Modern sensors handbook:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London
ISTE
2007
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Instrumentation and measurement series
|
Schlagworte: | |
Online-Zugang: | Table of contents only Inhaltsverzeichnis |
Beschreibung: | XVIII, 518 S. Ill., graph. Darst. |
ISBN: | 9781905209668 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022576735 | ||
003 | DE-604 | ||
005 | 20071112 | ||
007 | t | ||
008 | 070813s2007 xxuad|| |||| 00||| eng d | ||
010 | |a 2007003344 | ||
020 | |a 9781905209668 |9 978-1-905209-66-8 | ||
035 | |a (OCoLC)176909923 | ||
035 | |a (DE-599)BVBBV022576735 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 | ||
050 | 0 | |a TA165 | |
082 | 0 | |a 681/.2 | |
082 | 0 | |a 681.2 |2 22 | |
084 | |a ZQ 3120 |0 (DE-625)158040: |2 rvk | ||
245 | 1 | 0 | |a Modern sensors handbook |c ed. by Pavel Ripka ... |
250 | |a 1. publ. | ||
264 | 1 | |a London |b ISTE |c 2007 | |
300 | |a XVIII, 518 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Instrumentation and measurement series | |
650 | 4 | |a Detectors |v Handbooks, manuals, etc | |
650 | 0 | 7 | |a Sensortechnik |0 (DE-588)4121663-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Sensortechnik |0 (DE-588)4121663-5 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Ripka, Pavel |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip079/2007003344.html |3 Table of contents only | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015782992 |
Datensatz im Suchindex
_version_ | 1804136712975155200 |
---|---|
adam_text | MODERN SENSORS HANDBOOK EDITED BY PAVEL RIPKA ALOIS TIPEK TABLE OF
CONTENTS CHAPTER 1. PRESSURE SENSORS 1 ANDRE MIGEON AND ANNE-ELISABETH
LENEL 1.1. INTRODUCTION 1 1.2. PRESSURE 2 1.2.1. PRESSURE AS A PHYSICAL
QUANTITY 2 1.2.1.1. STATIC PRESSURE 2 1.2.1.2. UNITS 3 1.2.2. ABSOLUTE,
RELATIVE AND DIFFERENTIAL SENSORS 3 1.2.3. FLUID PHYSICAL PROPERTIES 5
1.2.3.1. LIQUIDS 5 1.2.3.2. GASES 5 1.2.3.3. SENSOR PNEUMATIC
CONNECTION INFLUENCE 6 1.3. PRESSURE RANGES 6 1.3.1. VACUUM AND
ULTRA-VACUUM 6 1.3.2. MIDDLE RANGE PRESSURE 8 1.3.3. HIGH PRESSURE 10
1.4. MAIN PHYSICAL PRINCIPLES 10 1.4.1. THE SENSING DEVICE 11 1.4.2.
SENSORS WITH ELASTIC ELEMENT 13 1.4.2.1. CONVERSION BY RESISTANCE
VARIATION 13 1.4.2.2. CONVERSION BY CAPACITANCE VARIATION . . F 21
1.4.2.3. CONVERSION BY INDUCTANCE VARIATION 26 1.4.2.4. CONVERSION BY
PIEZOELECTRIC EFFECT 27 1.4.2.5. CONVERSION BY OSCILLATORS 30 1.4.2.6.
OPTICAL CONVERSION 38 1.4.2.7. SERVO CONTROLLED SENSORS WITH BALANCE OF
FORCE 40 1.4.3. VACUUM SENSORS 41 1.4.3.1. IONIZATION PRESSURE SENSORS
41 1.4.3.2. HEATING EFFECT SENSORS 42 VI MODERN SENSORS HANDBOOK 1.5.
CALIBRATION: PRESSURE STANDARDS 43 1.5.1. LOW PRESSURE STANDARD 43
1.5.2. HIGH PRESSURE STANDARD 43 1.6. CHOOSING A PRESSURE SENSOR 45 1.7.
REFERENCES 45 1.8. OTHER PRESSURE SENSOR MANUFACTURERS 46 1.9.
BIBLIOGRAPHY 46 CHAPTER 2. OPTICAL SENSORS 49 STANISLAV DADO AND JAN
FISCHER 2.1. OPTICAL WAVEGUIDES AND FIBERS 49 2.2. LIGHT SOURCES AND
DETECTORS 51 2.2.1. LIGHT SOURCES 51 2.2.1.1. SEMICONDUCTOR SOURCES OF
LIGHT 51 2.2.1.2. LASER DIODES 53 2.2.2. LIGHT DETECTORS 54 2.2.2.1.
PHOTORESISTORS 54 2.2.2.2. PHOTODIODES 54 2.2.2.3. PHOTOTRANSISTOR 57
2.2.2.4. POSITION SENSITIVE PHOTO-DETECTORS (PSD) 57 2.2.2.5. CHARGED
COUPLED DEVICE IMAGE SENSORS 59 2.3. SENSORS OF POSITION AND MOVEMENT 62
2.3.1. POSITION SENSORS USING THE PRINCIPLE OF TRIANGULATION 62 2.3.2.
INCREMENTAL SENSORS OF POSITION OR DISPLACEMENT 63 2.3.2.1. GENERAL
PRINCIPLES 63 2.3.2.2. LINEAR INCREMENTAL ENCODER 63 2.3.2.3. OPTICAL
SENSORS OF DISPLACEMENT WITH ABSOLUTE ENCODING DISK. . 65 2.3.2.4.
