYBRID DS-SFH/MFSK IN PULSED JAMMING
160 CONTENTS IX 3.4.5 PERFORMANCE OF HYBRID DS-SFH/DPSK IN PULSED
JAMMING 161 3.5 BIT ERROR RATE PERFORMANCE IN TONE JAMMING 161 3.5.1 BIT
ERROR RATE PERFORMANCE FOR DS(BPSK)/BPSK IN TONE JAMMING 161 3.5.2 BIT
ERROR RATE PERFORMANCE FOR DS(QPSK)/BPSK IN TONE JAMMING 165 3.5.3 BIT
ERROR RATE PERFORMANCE FOR DS(MSK)/BPSK IN TONE JAMMING 168 3.6
MULTITONE JAMMING BIT ERROR RATE PERFORMANCE 173 3.6.1 MULTITONE JAMMING
BIT ERROR RATE PERFORMANCE FOR SFH/MSK 173 3.6.2 MULTITONE JAMMING BIT
ERROR RATE PERFORMANCE FOR SFH/DPSK 175 3.7 DEGRADATION DUE TO
INTERFERENCE OR JAMMING IN DS SYSTEMS 178 3.7.1 EQUIVALENT NOISE
SPECTRAL DENSITY FOR DS(BPSK)/BPSK SYSTEMS 179 3.7.2 CARRIER TO
EQUIVALENT NOISE SPECTRAL DENSITY RATIO FOR DS(BPSK)/BPSK 181 3.7.3
EQUIVALENT NOISE SPECTRAL DENSITY DEGRADATION FOR DS(BPSK)/BPSK SYSTEMS
183 3.7.4 DEGRADATION TO NRZ SIGNALS DUE TO NARROWBAND JAMMERS FOR
DS(BPSK)/BPSK SIGNALS 185 3.8 SUMMARY 186 REFERENCES 186 PROBLEMS 187
CHAPTER 4 JAMMING PERFORMANCE OF CODED SPREAD SPECTRUM SYSTEMS 191 4.0
INTRODUCTION 191 4.1 INTERLEAVER STRUCTURES FOR CODED SYSTEMS 192 4.1.1
BLOCK PERIODIC INTERLEAVING 192 4.1.2 CONVOLUTIONAL INTERLEAVING 194 4.2
LINEAR BLOCK CODING 195 4.2.1 LINEAR BLOCK CODING CONCEPTS 195 4.2.2
RULE FOR OPTIMUM DECODING WITH NO JAMMER SIDE INFORMATION 208 4.2.3 RULE
FOR OPTIMUM DECODING WITH JAMMER SIDE INFORMATION 211 4.2.4 COMPUTATION
OF THE BLOCK CODED WORD AND BIT ERROR RATE 213 4.3 CONVOLUTIONAL CODES
224 4.3.1 CONVOLUTIONAL CODE ENCODER CHARACTERIZATION 224 4.3.2 THE
TRANSFER FUNCTION OF A CONVOLUTIONAL CODE AND THE FREE DISTANCE 228
4.3.3 DECODING OF CONVOLUTIONAL CODES 230 4.3.4 THE VITERBI ALGORITHM /
232 4.3.5 ERROR PROBABILITIES FOR VITERBI DECODING OF CONVOLUTIONAL
CODES 238 4.3.6 SEQUENTIAL DECODING OF CONVOLUTIONAL CODES 242 4.3.7
THRESHOLD DECODING OF CONVOLUTIONAL CODES 242 4.3.8 NONBINARY
CONVOLUTIONAL CODES 243 4.4 ITERATIVELY DECODED CODES 243 4.4.1 TURBO
CODES 244 4.4.2 A SERIAL CONCATENATED CONVOLUTIONAL CODE 249 4.4.3
SERIAL CONCATENATED BLOCK CODES 251 4.4.4 PARALLEL CONCATENATED BLOCK
CODES 251 4.4.5 LOW-DENSITY PARITY CHECK CODES 252 4.5 SELECTED RESULTS
FOR SOME ERROR CORRECTION CODES 253 4.5.1 BOSE, CHAUDHURI, AND
HOCQUENGHEM CODES 253 4.5.2 REED-SOLOMON CODES 255 4.5.3 CONVOLUTIONAL
CODES WITH MAXIMUM FREE DISTANCE 257 SPREAD SPECTRUM SYSTEMS FOR GNSS
AND WIRELESS COMMUNICATIONS 4.5.4 HARD- AND SOFT-DECISION FFH/MFSK WITH
REPEAT CODING BER PERFORMANCE 259 4.6 SHANNON S CAPACITY THEOREM, THE
CHANNEL CODING THEOREM, AND BW EFFICIENCY 266 4.6.1 SHANNON S CAPACITY
THEOREM 267 4.6.2 CHANNEL CODING THEOREM 267 4.6.3 BANDWIDTH EFFICIENCY
267 4.7 APPLICATION OF ERROR CONTROL CODING 268 4.8 SUMMARY 269
REFERENCES 269 SELECTED BIBLIOGRAPHY 272 PROBLEMS 272 CHAPTER 5 CARRIER
TRACKING LOOPS AND FREQUENCY SYNTHESIZERS 275 5.0 INTRODUCTION 275 5.1
TRACKING OF RESIDUAL CARRIER SIGNALS 275 5.2 PLL FOR TRACKING A RESIDUAL
CARRIER COMPONENT 276 5.2.1 THE LIKELIHOOD FUNCTION FOR PHASE ESTIMATION
276 5.2.2 THE MAXIMUM-LIKELIHOOD ESTIMATION OF CARRIER PHASE 277 5.2.3
LONG LOOPS AND SHORT LOOPS 278 5.2.4 THE STOCHASTIC DIFFERENTIAL
EQUATION OF OPERATION 279 5.2.5 THE LINEAR MODEL OF THE PLL WITH NOISE
281 5.2.6 THE VARIOUS LOOP FILTER TYPES 283 5.2.7 TRANSIENT RESPONSE OF
A SECOND-ORDER LOOP 286 5.2.8 STEADY STATE TRACKING ERROR WHEN THE PHASE
ERROR IS SMALL 287 5.2.9 THE VARIANCE OF THE LINEARIZED PLL PHASE ERROR
DUE TO THERMAL NOISE 290 5.2.10 FREQUENCY RESPONSE OF THE ACTIVE FILTER
SECOND-ORDER PLL 292 5.2.11 PHASE NOISE EFFECTS OF THE TOTAL PHASE ERROR
IN THE PLL 293 5.2.12 NONLINEAR PLL RESULTS 297 5.3 FREQUENCY
SYNTHESIZERS 299 5.3.1 DIGITAL FREQUENCY SYNTHESIS 299 5.3.2 DIRECT
FREQUENCY SYNTHESIS 301 5.3.3 INDIRECT FREQUENCY SYNTHESIS 303 5.3.4
INDIRECT FREQUENCY SYNTHESIS TRANSFER FUNCTIONS 304 5.4 TRACKING OF BPSK
SIGNALS 306 5.4.1 TRACKING A BPSK SIGNAL WITH A SQUARING LOOP 306 5.4.2
TRACKING A BPSK SIGNAL WITH AN INTEGRATE-AND-DUMP COSTAS LOOP / 310
5.4.3 TRACKING A BPSK SIGNAL WITH A PASSIVE ARM FILTER COSTAS LOOP 314
5.4.4 STEADY STATE TRACKING ERROR FOR THE COSTAS AND SQUARING LOOPS 315
5.4.5 COSTAS LOOP WITH HARD-LIMITED IN-PHASE ARM PROCESSING 315 5.4.6
IMPROVED FREQUENCY ACQUISITION OF A PASSIVE FILTER COSTAS LOOP 315 5.4.7
LOCK DETECTORS FOR COSTAS AND SQUARING LOOPS 317 5.4.8 FALSE LOCK IN
COSTAS LOOPS 318 5.4.9 DECISION-DIRECTED FEEDBACK LOOPS 326 5.5
MULTIPHASE TRACKING LOOPS 330 5.5.1 THE N-TH POWER LOOP 330 5.5.2 THE
IV-PHASE COSTAS LOOP 3 31 5.5.3 DEMOD-REMOD QUADRIPHASE TRACKING LOOP
331 5.5.4 MODIFIED FOUR-PHASE COSTAS LOOP-SQPSK MODULATION 3 31 5.6
FREQUENCY LOCKED LOOPS 341 CONTENTS XI 5.6.1 THE CROSS PRODUCT FLL 341
5.7 SUMMARY 342 REFERENCES 343 PROBLEMS 345 CHAPTER 6 CODE ACQUISITION
IN DIRECT SEQUENCE RECEIVERS 349 6.0 INTRODUCTION 349 6.1 THE
ACQUISITION PROBLEM 354 6.2 ACTIVE SEARCH ACQUISITION (SLIDING
CORRELATOR) 354 6.2.1 MEAN ACQUISITION TIME MODEL FOR AN ACTIVE SEARCH
SYSTEM 355 6.2.2 ANALYSIS OF THE ACTIVE SEARCH SYSTEM 356 6.2.3 SINGLE
DWELL MEAN ACQUISITION TIME FORMULA WITH DOPPLER 361 6.2.4 MEAN
ACQUISITION TIME FOR THE DOUBLE DWELL TIME SEARCH 362 6.2.5 ACTIVE
ACQUISITION SYSTEM STRUCTURES USED FOR ACQUISITION FOR BPSK, QPSK,
OQPSK, AND MSK 364 6.3 ACQUISITION PROBABILITY VERSUS TIME FOR ACTIVE
CORRELATION 368 6.4 PARALLEL METHODS OF ACTIVE CODE ACQUISITION 371
6.4.1 ACTIVE SEARCH MEAN ACQUISITION TIME WITH PARALLEL PROCESSING 372
6.5 ACTIVE CODE SEARCH UTILIZING THE FFT 375 6.5.1 SIGNAL MODELING FOR
BPSK CODE ACQUISITION UTILIZING THE FFT 375 6.5.2 MODEL FOR THE
CORRELATOR OUTPUT OUT OF THE FFT 380 6.5.3 EVALUATION OF THE FFT
ENHANCED ACQUISITION SYSTEM OUTPUT VARIANCE FOR AN ARBITRARY GAUSSIAN
NOISE PROCESS 382 6.5.4 BPSK CODE MODULATION EVALUATION OF P D AND P FA
FOR ARBITRARY NOISE , 384 6.5.5 GAUSSIAN APPROXIMATION OF THE DETECTION
PROBABILITY FOR BPSK 386 6.5.6 LOSSES BETWEEN BINS IN A ZERO PADDED FFT
387 6.5.7 THE FREQUENCY SEARCH RANGE AND TOTAL FREQUENCY LOSSES USING AN
FFT 388 6.5.8 THE CORRELATOR BINS OF THE FFT ARE UNCORRELATED 389 6.5.9
BPSK CODE MODULATION Y IN A MATCHED SPECTRAL JAMMER 390 6.5.10 BPSK CODE
MODULATION Y IN A NARROWBAND JAMMER 391 6.5.11 BALANCED QPSK AND
BALANCED OQPSK ACQUISITION PERFORMANCE 394 6.5.12 A GAUSSIAN
APPROXIMATION FOR P D FOR BALANCED QPSK AND BALANCED OQPSK 398 6.6 AN
OPTIMUM SWEEP SEARCH TECHNIQUE FOR ACTIVE ACQUISITION 400 6.7 SEQUENTIAL
DETECTION 403 6.7.1 SEQUENTIAL PROBABILITY RATIO TEST 404 6.7.2
SEQUENTIAL DETECTION FOR DS ACQUISITION WITH BPSK DATA MODULATION 404
6.7.3 A SEQUENTIAL DETECTION IMPLEMENTATION 407 6.7.4 ACQUISITION TIME
OF A SEQUENTIAL DETECTOR 409 6.7.5 THE TONG DETECTOR 412 6.8 TRANSFORM
METHODS USED IN CODE ACQUISITION 415 6.9 CODE ACQUISITION USING A
PASSIVE MATCHED FILTER 417 6.9.1 THE MATCHED FILTER 417 6.9.2 OPTIMUM
TIME OF ARRIVAL ESTIMATOR 419 6.9.3 DIGITAL PASSIVE MATCHED FILTER
INTRODUCTION 420 6.9.4 DPMF ACQUISITION MODEL 421 6.9.5 DIGITAL MATCHED
FILTER ACQUISITION TIME MODEL 422 6.9.6 SIGNAL MODEL FOR DPMF 424 6.9.7
NOISE VARIANCE EQUATION FOR A GAUSSIAN RANDOM PROCESS MODEL OF A JAMMER
426 XII SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS
6.9.8 VARIANCE EVALUATION OF AN MSJ 426 6.9.9 CORRELATION SIGNAL VOLTAGE
LOSS 427 6.9.10 COMBINING COHERENT SEGMENTS OF THE DMF WITH THE FFT 428
6.9.11 DETECTION AND FALSE ALARM PROBABILITY DENSITIES FOR THE NRZ CODE
CASE 430 6.9.12 THE ACQUISITION PROBABILITY 433 6.9.13 MEAN ACQUISITION
TIME CALCULATION 436 6.10 SERIAL ACTIVE SEARCH FOR ACQUISITION OF
FH/MFSK SIGNALS 439 6.10.1 SERIAL ACTIVE SEARCH FOR ACQUISITION OF
FFH/MFSK SIGNALS 439 6.10.2 DETECTION AND FALSE ALARM PROBABILITIES FOR
FFH/MFSK SERIAL ACTIVE SEARCH 444 6.10.3 DETECTION AND FALSE ALARM
PROBABILITIES FOR SFH/MFSK SERIAL ACTIVE SEARCH 447 6.10.4 ACQUISITION
TIME CALCULATIONS FOR FFH/MFSK AND SFH/MFSK 450 6.11 SUMMARY 451
REFERENCES 452 SELECTED BIBLIOGRAPHY 454 PROBLEMS 455 APPENDIX 6A SIGNAL
FLOW GRAPHS AND DISCRETE TIME INVARIANT MARKOV PROCESSES 458 CHAPTER 7
DIRECT SEQUENCE CODE-TRACKING LOOPS 473 7.0 INTRODUCTION 473 7.1 BASIS
FOR THE EARLY-LATE GATE CODE-TRACKING LOOP 473 7.1.1 MAXIMUM-LIKELIHOOD
ESTIMATE FORMULATION 474 7.1.2 MAXIMUM-LIKELIHOOD ESTIMATE OF THE PN
CODE TIMING 475 7.2 FULL-TIME CODE-TRACKING LOOPS 477 7.2.1 BASEBAND
EARLY-LATE GATE CODE-TRACKING LOOP WITH NRZ SYMBOLS 478 7.2.2
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING LOOP 483 7.2.3 NONCOHERENT
EARLY-LATE GATE RF IMPLEMENTED CODE-TRACKING LOOP 492 7.2.4 NONCOHERENT
I-Q DOT PRODUCT CODE-TRACKING LOOP WITH PASSIVE ARM FILTERS 493 7.2.5
NONCOHERENT I-Q DOT PRODUCT CODE-TRACKING LOOP WITH ACTIVE ARM FILTERS
501 7.3 EARLY-LATE GATE NONCOHERENT I-Q CODE-TRACKING WITH FILTERING AND
INTERFERENCE 502 7.3.1 SIGNAL MODEL FOR THE NONCOHERENT I-Q EARLY-LATE
GATE CODE- TRACKING LOOP WITH CHANNEL FILTERING 502 7.3.2 SIGNAL AND
NOISE TERMS IN THE NONCOHERENT I-Q EARLY-LATE GATE CODE LOOP WITH
CHANNEL FILTERING 505 7.3.3 SIGNAL TERMS IN THE NONCOHERENT I-Q
EARLY-LATE GATE CODE LOOP WITH CHANNEL FILTERING 507 7.3.4 CLOSED-LOOP
OPERATION OF THE NONCOHERENT I-Q EARLY-LATE GATE CODE LOOP WITH CHANNEL
FILTERING 513 7.3.5 NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP
WITH CHANNEL FILTERING OF N(T) AT/= 0 516 7.3.6 NONCOHERENT EARLY-LATE
GATE I-Q CODE LOOP TRACKING ERROR VARIANCE WITH CHANNEL FILTERING 519
7.3.7 NONCOHERENT EARLY-LATE GATE CODE I-Q TRACKING ERROR VARIANCE WITH
THERMAL NOISE AND WITHOUT CHANNEL FILTERING 521 CONTENTS XIII 7.3.8
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING ERROR VARIANCE WITH
CHANNEL FILTERING IN WHITE GAUSSIAN NOISE WITH NRZ SYMBOLS 522 7.3.9
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING PERFORMANCE WITH
NARROWBAND GAUSSIAN INTERFERENCE PLUS WHITE GAUSSIAN NOISE WITH NRZ
SYMBOLS AND NO CHANNEL FILTERING 523 7.4 TIME-SHARED NONCOHERENT
CODE-TRACKING LOOPS 527 7.5 PERFORMANCE OF A NONCOHERENT RF IMPLEMENTED
TIME GATED EARLY-LATE GATE BANDPASS CODE-TRACKING LOOP 536 7.6 STEADY
STATE ERROR OF CODE-TRACKING LOOPS WITHOUT NOISE 542 7.6.1 FIRST-ORDER
NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP 542 7.6.2
SECOND-ORDER IDEAL NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP
544 7.7 EARLY-LATE GATE NONCOHERENT I-Q CODE-TRACKING LOOP PULL-IN
WITHOUT NOISE 545 7.8 MULTIPATH EFFECTS 548 7.8.1 MULTIPATH EFFECTS ON
FILTERED NONCOHERENT CODE-TRACKING LOOPS 548 7.8.2 MULTIPATH EFFECTS ON
BASEBAND COHERENT I-Q CODE-TRACKING LOOPS 554 7.8.3 THE MULTIPATH ERROR
PLOTS ARE THE SAME FOR COHERENT AND NONCOHERENT CODE-TRACKING LOOPS 555
7.9 MEAN TIME TO LOSE LOCK FOR A FIRST-ORDER EARLY-LATE GATE RF
CODE-TRACKING LOOP 556 7.9.1 MODEL FOR THE ANALYSIS OF THE MEAN SLIP
TIME PERFORMANCE OF THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 558 7.9.2 MEAN SLIP TIME COMPARISON OF THEORY AND
SIMULATION FOR THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 559 7.10 WIDEBAND JAMMING EFFECTS ON TRACKING AND MEAN
TIME TO LOSE LOCK FOR THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 560 7.11 CRAMER-RAO BOUND ON CODE-TRACKING ERROR 562 7.12
PHASE ROTATION AND HETERODYNING FOR RECEIVER USE 565 7.12.1 HETERODYNING
THE SIGNAL TO NEAR BASEBAND 565 7.12.2 PHASE ROTATION OR SINGLE SIDEBAND
TRANSLATION 566 7.13 PULSING AND BLANKING IN A BASEBAND EARLY-LATE
CODE-TRACKING LOOP 568 7.13.1 BASEBAND SIGNAL AND CODE LOOP MODEL FOR A
BASEBAND EARLY-LATE GATE I-Q CODE-TRACKING LOOP WITH PULSING 569 7.13.2
FULL CORRELATION IN THE COHERENT BASEBAND I-Q CODE-TRACKING LOOP WHEN
THE SIGNAL IS PULSED 570 7.13.3 SYNCHRONOUS BLANKING OF THE NOISE WHEN
THE SIGNAL IS PULSED OFF 574 7.14 SUMMARY 577 REFERENCES 577 SELECTED
BIBLIOGRAPHY * 579 PROBLEMS 579 APPENDIX 7A MEAN TIME TO LOSE LOCK FOR A
FIRST-ORDER EARLY-LATE GATE CODE- TRACKING LOOP WITH EITHER BANDPASS ARM
FILTERS OR BASEBAND ARM FILTERS 582 CHAPTER 8 TRACKING OF
FREQUENCY-HOPPED SIGNALS 591 8.0 INTRODUCTION 591 8.1 DATALESS
FREQUENCY-HOPPED TIME TRACKING LOOP MODEL 591 8.1.1 LOOP MODEL FOR THE
FREQUENCY-HOPPING LOOP WITHOUT DATA 597 8.1.2 EVALUATION OF THE SPECTRAL
DENSITY OF THE NOISE TERMS 598 8.1.3 CLOSED LOOP TRACKING LOOP
PERFORMANCE 600 8.2 FREQUENCY-HOPPING TRACKING WITH BPSK AND DPSK DATA
MODULATION 601 8.3 SUMMARY 602 REFERENCES 602 XIV SPREAD SPECTRUM
SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS PROBLEM 602 CHAPTER 9
MULTIPLE ACCESS METHODS FOR DIGITAL WIRELESS CELLULAR COMMUNICATIONS 603
9.0 INTRODUCTION 603 9.1 BRIEF HISTORY OF CELLULAR SYSTEMS 603 9.2
CELLULAR COMMUNICATIONS 604 9.2.1 CELLULAR SYSTEM ARCHITECTURE 604 9.2.2
MOBILE CELLS 604 9.2.3 MOBILE CLUSTERS 605 9.2.4 FREQUENCY REUSE IN A
CELLULAR SYSTEM 605 9.2.5 CELL SPLITTING 606 9.2.6 HANDOFF 606 9.2.7
MORE ON CELL STRUCTURE 607 9.2.8 ASSIGNMENT STRATEGIES FOR
CHANNELIZATION 609 9.3 MULTIPLE ACCESS TECHNIQUES FOR WIRELESS
COMMUNICATIONS 609 9.3.1 A BRIEF INTRODUCTION TO MULTIPLE ACCESS 610
9.3.2 FREQUENCY DIVISION MULTIPLE ACCESS 611 9.4 TIME DIVISION MULTIPLE
ACCESS 612 9.4.1 THE EFFICIENCY OF TDMA SYSTEMS 613 9.4.2 THE NUMBER OF
AVAILABLE CHANNELS IN A TDMA SYSTEM 614 9.5 SPREAD SPECTRUM MULTIPLE
ACCESS 615 9.5.1 FREQUENCY-HOPPED MULTIPLE ACCESS 615 9.5.2 CODE
DIVISION MULTIPLE ACCESS 615 9.5.3 HYBRID TECHNIQUES FOR SPREAD SPECTRUM
SIGNALS 617 9.6 SPACE DIVISION MULTIPLE ACCESS 619 9.7 THE CAPACITY OF
CELLULAR CDMA OF A SINGLE CELL 619 9.8 PACKET RADIO ACCESS TECHNIQUES
624 9.8.1 ALOHA CHANNEL 624 9.8.2 THE SLOTTED ALOHA CHANNEL . 626 9.9
CARRIER SENSE MULTIPLE ACCESS PROTOCOLS 629 9.9.1 1-PERSISTENT CSMA 629
9.9.2 NONPERSISTENT CSMA 630 9.9.3 P-PERSISTENT CSMA 630 9.9.4
CONCEPTUAL COMPARISON OF THE MULTIPLE ACCESS METHODS 630 9.10 MULTIUSER
DETECTION CONCEPTS 631 9.10.1 THE MATCHED FILTER FOR CDMA SIGNALS 632
9.10.2 CONVENTIONAL SINGLE USER DETECTOR IN THE SYNCHRONOUS CASE 635
9.10.3 DECORRELATING DETECTOR 636 9.10.4 MINIMUM MEAN SQUARE ERROR
ESTIMATOR 639 9.10.5 ADDITIONAL TYPES OF MULTIUSER DETECTOR SYSTEMS 642
9.10.6 SUCCESSIVE INTERFERENCE CANCELLATION 642 9.10.7 MULTISTAGE
INTERFERENCE CANCELLATION 643 9.10.8 BIT ERROR RATE PERFORMANCE
ESTIMATES OF THE DETECTORS 644 9.11 AN EXAMPLE OF A CDMA SYSTEM:
CDMA2000 646 9.11.1 CDMA2000 LAYERING STRUCTURE OVERVIEW 648 9.11.2
FORWARD LINK AND REVERSE LINK CHANNELS OVERVIEW 648 9.11.3 PHYSICAL
LAYER OF CDMA2000 649 9.11.4 FORWARD LINK PHYSICAL CHANNELS 650 9.11.5
CDMA2000 REVERSE PHYSICAL CHANNELS 661 9.11.6 DATA SERVICES IN CDMA2000
668 9.12 WCDMA 668 9.12.1 WCDMA RADIO FREQUENCY PROTOCOL ARCHITECTURE
668 9.12.2 WCDMA CHANNELS 669 CONTENTS 9.12.3 WCDMA PHYSICAL LAYER 669
9.12.4 WCDMA CHANNEL CODING 672 9.12.5 WCDMA POWER CONTROL 673 9.12.6
WCDMA RANDOM ACCESS 674 9.12.7 WCDMA INITIAL CELL SEARCH 674 9.12.8
WCDMA HANDOVER 674 9.12.9 WCDMA PACKET DATA SERVICES 674 9.13 SUMMARY
676 REFERENCES 676 PROBLEMS 678 CHAPTER 10 AN INTRODUCTION TO FADING
CHANNELS 679 10.0 INTRODUCTION 679 10.1 AN INTRODUCTION TO RADIO
PROPAGATION 679 10.2 OUTDOOR MODELS FOR LARGE-SCALE EFFECTS 680 10.2.1
FREE SPACE PATH LOSS MODEL 680 10.2.2 RECEIVED SIGNAL POWER AND THE
ELECTRIC FIELD STRENGTH 682 10.2.3 PLANE EARTH PROPAGATION PATH LOSS
MODEL 683 10.2.4 EGLI S PATH LOSS MODEL 684 10.2.5 OKUMURA-HATA PATH
LOSS MODEL 685 10.2.6 COST-231 HATA PATH LOSS MODEL 685 10.2.7 ECC-33
PATH LOSS MODEL 686 10.2.8 MICROCELL PROPAGATION MODELS 687 10.3
LARGE-SCALE EFFECTS FOR INDOOR MODELS 689 10.3.1 LOG-NORMAL PATH LOSS
MODEL FOR INDOORS 689 10.3.2 FLOOR ATTENUATION FACTOR PATH LOSS MODEL
690 10.4 SMALL-SCALE EFFECTS MULTIPATH FADING 691 10.4.1 RAYLEIGH AND
RICIAN FADING MODELS 693 10.4.2 SMALL-SCALE FADING TYPES 695 10.4.3
MULTIPATH TIME DELAY SPREAD FADING 695 10.4.4 FADING EFFECTS OF
MULTIPATH DOPPLER SPREAD 698 10.5 CHARACTERIZATION OF WIDEBAND CHANNELS
700 10.5.1 DETERMINISTIC MODELS . 700 10.5.2 STOCHASTIC TIME-VARIANT
LINEAR CHANNELS 703 10.5.3 THE WIDE-SENSE STATIONARY CHANNELS 706 10.5.4
THE UNCORRELATED SCATTERING CHANNEL 708 10.5.5 THE WIDE-SENSE STATIONARY
UNCORRELATED SCATTERING CHANNEL 709 10.6 THE EFFECTS OF A RAYLEIGH
FADING CHANNEL ON THE BIT ERROR RATE 711 10.6.1 THE EFFECTS OF A
RAYLEIGH FADING CHANNEL ON THE BPSK BIT ERROR RATE 711 10.6.2 THE
EFFECTS OF A RAYLEIGH FADING CHANNEL ON THE DPSK BIT ERROR RATE 713
10.6.3 THE EFFECTS OF A RAYLEIGH FADING CHANNEL ON NONCOHERENT
ORTHOGONAL BFSK BIT ERROR RATE 714 10.6.4 NAKAGAMI FADING CHANNEL MODEL
714 10.7 MITIGATION METHODS FOR MULTIPATH EFFECTS 715 10.7.1 DIVERSITY
FOR MULTIPATH IMPROVEMENT 716 10.7.2 COMBINING METHODS FOR FADING
MITIGATION 716 10.8 EQUALIZATION FOR MULTIPATH IMPROVEMENT 723 10.8.1
BASEBAND TRANSVERSAL SYMBOL RATE EQUALIZER 723 10.8.2 BASEBAND ADAPTIVE
EQUALIZATION 726 10.8.3 BASEBAND DECISION FEEDBACK EQUALIZERS 730 10.9
DIVERSITY TECHNIQUES FOR MULTIPATH IMPROVEMENT 732 XVI SPREAD SPECTRUM
SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS 10.9.1 MULTIPATH
PERFORMANCE IMPROVEMENT VIA DIVERSITY TECHNIQUES FOR BINARY CHANNELS 732
10.10 THE RAKE RECEIVER 739 10.10.1 THE TAPPED DELAY LINE CHANNEL MODEL
FOR A FREQUENCY SELECTIVE SLOWLY FADING CHANNEL 739 10.10.2 THE RAKE
RECEIVER 740 10.10.3 PERFORMANCE OF THE RAKE RECEIVER 742 10.11 BINARY
CODED CHERNOFF BER BOUNDS FOR FADING CHANNELS 743 10.11.1 CHERNOFF BOUND
FOR BINARY LINEAR BLOCK CODES 743 10.11.2 CODED ORTHOGONAL FSK SIGNAL
MODEL FOR FADING CHANNELS 745 10.11.3 BER OF SOFT-DECISION DECODING AND
FSK MODULATION WITH LINEAR BINARY BLOCK CODES OVER RAYLEIGH FADING
CHANNELS 746 10.11.4 BER OF HARD-DECISION DECODING AND FSK MODULATION
WITH LINEAR BINARY BLOCK CODES OVER RAYLEIGH FADING CHANNELS 748 10.11.5
CHERNOFF BOUNDS FOR THE BER OF CONVOLUTIONAL CODES OVER RAYLEIGH FADING
CHANNELS WITH SOFT AND HARD DECISIONS AND BINARY FSK MODULATION 750
10.12 SMART ANTENNA SYSTEMS FOR WIRELESS SYSTEMS 752 10.12.1 SMART
ANTENNA SYSTEMS 752 10.12.2 ADAPTIVE ARRAY SMART ANTENNAS 752 10.12.3
ADAPTIVE ARRAY SPATIAL PROCESSING 757 10.12.4 FORMING SMART ANTENNAS
WITH SWITCHED BEAMS 757 10.12.5 MIMO SYSTEMS 758 10.13 SUMMARY 759
REFERENCES 760 PROBLEMS 762 CHAPTER 11 LOW PROBABILITY OF DETECTION
SYSTEMS 765 11.0 INTRODUCTION 765 11.1 LOW PROBABILITY OF INTERCEPT
(LP1) 766 11.1.1 COVERT COMMUNICATIONS 766 11.1.2 THE LPI SCENARIO 766
11.1.3 BRIEF SIGNAL PROPAGATION SUMMARY 768 11.2 AN INTRODUCTION TO
RADIOMETRIC DETECTORS 769 11.2.1 THE RADIOMETER 770 11.2.2 LIMITATIONS
OF THE RADIOMETER PERFORMANCE RESULTS 772 11.2.3 LOW-PASS FILTER
RADIOMETER 775 11.2.4 THE CORRELATION RADIOMETER 777 11.2.5 RELATIONSHIP
OF THE OUTPUT SNR AND THE DEFLECTION 779 11.2.6 THE OPTIMUM DETECTOR FOR
FREQUENCY-HOPPED WAVEFORMS 780 11.2.7 THE FILTER BANK COMBINER 781 11.3
SPECTRUM ANALYZERS 784 11.3.1 NARROWBAND SIGNAL SPECTRUM ANALYZER
PERFORMANCE 786 11.3.2 WIDEBAND SIGNAL SPECTRUM ANALYZER PERFORMANCE 787
11.4 SECOND-ORDER CYCLOSTATIONARY FEATURE DETECTION 788 11.4.1
CYCLOSTATIONARY PROCESSES 788 11.4.2 THE BASEBAND AND CARRIER
CYCLOSTATIONARITY 788 11.4.3 BPSK THROUGH A FILTER AND SQUARER CIRCUIT
789 11.4.4 BALANCED QPSK THROUGH A FILTER AND SQUARER CIRCUIT 796 11.4.5
BALANCED OQPSK THROUGH A FILTER AND SQUARER CIRCUIT 797 11.4.6 MSK
THROUGH A FILTER AND SQUARER CIRCUIT 798 11.4.7 FREQUENCY-HOPPED SIGNALS
WITH MFSK THROUGH A FILTER AND SQUARER CIRCUIT 800 CONTENTS XVII 11.4.8
SLOW FREQUENCY-HOPPED SIGNALS WITH DPSK DATA MODULATION THROUGH A FILTER
AND SQUARER CIRCUIT 802 11.4.9 DELAY AND MULTIPLY CHIP RATE DETECTORS
WITH BALANCED QPSK 804 11.5 PERFORMANCE OF A CHIP RATE DETECTOR FOR BPSK
806 11.6 FREQUENCY ESTIMATION OF AN UNMODULATED TONE WITH A LIMITER
DISCRIMINATOR 810 11.7 SUMMARY 812 REFERENCES 813 SELECTED BIBLIOGRAPHY
814 PROBLEMS 814 APPENDIX 11A SAMPLES FROM A BANDPASS FILTERED GAUSSIAN
RANDOM PROCESS 816 CHAPTER 12 LOCK DETECTOR THEORY AND ABSORBING MARKOV
CHAINS 819 12.0 INTRODUCTION 819 12.1 ABSORBING MARKOV CHAINS 819 12.2
THE FUNDAMENTAL MATRIX 822 12.3 MEAN AND VARIANCE OF THE NUMBER OF TIMES
A PROCESS IS IN A TRANSIENT STATE 823 12.4 MEAN AND VARIANCE OF THE
NUMBER OF TIMES A PROCESS IS IN A TRANSIENT STATE*GENERAL CASE 827 12.5
THE PROBABILITY OF STARTING IN A TRANSIENT STATE AND ENDING IN A
PERSISTENT STATE 832 12.6 LOCK DETECTOR PERFORMANCE 834 12.7 LOCK
DETECTOR SYSTEM MODELS 838 12.7.1 RESIDUAL CARRIER LOOP LOCK DETECTOR
BLOCK DIAGRAM MODEL 838 12.7.2 SUPPRESSED CARRIER LOCK DETECTOR 840
12.7.3 PN CODE ACQUISITION LOCK DETECTOR 841 12.7.4 A FREQUENCY-HOPPING
LOCK DETECTOR FOR SFH/DPSK 841 12.8 SUMMARY 843 REFERENCES 843 SELECTED
BIBLIOGRAPHY 843 PROBLEMS 843 ABOUT THE AUTHOR 847 INDEX 849
|
adam_txt |
SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS JACK K.
HOLMES ARTECH HOUSE BOSTON|LONDON ARTECHHOUSE. COM CONTENTS CHAPTER 1 AN
INTRODUCTION TO SPREAD SPECTRUM SYSTEMS 1.0 INTRODUCTION 1.1 A VERY
BRIEF HISTORY OF SPREAD SPECTRUM COMMUNICATIONS 1.2 A DIGITAL SPREAD
SPECTRUM COMMUNICATION SYSTEMS MODEL 1.3 NARROWBAND SIGNALS 1.3.1
NARROWBAND PROCESS VIA THE COMPLEX ENVELOPE 1.3.2 NARROWBAND SIGNALS
THROUGH NARROWBAND SYSTEMS 1.3.3 COMPLEX ENVELOPE CHARACTERIZATION FOR
DIRECT SEQUENCE AND FREQUENCY-HOPPING SIGNALS 1.4 DIRECT SEQUENCE SPREAD
SPECTRUM SYSTEMS 1.4.1 DIRECT SEQUENCE SPREADING WITH BINARY PHASE SHIFT
KEYING (BPSK) 1.4.2 QUADRIPHASE DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS
1.4.3 MINIMUM SHIFT KEYING (MSK) 1.5 FREQUENCY-HOPPED SPREAD SPECTRUM
SYSTEMS 1.5.1 NONCOHERENT SLOW FREQUENCY-HOPPED SYSTEMS WITH MFSK DATA
MODULATION 1.5.2 NONCOHERENT FAST FREQUENCY-HOPPED SYSTEMS WITH MFSK
DATA MODULATION 1.5.3 NONCOHERENT SLOW FREQUENCY-HOPPED SYSTEMS WITH
DPSK DATA MODULATION 1.5.4 NONCOHERENT SLOW FREQUENCY-HOPPED SIGNALS
WITH BPSK DATA MODULATION 1.6 HYBRID SPREAD SPECTRUM SYSTEMS 1.6.1
HYBRID DS WITH SLOW FREQUENCY HOPPING WITH BPSK DATA 1.6.2 HYBRID OQPSK
DS WITH SFH WITH BPSK DATA 1.7 TIME HOPPING SPREAD SPECTRUM SIGNALS 1.8
AN INTRODUCTION TO OFDM 1.8.1 OFDM COMMUNICATION SYSTEM IMPLEMENTED VIA
THE FFT 1.8.2 OFDM INTERSYMBOL INTERFERENCE REDUCTION TECHNIQUES 1.8.3
OFDM POWER SPECTRAL DENSITY 1.9 AN INTRODUCTION TO ULTRAWIDEBAND
COMMUNICATIONS 1.9.1 A BRIEF EARLY HISTORY OF UWB COMMUNICATIONS .9.2
DESCRIPTION OF UWB SIGNALS .9.3 REGULATORY CONSTRAINTS AND SPECTRAL
MASKS FOR VARIOUS UWB APPLICATIONS .9.4 IMPACT OF THE TRANSMIT ANTENNA
ON THE TRANSMITTED SIGNAL .9.5 THE ADVANTAGES AND THE DISADVANTAGES OF
IMPULSE VERSUS MULTICARRIER UWB .9.6 ADVANTAGES OF UWB SYSTEMS .9.7
APPLICATIONS OF UWB 1.10 THE NEAR-FAR PROBLEM 1.11 LOW PROBABILITY OF
INTERCEPTION 1.12 SUMMARY REFERENCES PROBLEMS 1 1 2 3 4 4 5 8 23 28 30
33 34 36 39 40 40 41 42 44 45 46 46 47 47 48 53 53 56 56 56 57 57 58 58
60 VN VIII SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS
CHAPTER 2 BINARY SHIFT REGISTER CODES FOR SPREAD SPECTRUM SYSTEMS 63 2.0
INTRODUCTION 63 2.1 FINITE FIELD ARITHMETIC 63 2.1.1 POLYNOMIAL
ARITHMETIC 65 2.2 SHIFT REGISTER SEQUENCES 66 2.2.1 EQUIVALENCE OF THE
FIBONACCI AND GALOIS FORMS OF A LINEAR SRG 70 2.3 MATHEMATICAL
CHARACTERIZATION OF SRGS 72 2.3.1 THE SHIFT REGISTER MATRIX 72 2.3.2 THE
CHARACTERISTIC EQUATION AND CHARACTERISTIC POLYNOMIAL 73 2.4 THE
GENERATING FUNCTION 75 2.5 THE CORRELATION FUNCTION OF SEQUENCES 78
2.5.1 PERIODIC CORRELATION FUNCTIONS FOR SEQUENCES 81 2.5.2 APERIODIC
CORRELATION FUNCTIONS FOR SEQUENCES 83 2.6 CODES FOR SPREAD SPECTRUM
MULTIPLE ACCESS APPLICATIONS 84 2.6.1 BINARY MAXIMAL LENGTH SEQUENCES 84
2.6.2 GOLD CODES 94 2.6.3 GOLD-LIKE SEQUENCES AND DUAL BCH SEQUENCES 103
2.6.4 KASAMI SEQUENCES 104 2.6.5 BENT SEQUENCES 106 2.6.6 COMPARISON OF
CDMA CODE PERFORMANCE 106 2.7 SEQUENCES WITH GOOD APERIODIC CORRELATION
107 2.7.1 BARKER AND WILLIARD SEQUENCES 108 2.7.2 NEUMAN-HOFMAN
SEQUENCES 109 2.7.3 PARTIAL PERIOD CORRELATION FOR M-SEQUENCES 109 2.7.4
FREQUENCY-HOPPING MULTIPLE ACCESS CODE GENERATORS 111 2.8 SUMMARY 114
REFERENCES 114 PROBLEMS 116 CHAPTER 3 JAMMING PERFORMANCE OF UNCODED
SPREAD SPECTRUM SYSTEMS 121 3.0 INTRODUCTION 121 3.1 JAMMER TYPES 123
3.2 BIT ERROR RATE PERFORMANCE IN BROADBAND NOISE JAMMING 125 3.2.1
DS/PSK IN BROADBAND NOISE JAMMING 125 3.2.2 SFH/DPSK IN BROADBAND NOISE
JAMMING 129 3.2.3 SFH/PSK IN BROADBAND NOISE JAMMING 132 3.2.4 SFH/MFSK
IN BROADBAND NOISE JAMMING 133 3.2.5 FFH/BFSK IN BROADBAND NOISE JAMMING
137 3.2.6 HYBRID DS-SFH SS MODULATION IN BROADBAND NOISE JAMMING 138 3.3
BER PERFORMANCE IN PARTIAL BAND NOISE JAMMING 140 3.3.1 DS/PSK IN
PARTIAL BAND NOISE JAMMING 140 3.3.2 SFH/DPSK SYSTEMS IN PARTIAL BAND
NOISE JAMMING 144 3.3.3 SFH/PSK BER IN PARTIAL BAND NOISE JAMMING 146
3.3.4 SFH/MFSK IN PARTIAL BAND NOISE JAMMING 148 3.3.5 FFH/MFSK IN
PARTIAL BAND NOISE JAMMING 151 3.3.6 HYBRID DS-SFH/MFSK IN PARTIAL BAND
NOISE JAMMING 154 3.3.7 HYBRID DS-SFH/DPSK IN PARTIAL BAND NOISE JAMMING
157 3.4 BIT ERROR RATE PERFORMANCE IN PULSED JAMMING 157 3.4.1 BIT ERROR
RATE PERFORMANCE FOR DS/PSK IN PULSED JAMMING - 157 3.4.2 PERFORMANCE OF
SFH/MFSK IN PULSED JAMMING 159 3.4.3 PERFORMANCE OF SFH/DPSK IN PULSED
JAMMING 160 3.4.4 PERFORMANCE OF HYBRID DS-SFH/MFSK IN PULSED JAMMING
160 CONTENTS IX 3.4.5 PERFORMANCE OF HYBRID DS-SFH/DPSK IN PULSED
JAMMING 161 3.5 BIT ERROR RATE PERFORMANCE IN TONE JAMMING 161 3.5.1 BIT
ERROR RATE PERFORMANCE FOR DS(BPSK)/BPSK IN TONE JAMMING 161 3.5.2 BIT
ERROR RATE PERFORMANCE FOR DS(QPSK)/BPSK IN TONE JAMMING 165 3.5.3 BIT
ERROR RATE PERFORMANCE FOR DS(MSK)/BPSK IN TONE JAMMING 168 3.6
MULTITONE JAMMING BIT ERROR RATE PERFORMANCE 173 3.6.1 MULTITONE JAMMING
BIT ERROR RATE PERFORMANCE FOR SFH/MSK 173 3.6.2 MULTITONE JAMMING BIT
ERROR RATE PERFORMANCE FOR SFH/DPSK 175 3.7 DEGRADATION DUE TO
INTERFERENCE OR JAMMING IN DS SYSTEMS 178 3.7.1 EQUIVALENT NOISE
SPECTRAL DENSITY FOR DS(BPSK)/BPSK SYSTEMS 179 3.7.2 CARRIER TO
EQUIVALENT NOISE SPECTRAL DENSITY RATIO FOR DS(BPSK)/BPSK 181 3.7.3
EQUIVALENT NOISE SPECTRAL DENSITY DEGRADATION FOR DS(BPSK)/BPSK SYSTEMS
183 3.7.4 DEGRADATION TO NRZ SIGNALS DUE TO NARROWBAND JAMMERS FOR
DS(BPSK)/BPSK SIGNALS 185 3.8 SUMMARY 186 REFERENCES 186 PROBLEMS 187
CHAPTER 4 JAMMING PERFORMANCE OF CODED SPREAD SPECTRUM SYSTEMS 191 4.0
INTRODUCTION 191 4.1 INTERLEAVER STRUCTURES FOR CODED SYSTEMS 192 4.1.1
BLOCK PERIODIC INTERLEAVING 192 4.1.2 CONVOLUTIONAL INTERLEAVING 194 4.2
LINEAR BLOCK CODING 195 4.2.1 LINEAR BLOCK CODING CONCEPTS 195 4.2.2
RULE FOR OPTIMUM DECODING WITH NO JAMMER SIDE INFORMATION 208 4.2.3 RULE
FOR OPTIMUM DECODING WITH JAMMER SIDE INFORMATION 211 4.2.4 COMPUTATION
OF THE BLOCK CODED WORD AND BIT ERROR RATE 213 4.3 CONVOLUTIONAL CODES
224 4.3.1 CONVOLUTIONAL CODE ENCODER CHARACTERIZATION 224 4.3.2 THE
TRANSFER FUNCTION OF A CONVOLUTIONAL CODE AND THE FREE DISTANCE 228
4.3.3 DECODING OF CONVOLUTIONAL CODES 230 4.3.4 THE VITERBI ALGORITHM /
232 4.3.5 ERROR PROBABILITIES FOR VITERBI DECODING OF CONVOLUTIONAL
CODES 238 4.3.6 SEQUENTIAL DECODING OF CONVOLUTIONAL CODES 242 4.3.7
THRESHOLD DECODING OF CONVOLUTIONAL CODES 242 4.3.8 NONBINARY
CONVOLUTIONAL CODES 243 4.4 ITERATIVELY DECODED CODES 243 4.4.1 TURBO
CODES 244 4.4.2 A SERIAL CONCATENATED CONVOLUTIONAL CODE 249 4.4.3
SERIAL CONCATENATED BLOCK CODES 251 4.4.4 PARALLEL CONCATENATED BLOCK
CODES 251 4.4.5 LOW-DENSITY PARITY CHECK CODES 252 4.5 SELECTED RESULTS
FOR SOME ERROR CORRECTION CODES 253 4.5.1 BOSE, CHAUDHURI, AND
HOCQUENGHEM CODES 253 4.5.2 REED-SOLOMON CODES 255 4.5.3 CONVOLUTIONAL
CODES WITH MAXIMUM FREE DISTANCE 257 SPREAD SPECTRUM SYSTEMS FOR GNSS
AND WIRELESS COMMUNICATIONS 4.5.4 HARD- AND SOFT-DECISION FFH/MFSK WITH
REPEAT CODING BER PERFORMANCE 259 4.6 SHANNON'S CAPACITY THEOREM, THE
CHANNEL CODING THEOREM, AND BW EFFICIENCY 266 4.6.1 SHANNON'S CAPACITY
THEOREM 267 4.6.2 CHANNEL CODING THEOREM 267 4.6.3 BANDWIDTH EFFICIENCY
267 4.7 APPLICATION OF ERROR CONTROL CODING 268 4.8 SUMMARY 269
REFERENCES 269 SELECTED BIBLIOGRAPHY 272 PROBLEMS 272 CHAPTER 5 CARRIER
TRACKING LOOPS AND FREQUENCY SYNTHESIZERS 275 5.0 INTRODUCTION 275 5.1
TRACKING OF RESIDUAL CARRIER SIGNALS 275 5.2 PLL FOR TRACKING A RESIDUAL
CARRIER COMPONENT 276 5.2.1 THE LIKELIHOOD FUNCTION FOR PHASE ESTIMATION
276 5.2.2 THE MAXIMUM-LIKELIHOOD ESTIMATION OF CARRIER PHASE 277 5.2.3
LONG LOOPS AND SHORT LOOPS 278 5.2.4 THE STOCHASTIC DIFFERENTIAL
EQUATION OF OPERATION 279 5.2.5 THE LINEAR MODEL OF THE PLL WITH NOISE
281 5.2.6 THE VARIOUS LOOP FILTER TYPES 283 5.2.7 TRANSIENT RESPONSE OF
A SECOND-ORDER LOOP 286 5.2.8 STEADY STATE TRACKING ERROR WHEN THE PHASE
ERROR IS SMALL 287 5.2.9 THE VARIANCE OF THE LINEARIZED PLL PHASE ERROR
DUE TO THERMAL NOISE 290 5.2.10 FREQUENCY RESPONSE OF THE ACTIVE FILTER
SECOND-ORDER PLL 292 5.2.11 PHASE NOISE EFFECTS OF THE TOTAL PHASE ERROR
IN THE PLL 293 5.2.12 NONLINEAR PLL RESULTS 297 5.3 FREQUENCY
SYNTHESIZERS 299 5.3.1 DIGITAL FREQUENCY SYNTHESIS 299 5.3.2 DIRECT
FREQUENCY SYNTHESIS 301 5.3.3 INDIRECT FREQUENCY SYNTHESIS 303 5.3.4
INDIRECT FREQUENCY SYNTHESIS TRANSFER FUNCTIONS 304 5.4 TRACKING OF BPSK
SIGNALS 306 5.4.1 TRACKING A BPSK SIGNAL WITH A SQUARING LOOP 306 5.4.2
TRACKING A BPSK SIGNAL WITH AN INTEGRATE-AND-DUMP COSTAS LOOP / 310
5.4.3 TRACKING A BPSK SIGNAL WITH A PASSIVE ARM FILTER COSTAS LOOP 314
5.4.4 STEADY STATE TRACKING ERROR FOR THE COSTAS AND SQUARING LOOPS 315
5.4.5 COSTAS LOOP WITH HARD-LIMITED IN-PHASE ARM PROCESSING 315 5.4.6
IMPROVED FREQUENCY ACQUISITION OF A PASSIVE FILTER COSTAS LOOP 315 5.4.7
LOCK DETECTORS FOR COSTAS AND SQUARING LOOPS 317 5.4.8 FALSE LOCK IN
COSTAS LOOPS 318 5.4.9 DECISION-DIRECTED FEEDBACK LOOPS 326 5.5
MULTIPHASE TRACKING LOOPS 330 5.5.1 THE N-TH POWER LOOP 330 5.5.2 THE
IV-PHASE COSTAS LOOP 3 31 5.5.3 DEMOD-REMOD QUADRIPHASE TRACKING LOOP
331 5.5.4 MODIFIED FOUR-PHASE COSTAS LOOP-SQPSK MODULATION 3 31 5.6
FREQUENCY LOCKED LOOPS 341 CONTENTS XI 5.6.1 THE CROSS PRODUCT FLL 341
5.7 SUMMARY 342 REFERENCES 343 PROBLEMS 345 CHAPTER 6 CODE ACQUISITION
IN DIRECT SEQUENCE RECEIVERS 349 6.0 INTRODUCTION 349 6.1 THE
ACQUISITION PROBLEM 354 6.2 ACTIVE SEARCH ACQUISITION (SLIDING
CORRELATOR) 354 6.2.1 MEAN ACQUISITION TIME MODEL FOR AN ACTIVE SEARCH
SYSTEM 355 6.2.2 ANALYSIS OF THE ACTIVE SEARCH SYSTEM 356 6.2.3 SINGLE
DWELL MEAN ACQUISITION TIME FORMULA WITH DOPPLER 361 6.2.4 MEAN
ACQUISITION TIME FOR THE DOUBLE DWELL TIME SEARCH 362 6.2.5 ACTIVE
ACQUISITION SYSTEM STRUCTURES USED FOR ACQUISITION FOR BPSK, QPSK,
OQPSK, AND MSK 364 6.3 ACQUISITION PROBABILITY VERSUS TIME FOR ACTIVE
CORRELATION 368 6.4 PARALLEL METHODS OF ACTIVE CODE ACQUISITION 371
6.4.1 ACTIVE SEARCH MEAN ACQUISITION TIME WITH PARALLEL PROCESSING 372
6.5 ACTIVE CODE SEARCH UTILIZING THE FFT 375 6.5.1 SIGNAL MODELING FOR
BPSK CODE ACQUISITION UTILIZING THE FFT 375 6.5.2 MODEL FOR THE
CORRELATOR OUTPUT OUT OF THE FFT 380 6.5.3 EVALUATION OF THE FFT
ENHANCED ACQUISITION SYSTEM OUTPUT VARIANCE FOR AN ARBITRARY GAUSSIAN
NOISE PROCESS 382 6.5.4 BPSK CODE MODULATION EVALUATION OF P D AND P FA
FOR ARBITRARY NOISE , 384 6.5.5 GAUSSIAN APPROXIMATION OF THE DETECTION
PROBABILITY FOR BPSK 386 6.5.6 LOSSES BETWEEN BINS IN A ZERO PADDED FFT
387 6.5.7 THE FREQUENCY SEARCH RANGE AND TOTAL FREQUENCY LOSSES USING AN
FFT 388 6.5.8 THE CORRELATOR BINS OF THE FFT ARE UNCORRELATED 389 6.5.9
BPSK CODE MODULATION Y IN A MATCHED SPECTRAL JAMMER 390 6.5.10 BPSK CODE
MODULATION Y IN A NARROWBAND JAMMER 391 6.5.11 BALANCED QPSK AND
BALANCED OQPSK ACQUISITION PERFORMANCE 394 6.5.12 A GAUSSIAN
APPROXIMATION FOR P D FOR BALANCED QPSK AND BALANCED OQPSK 398 6.6 AN
OPTIMUM SWEEP SEARCH TECHNIQUE FOR ACTIVE ACQUISITION 400 6.7 SEQUENTIAL
DETECTION 403 6.7.1 SEQUENTIAL PROBABILITY RATIO TEST 404 6.7.2
SEQUENTIAL DETECTION FOR DS ACQUISITION WITH BPSK DATA MODULATION 404
6.7.3 A SEQUENTIAL DETECTION IMPLEMENTATION 407 6.7.4 ACQUISITION TIME
OF A SEQUENTIAL DETECTOR 409 6.7.5 THE TONG DETECTOR 412 6.8 TRANSFORM
METHODS USED IN CODE ACQUISITION 415 6.9 CODE ACQUISITION USING A
PASSIVE MATCHED FILTER 417 6.9.1 THE MATCHED FILTER 417 6.9.2 OPTIMUM
TIME OF ARRIVAL ESTIMATOR 419 6.9.3 DIGITAL PASSIVE MATCHED FILTER
INTRODUCTION 420 6.9.4 DPMF ACQUISITION MODEL 421 6.9.5 DIGITAL MATCHED
FILTER ACQUISITION TIME MODEL 422 6.9.6 SIGNAL MODEL FOR DPMF 424 6.9.7
NOISE VARIANCE EQUATION FOR A GAUSSIAN RANDOM PROCESS MODEL OF A JAMMER
426 XII SPREAD SPECTRUM SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS
6.9.8 VARIANCE EVALUATION OF AN MSJ 426 6.9.9 CORRELATION SIGNAL VOLTAGE
LOSS 427 6.9.10 COMBINING COHERENT SEGMENTS OF THE DMF WITH THE FFT 428
6.9.11 DETECTION AND FALSE ALARM PROBABILITY DENSITIES FOR THE NRZ CODE
CASE 430 6.9.12 THE ACQUISITION PROBABILITY 433 6.9.13 MEAN ACQUISITION
TIME CALCULATION 436 6.10 SERIAL ACTIVE SEARCH FOR ACQUISITION OF
FH/MFSK SIGNALS 439 6.10.1 SERIAL ACTIVE SEARCH FOR ACQUISITION OF
FFH/MFSK SIGNALS 439 6.10.2 DETECTION AND FALSE ALARM PROBABILITIES FOR
FFH/MFSK SERIAL ACTIVE SEARCH 444 6.10.3 DETECTION AND FALSE ALARM
PROBABILITIES FOR SFH/MFSK SERIAL ACTIVE SEARCH 447 6.10.4 ACQUISITION
TIME CALCULATIONS FOR FFH/MFSK AND SFH/MFSK 450 6.11 SUMMARY 451
REFERENCES 452 SELECTED BIBLIOGRAPHY 454 PROBLEMS 455 APPENDIX 6A SIGNAL
FLOW GRAPHS AND DISCRETE TIME INVARIANT MARKOV PROCESSES 458 CHAPTER 7
DIRECT SEQUENCE CODE-TRACKING LOOPS 473 7.0 INTRODUCTION 473 7.1 BASIS
FOR THE EARLY-LATE GATE CODE-TRACKING LOOP 473 7.1.1 MAXIMUM-LIKELIHOOD
ESTIMATE FORMULATION 474 7.1.2 MAXIMUM-LIKELIHOOD ESTIMATE OF THE PN
CODE TIMING 475 7.2 FULL-TIME CODE-TRACKING LOOPS 477 7.2.1 BASEBAND
EARLY-LATE GATE CODE-TRACKING LOOP WITH NRZ SYMBOLS 478 7.2.2
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING LOOP 483 7.2.3 NONCOHERENT
EARLY-LATE GATE RF IMPLEMENTED CODE-TRACKING LOOP 492 7.2.4 NONCOHERENT
I-Q DOT PRODUCT CODE-TRACKING LOOP WITH PASSIVE ARM FILTERS 493 7.2.5
NONCOHERENT I-Q DOT PRODUCT CODE-TRACKING LOOP WITH ACTIVE ARM FILTERS
501 7.3 EARLY-LATE GATE NONCOHERENT I-Q CODE-TRACKING WITH FILTERING AND
INTERFERENCE 502 7.3.1 SIGNAL MODEL FOR THE NONCOHERENT I-Q EARLY-LATE
GATE CODE- TRACKING LOOP WITH CHANNEL FILTERING 502 7.3.2 SIGNAL AND
NOISE TERMS IN THE NONCOHERENT I-Q EARLY-LATE GATE CODE LOOP WITH
CHANNEL FILTERING 505 7.3.3 SIGNAL TERMS IN THE NONCOHERENT I-Q
EARLY-LATE GATE CODE LOOP WITH CHANNEL FILTERING 507 7.3.4 CLOSED-LOOP
OPERATION OF THE NONCOHERENT I-Q EARLY-LATE GATE CODE LOOP WITH CHANNEL
FILTERING 513 7.3.5 NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP
WITH CHANNEL FILTERING OF N(T) AT/= 0 516 7.3.6 NONCOHERENT EARLY-LATE
GATE I-Q CODE LOOP TRACKING ERROR VARIANCE WITH CHANNEL FILTERING 519
7.3.7 NONCOHERENT EARLY-LATE GATE CODE I-Q TRACKING ERROR VARIANCE WITH
THERMAL NOISE AND WITHOUT CHANNEL FILTERING 521 CONTENTS XIII 7.3.8
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING ERROR VARIANCE WITH
CHANNEL FILTERING IN WHITE GAUSSIAN NOISE WITH NRZ SYMBOLS 522 7.3.9
NONCOHERENT EARLY-LATE GATE I-Q CODE-TRACKING PERFORMANCE WITH
NARROWBAND GAUSSIAN INTERFERENCE PLUS WHITE GAUSSIAN NOISE WITH NRZ
SYMBOLS AND NO CHANNEL FILTERING 523 7.4 TIME-SHARED NONCOHERENT
CODE-TRACKING LOOPS 527 7.5 PERFORMANCE OF A NONCOHERENT RF IMPLEMENTED
TIME GATED EARLY-LATE GATE BANDPASS CODE-TRACKING LOOP 536 7.6 STEADY
STATE ERROR OF CODE-TRACKING LOOPS WITHOUT NOISE 542 7.6.1 FIRST-ORDER
NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP 542 7.6.2
SECOND-ORDER IDEAL NONCOHERENT I-Q EARLY-LATE GATE CODE-TRACKING LOOP
544 7.7 EARLY-LATE GATE NONCOHERENT I-Q CODE-TRACKING LOOP PULL-IN
WITHOUT NOISE 545 7.8 MULTIPATH EFFECTS 548 7.8.1 MULTIPATH EFFECTS ON
FILTERED NONCOHERENT CODE-TRACKING LOOPS 548 7.8.2 MULTIPATH EFFECTS ON
BASEBAND COHERENT I-Q CODE-TRACKING LOOPS 554 7.8.3 THE MULTIPATH ERROR
PLOTS ARE THE SAME FOR COHERENT AND NONCOHERENT CODE-TRACKING LOOPS 555
7.9 MEAN TIME TO LOSE LOCK FOR A FIRST-ORDER EARLY-LATE GATE RF
CODE-TRACKING LOOP 556 7.9.1 MODEL FOR THE ANALYSIS OF THE MEAN SLIP
TIME PERFORMANCE OF THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 558 7.9.2 MEAN SLIP TIME COMPARISON OF THEORY AND
SIMULATION FOR THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 559 7.10 WIDEBAND JAMMING EFFECTS ON TRACKING AND MEAN
TIME TO LOSE LOCK FOR THE EARLY-LATE GATE CODE-TRACKING LOOP WITH RF
IMPLEMENTATION 560 7.11 CRAMER-RAO BOUND ON CODE-TRACKING ERROR 562 7.12
PHASE ROTATION AND HETERODYNING FOR RECEIVER USE 565 7.12.1 HETERODYNING
THE SIGNAL TO NEAR BASEBAND 565 7.12.2 PHASE ROTATION OR SINGLE SIDEBAND
TRANSLATION 566 7.13 PULSING AND BLANKING IN A BASEBAND EARLY-LATE
CODE-TRACKING LOOP 568 7.13.1 BASEBAND SIGNAL AND CODE LOOP MODEL FOR A
BASEBAND EARLY-LATE GATE I-Q CODE-TRACKING LOOP WITH PULSING 569 7.13.2
FULL CORRELATION IN THE COHERENT BASEBAND I-Q CODE-TRACKING LOOP WHEN
THE SIGNAL IS PULSED 570 7.13.3 SYNCHRONOUS BLANKING OF THE NOISE WHEN
THE SIGNAL IS PULSED OFF 574 7.14 SUMMARY 577 REFERENCES 577 SELECTED
BIBLIOGRAPHY * 579 PROBLEMS 579 APPENDIX 7A MEAN TIME TO LOSE LOCK FOR A
FIRST-ORDER EARLY-LATE GATE CODE- TRACKING LOOP WITH EITHER BANDPASS ARM
FILTERS OR BASEBAND ARM FILTERS 582 CHAPTER 8 TRACKING OF
FREQUENCY-HOPPED SIGNALS 591 8.0 INTRODUCTION 591 8.1 DATALESS
FREQUENCY-HOPPED TIME TRACKING LOOP MODEL 591 8.1.1 LOOP MODEL FOR THE
FREQUENCY-HOPPING LOOP WITHOUT DATA 597 8.1.2 EVALUATION OF THE SPECTRAL
DENSITY OF THE NOISE TERMS 598 8.1.3 CLOSED LOOP TRACKING LOOP
PERFORMANCE 600 8.2 FREQUENCY-HOPPING TRACKING WITH BPSK AND DPSK DATA
MODULATION 601 8.3 SUMMARY 602 REFERENCES 602 XIV SPREAD SPECTRUM
SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS PROBLEM 602 CHAPTER 9
MULTIPLE ACCESS METHODS FOR DIGITAL WIRELESS CELLULAR COMMUNICATIONS 603
9.0 INTRODUCTION 603 9.1 BRIEF HISTORY OF CELLULAR SYSTEMS 603 9.2
CELLULAR COMMUNICATIONS 604 9.2.1 CELLULAR SYSTEM ARCHITECTURE 604 9.2.2
MOBILE CELLS 604 9.2.3 MOBILE CLUSTERS 605 9.2.4 FREQUENCY REUSE IN A
CELLULAR SYSTEM 605 9.2.5 CELL SPLITTING 606 9.2.6 HANDOFF 606 9.2.7
MORE ON CELL STRUCTURE 607 9.2.8 ASSIGNMENT STRATEGIES FOR
CHANNELIZATION 609 9.3 MULTIPLE ACCESS TECHNIQUES FOR WIRELESS
COMMUNICATIONS 609 9.3.1 A BRIEF INTRODUCTION TO MULTIPLE ACCESS 610
9.3.2 FREQUENCY DIVISION MULTIPLE ACCESS 611 9.4 TIME DIVISION MULTIPLE
ACCESS 612 9.4.1 THE EFFICIENCY OF TDMA SYSTEMS 613 9.4.2 THE NUMBER OF
AVAILABLE CHANNELS IN A TDMA SYSTEM 614 9.5 SPREAD SPECTRUM MULTIPLE
ACCESS 615 9.5.1 FREQUENCY-HOPPED MULTIPLE ACCESS 615 9.5.2 CODE
DIVISION MULTIPLE ACCESS 615 9.5.3 HYBRID TECHNIQUES FOR SPREAD SPECTRUM
SIGNALS 617 9.6 SPACE DIVISION MULTIPLE ACCESS 619 9.7 THE CAPACITY OF
CELLULAR CDMA OF A SINGLE CELL 619 9.8 PACKET RADIO ACCESS TECHNIQUES
624 9.8.1 ALOHA CHANNEL 624 9.8.2 THE SLOTTED ALOHA CHANNEL . 626 9.9
CARRIER SENSE MULTIPLE ACCESS PROTOCOLS 629 9.9.1 1-PERSISTENT CSMA 629
9.9.2 NONPERSISTENT CSMA 630 9.9.3 P-PERSISTENT CSMA 630 9.9.4
CONCEPTUAL COMPARISON OF THE MULTIPLE ACCESS METHODS 630 9.10 MULTIUSER
DETECTION CONCEPTS 631 9.10.1 THE MATCHED FILTER FOR CDMA SIGNALS 632
9.10.2 CONVENTIONAL SINGLE USER DETECTOR IN THE SYNCHRONOUS CASE 635
9.10.3 DECORRELATING DETECTOR 636 9.10.4 MINIMUM MEAN SQUARE ERROR
ESTIMATOR 639 9.10.5 ADDITIONAL TYPES OF MULTIUSER DETECTOR SYSTEMS 642
9.10.6 SUCCESSIVE INTERFERENCE CANCELLATION 642 9.10.7 MULTISTAGE
INTERFERENCE CANCELLATION 643 9.10.8 BIT ERROR RATE PERFORMANCE
ESTIMATES OF THE DETECTORS 644 9.11 AN EXAMPLE OF A CDMA SYSTEM:
CDMA2000 646 9.11.1 CDMA2000 LAYERING STRUCTURE OVERVIEW 648 9.11.2
FORWARD LINK AND REVERSE LINK CHANNELS OVERVIEW 648 9.11.3 PHYSICAL
LAYER OF CDMA2000 649 9.11.4 FORWARD LINK PHYSICAL CHANNELS 650 9.11.5
CDMA2000 REVERSE PHYSICAL CHANNELS 661 9.11.6 DATA SERVICES IN CDMA2000
668 9.12 WCDMA 668 9.12.1 WCDMA RADIO FREQUENCY PROTOCOL ARCHITECTURE
668 9.12.2 WCDMA CHANNELS 669 CONTENTS 9.12.3 WCDMA PHYSICAL LAYER 669
9.12.4 WCDMA CHANNEL CODING 672 9.12.5 WCDMA POWER CONTROL 673 9.12.6
WCDMA RANDOM ACCESS 674 9.12.7 WCDMA INITIAL CELL SEARCH 674 9.12.8
WCDMA HANDOVER 674 9.12.9 WCDMA PACKET DATA SERVICES 674 9.13 SUMMARY
676 REFERENCES 676 PROBLEMS 678 CHAPTER 10 AN INTRODUCTION TO FADING
CHANNELS 679 10.0 INTRODUCTION 679 10.1 AN INTRODUCTION TO RADIO
PROPAGATION 679 10.2 OUTDOOR MODELS FOR LARGE-SCALE EFFECTS 680 10.2.1
FREE SPACE PATH LOSS MODEL 680 10.2.2 RECEIVED SIGNAL POWER AND THE
ELECTRIC FIELD STRENGTH 682 10.2.3 PLANE EARTH PROPAGATION PATH LOSS
MODEL 683 10.2.4 EGLI'S PATH LOSS MODEL 684 10.2.5 OKUMURA-HATA PATH
LOSS MODEL 685 10.2.6 COST-231 HATA PATH LOSS MODEL 685 10.2.7 ECC-33
PATH LOSS MODEL 686 10.2.8 MICROCELL PROPAGATION MODELS 687 10.3
LARGE-SCALE EFFECTS FOR INDOOR MODELS 689 10.3.1 LOG-NORMAL PATH LOSS
MODEL FOR INDOORS 689 10.3.2 FLOOR ATTENUATION FACTOR PATH LOSS MODEL
690 10.4 SMALL-SCALE EFFECTS MULTIPATH FADING 691 10.4.1 RAYLEIGH AND
RICIAN FADING MODELS 693 10.4.2 SMALL-SCALE FADING TYPES 695 10.4.3
MULTIPATH TIME DELAY SPREAD FADING 695 10.4.4 FADING EFFECTS OF
MULTIPATH DOPPLER SPREAD 698 10.5 CHARACTERIZATION OF WIDEBAND CHANNELS
700 10.5.1 DETERMINISTIC MODELS . 700 10.5.2 STOCHASTIC TIME-VARIANT
LINEAR CHANNELS 703 10.5.3 THE WIDE-SENSE STATIONARY CHANNELS 706 10.5.4
THE UNCORRELATED SCATTERING CHANNEL 708 10.5.5 THE WIDE-SENSE STATIONARY
UNCORRELATED SCATTERING CHANNEL 709 10.6 THE EFFECTS OF A RAYLEIGH
FADING CHANNEL ON THE BIT ERROR RATE 711 10.6.1 THE EFFECTS OF A
RAYLEIGH FADING CHANNEL ON THE BPSK BIT ERROR RATE ' 711 10.6.2 THE
EFFECTS OF A RAYLEIGH FADING CHANNEL ON THE DPSK BIT ERROR RATE 713
10.6.3 THE EFFECTS OF A RAYLEIGH FADING CHANNEL ON NONCOHERENT
ORTHOGONAL BFSK BIT ERROR RATE 714 10.6.4 NAKAGAMI FADING CHANNEL MODEL
714 10.7 MITIGATION METHODS FOR MULTIPATH EFFECTS 715 10.7.1 DIVERSITY
FOR MULTIPATH IMPROVEMENT 716 10.7.2 COMBINING METHODS FOR FADING
MITIGATION 716 10.8 EQUALIZATION FOR MULTIPATH IMPROVEMENT 723 10.8.1
BASEBAND TRANSVERSAL SYMBOL RATE EQUALIZER 723 10.8.2 BASEBAND ADAPTIVE
EQUALIZATION 726 10.8.3 BASEBAND DECISION FEEDBACK EQUALIZERS 730 10.9
DIVERSITY TECHNIQUES FOR MULTIPATH IMPROVEMENT 732 XVI SPREAD SPECTRUM
SYSTEMS FOR GNSS AND WIRELESS COMMUNICATIONS 10.9.1 MULTIPATH
PERFORMANCE IMPROVEMENT VIA DIVERSITY TECHNIQUES FOR BINARY CHANNELS 732
10.10 THE RAKE RECEIVER 739 10.10.1 THE TAPPED DELAY LINE CHANNEL MODEL
FOR A FREQUENCY SELECTIVE SLOWLY FADING CHANNEL 739 10.10.2 THE RAKE
RECEIVER 740 10.10.3 PERFORMANCE OF THE RAKE RECEIVER 742 10.11 BINARY
CODED CHERNOFF BER BOUNDS FOR FADING CHANNELS 743 10.11.1 CHERNOFF BOUND
FOR BINARY LINEAR BLOCK CODES 743 10.11.2 CODED ORTHOGONAL FSK SIGNAL
MODEL FOR FADING CHANNELS 745 10.11.3 BER OF SOFT-DECISION DECODING AND
FSK MODULATION WITH LINEAR BINARY BLOCK CODES OVER RAYLEIGH FADING
CHANNELS 746 10.11.4 BER OF HARD-DECISION DECODING AND FSK MODULATION
WITH LINEAR BINARY BLOCK CODES OVER RAYLEIGH FADING CHANNELS 748 10.11.5
CHERNOFF BOUNDS FOR THE BER OF CONVOLUTIONAL CODES OVER RAYLEIGH FADING
CHANNELS WITH SOFT AND HARD DECISIONS AND BINARY FSK MODULATION 750
10.12 SMART ANTENNA SYSTEMS FOR WIRELESS SYSTEMS 752 10.12.1 SMART
ANTENNA SYSTEMS 752 10.12.2 ADAPTIVE ARRAY SMART ANTENNAS 752 10.12.3
ADAPTIVE ARRAY SPATIAL PROCESSING 757 10.12.4 FORMING SMART ANTENNAS
WITH SWITCHED BEAMS 757 10.12.5 MIMO SYSTEMS 758 10.13 SUMMARY 759
REFERENCES 760 PROBLEMS 762 CHAPTER 11 LOW PROBABILITY OF DETECTION
SYSTEMS 765 11.0 INTRODUCTION 765 11.1 LOW PROBABILITY OF INTERCEPT
(LP1) 766 11.1.1 COVERT COMMUNICATIONS 766 11.1.2 THE LPI SCENARIO 766
11.1.3 BRIEF SIGNAL PROPAGATION SUMMARY 768 11.2 AN INTRODUCTION TO
RADIOMETRIC DETECTORS 769 11.2.1 THE RADIOMETER 770 11.2.2 LIMITATIONS
OF THE RADIOMETER PERFORMANCE RESULTS 772 11.2.3 LOW-PASS FILTER
RADIOMETER 775 11.2.4 THE CORRELATION RADIOMETER 777 11.2.5 RELATIONSHIP
OF THE OUTPUT SNR AND THE DEFLECTION 779 11.2.6 THE OPTIMUM DETECTOR FOR
FREQUENCY-HOPPED WAVEFORMS 780 11.2.7 THE FILTER BANK COMBINER 781 11.3
SPECTRUM ANALYZERS 784 11.3.1 NARROWBAND SIGNAL SPECTRUM ANALYZER
PERFORMANCE 786 11.3.2 WIDEBAND SIGNAL SPECTRUM ANALYZER PERFORMANCE 787
11.4 SECOND-ORDER CYCLOSTATIONARY FEATURE DETECTION 788 11.4.1
CYCLOSTATIONARY PROCESSES 788 11.4.2 THE BASEBAND AND CARRIER
CYCLOSTATIONARITY 788 11.4.3 BPSK THROUGH A FILTER AND SQUARER CIRCUIT
789 11.4.4 BALANCED QPSK THROUGH A FILTER AND SQUARER CIRCUIT 796 11.4.5
BALANCED OQPSK THROUGH A FILTER AND SQUARER CIRCUIT 797 11.4.6 MSK
THROUGH A FILTER AND SQUARER CIRCUIT 798 11.4.7 FREQUENCY-HOPPED SIGNALS
WITH MFSK THROUGH A FILTER AND SQUARER CIRCUIT 800 CONTENTS XVII 11.4.8
SLOW FREQUENCY-HOPPED SIGNALS WITH DPSK DATA MODULATION THROUGH A FILTER
AND SQUARER CIRCUIT 802 11.4.9 DELAY AND MULTIPLY CHIP RATE DETECTORS
WITH BALANCED QPSK 804 11.5 PERFORMANCE OF A CHIP RATE DETECTOR FOR BPSK
806 11.6 FREQUENCY ESTIMATION OF AN UNMODULATED TONE WITH A LIMITER
DISCRIMINATOR 810 11.7 SUMMARY 812 REFERENCES 813 SELECTED BIBLIOGRAPHY
814 PROBLEMS 814 APPENDIX 11A SAMPLES FROM A BANDPASS FILTERED GAUSSIAN
RANDOM PROCESS 816 CHAPTER 12 LOCK DETECTOR THEORY AND ABSORBING MARKOV
CHAINS 819 12.0 INTRODUCTION 819 12.1 ABSORBING MARKOV CHAINS 819 12.2
THE FUNDAMENTAL MATRIX 822 12.3 MEAN AND VARIANCE OF THE NUMBER OF TIMES
A PROCESS IS IN A TRANSIENT STATE 823 12.4 MEAN AND VARIANCE OF THE
NUMBER OF TIMES A PROCESS IS IN A TRANSIENT STATE*GENERAL CASE 827 12.5
THE PROBABILITY OF STARTING IN A TRANSIENT STATE AND ENDING IN A
PERSISTENT STATE 832 12.6 LOCK DETECTOR PERFORMANCE 834 12.7 LOCK
DETECTOR SYSTEM MODELS 838 12.7.1 RESIDUAL CARRIER LOOP LOCK DETECTOR
BLOCK DIAGRAM MODEL 838 12.7.2 SUPPRESSED CARRIER LOCK DETECTOR 840
12.7.3 PN CODE ACQUISITION LOCK DETECTOR 841 12.7.4 A FREQUENCY-HOPPING
LOCK DETECTOR FOR SFH/DPSK 841 12.8 SUMMARY 843 REFERENCES 843 SELECTED
BIBLIOGRAPHY 843 PROBLEMS 843 ABOUT THE AUTHOR 847 INDEX 849 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Holmes, Jack K. |
author_facet | Holmes, Jack K. |
author_role | aut |
author_sort | Holmes, Jack K. |
author_variant | j k h jk jkh |
building | Verbundindex |
bvnumber | BV022578934 |
callnumber-first | T - Technology |
callnumber-label | TK5102 |
callnumber-raw | TK5102.5 |
callnumber-search | TK5102.5 |
callnumber-sort | TK 45102.5 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | ZN 6155 ZN 6230 |
classification_tum | BAU 936f ELT 558f |
ctrlnum | (OCoLC)148802071 (DE-599)BVBBV022578934 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Bauingenieurwesen Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik Vermessungswesen |
discipline_str_mv | Bauingenieurwesen Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik Vermessungswesen |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02983nam a2200505 c 4500</leader><controlfield tag="001">BV022578934</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210713 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070814s2007 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781596930834</subfield><subfield code="9">978-1-59693-083-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)148802071</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022578934</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK5102.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6155</subfield><subfield code="0">(DE-625)157513:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6230</subfield><subfield code="0">(DE-625)157531:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 936f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 558f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Holmes, Jack K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spread spectrum systems for GNSS and wireless communications</subfield><subfield code="c">Jack K. Holmes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Artech House</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 855 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">The GNSS technology and applications series</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchronization of SS systems, including initial acquisition and tracking. The book discusses correlation loss to help you determine the impact of filters on the correlation process. Moreover, for the first time in any book, you find details on code acquisition and code tracking with channel filtering. This comprehensive volume presents the principles of design and analysis for all SS systems, and places special emphasis on wireless systems and global navigation satellite systems (GNSS). The book considers all the common coherent and non-coherent modulations, including BPSK, QPSK, DPSK, MSK, MFSK, OFDM, and UWB. Other key topics discussed include multiple access methods for SS, characterization of radio channels, the theory of lock detectors, and low probability of detection (LPD) systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Communications par étalement du spectre</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transmission sans fil</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Positioning System</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spread spectrum communications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">GNSS-2</subfield><subfield code="0">(DE-588)4713269-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funknetz</subfield><subfield code="0">(DE-588)4216130-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bandspreiztechnik</subfield><subfield code="0">(DE-588)4181277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bandspreiztechnik</subfield><subfield code="0">(DE-588)4181277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funknetz</subfield><subfield code="0">(DE-588)4216130-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">GNSS-2</subfield><subfield code="0">(DE-588)4713269-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015785151&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015785151</subfield></datafield></record></collection> |
id | DE-604.BV022578934 |
illustrated | Illustrated |
index_date | 2024-07-02T18:16:00Z |
indexdate | 2024-07-09T21:00:49Z |
institution | BVB |
isbn | 9781596930834 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015785151 |
oclc_num | 148802071 |
open_access_boolean | |
owner | DE-706 DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-706 DE-91 DE-BY-TUM DE-83 |
physical | xvii, 855 Seiten Illustrationen |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Artech House |
record_format | marc |
series2 | The GNSS technology and applications series |
spelling | Holmes, Jack K. Verfasser aut Spread spectrum systems for GNSS and wireless communications Jack K. Holmes Boston [u.a.] Artech House 2007 xvii, 855 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier The GNSS technology and applications series Look to this cutting-edge resource for a modern treatment of spread spectrum (SS) communications, including direct sequence and frequency hopping. The book helps you understand the performance of SS systems under the influence of jamming and with and without coding. You find details on the synchronization of SS systems, including initial acquisition and tracking. The book discusses correlation loss to help you determine the impact of filters on the correlation process. Moreover, for the first time in any book, you find details on code acquisition and code tracking with channel filtering. This comprehensive volume presents the principles of design and analysis for all SS systems, and places special emphasis on wireless systems and global navigation satellite systems (GNSS). The book considers all the common coherent and non-coherent modulations, including BPSK, QPSK, DPSK, MSK, MFSK, OFDM, and UWB. Other key topics discussed include multiple access methods for SS, characterization of radio channels, the theory of lock detectors, and low probability of detection (LPD) systems Communications par étalement du spectre Transmission sans fil Global Positioning System Spread spectrum communications Wireless communication systems GNSS-2 (DE-588)4713269-3 gnd rswk-swf Funknetz (DE-588)4216130-7 gnd rswk-swf Bandspreiztechnik (DE-588)4181277-3 gnd rswk-swf Bandspreiztechnik (DE-588)4181277-3 s Funknetz (DE-588)4216130-7 s GNSS-2 (DE-588)4713269-3 s DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015785151&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Holmes, Jack K. Spread spectrum systems for GNSS and wireless communications Communications par étalement du spectre Transmission sans fil Global Positioning System Spread spectrum communications Wireless communication systems GNSS-2 (DE-588)4713269-3 gnd Funknetz (DE-588)4216130-7 gnd Bandspreiztechnik (DE-588)4181277-3 gnd |
subject_GND | (DE-588)4713269-3 (DE-588)4216130-7 (DE-588)4181277-3 |
title | Spread spectrum systems for GNSS and wireless communications |
title_auth | Spread spectrum systems for GNSS and wireless communications |
title_exact_search | Spread spectrum systems for GNSS and wireless communications |
title_exact_search_txtP | Spread spectrum systems for GNSS and wireless communications |
title_full | Spread spectrum systems for GNSS and wireless communications Jack K. Holmes |
title_fullStr | Spread spectrum systems for GNSS and wireless communications Jack K. Holmes |
title_full_unstemmed | Spread spectrum systems for GNSS and wireless communications Jack K. Holmes |
title_short | Spread spectrum systems for GNSS and wireless communications |
title_sort | spread spectrum systems for gnss and wireless communications |
topic | Communications par étalement du spectre Transmission sans fil Global Positioning System Spread spectrum communications Wireless communication systems GNSS-2 (DE-588)4713269-3 gnd Funknetz (DE-588)4216130-7 gnd Bandspreiztechnik (DE-588)4181277-3 gnd |
topic_facet | Communications par étalement du spectre Transmission sans fil Global Positioning System Spread spectrum communications Wireless communication systems GNSS-2 Funknetz Bandspreiztechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015785151&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT holmesjackk spreadspectrumsystemsforgnssandwirelesscommunications |