SENSORS WITH PSEUDORANDOM CODING 65 2.3.3. PHOTOELECTRIC SWITCHES 66
2.3.3.1. THROUGH BEAM PES 66 2.3.3.2. DIFFUSE REFLECTIVE PES 67 2.3.3.3.
RETRO-REFLECTIVE PES 68 2.3.3.4. PES FOR DETECTION OF COLORS OR COLOR
MARKS 70 2.4. OPTICAL SENSORS OF DIMENSIONS R 71 2.4.1. DIMENSIONAL
GAUGE WITH SCANNED BEAM 71 2.5. OPTICAL SENSORS OF PRESSURE AND FORCE 73
2.5.1. PRESSURE SENSOR USING THE OPTICAL RESONATOR 73 2.6. OPTICAL FIBER
SENSORS 74 2.6.1. INTRODUCTION AND CLASSIFICATION OF SENSORS WITH
OPTICAL FIBERS .... 74 2.6.2. OPTICAL FIBER SENSORS WITH AMPLITUDE
MODULATION 75 2.6.3. SENSOR WITH WAVELENGTH MODULATION 77 TABLE OF
CONTENTS VII 2.6.4. OPTICAL SENSORS WITH PHASE MODULATION 78 2.6.5.
PERSPECTIVE OF OPTICAL FIBER SENSORS 78 2.7. OPTICAL CHEMICAL SENSORS 78
2.7.1. INTRODUCTION 78 2.7.2. CHEMICAL SENSORS BASED ON THE ABSORBENCY
MEASUREMENT 79 2.7.3. TURBIDITY SENSORS 80 2.8. BIBLIOGRAPHY 81 2.8.1.
BOOKS : : 81 2.8.2. PHYSICAL BACKGROUND - WEBSITES 82 CHAPTER 3. FLOW
SENSORS 83 R. MEYLAERS, F. PEETERS, M. PEETERMANS AND L. INDESTEEGE 3.1.
INTRODUCTION 83 3.1.1. VOLUME FLOW AND MASS FLOW 83 3.1.2. INFLUENCES ON
THE FLOW 85 3.1.3. BERNOULLI EQUATION 86 3.2. FLOW MEASUREMENTS BASED ON
THE PRINCIPLE OF DIFFERENCE IN PRESSURE. . 88 3.2.1. THE PITOT AND
PRANDTL TUBE 89 3.2.1.1. PRINCIPLE 89 3.2.1.2. PRACTICAL SET-UP 91
3.2.1.3. CHARACTERISTICS 93 3.2.2. THE ORIFICE PLATE 93 3.2.2.1.
PRINCIPLE - 93 3.2.2.2. PRACTICAL INSTALLATION 95 3.2.3. THE FLOW NOZZLE
98 3.2.4. THE VENTURI TUBE 99 3.2.5. THE DALL TUBE 99 3.2.6. GENERAL
GUIDELINES FOR A CORRECT READING 100 3.3. FLOW MEASUREMENTS BASED ON
VARIABLE PASSAGE 101 3.3.1. THE FLOAT FLOW METER (ROTAMETER) 101
3.3.1.1. PRINCIPLE 101 3.3.1.2. CHARACTERISTICS 103 3.3.2. TARGET FLOW
METER 103 3.3.2.1. PRINCIPLE .* 103 3.3.2.2. CHARACTERISTICS 104 3.4.
TURBINE FLOW METER 104 3.4.1. PRINCIPLE 104 3.4.2. PRACTICAL
INSTALLATION 106 3.4.3. CHARACTERISTICS 107 3.5. THE MECHANICAL FLOW
METER (POSITIVE DISPLACEMENT) 108 3.5.1. PRINCIPLES. 108 3.5.2.
CHARACTERISTICS 110 VIII MODERN SENSORS HANDBOOK 3.6. MAGNETIC FLOW
METER 110 3.6.1. PRINCIPLE 110 3.6.2. CONSTRUCTION OF THE MEASURING
INSTRUMENT 112 3.6.3. PRACTICAL INSTALLATION 113 3.6.4. CHARACTERISTICS
115 3.7. THE VORTEX FLOW METER 116 3.7.1. PRINCIPLE 116 3.7.2.
CONSTRUCTION OF THE VORTEX FLOW METER 117 3.7.3. PRACTICAL INSTALLATION
120 3.7.4. CHARACTERISTICS 121 3.8. ULTRASONIC FLOW METER 122 3.8.1.
PRINCIPLE 122 3.8.2. PRACTICAL INSTALLATION 125 3.8.3. CHARACTERISTICS
125 3.9. CORIOLIS MASS FLOW METERS 126 3.9.1. PRINCIPLE 126 3.9.2.
APPLICATIONS 128 3.9.3. PRACTICAL INSTALLATION 129 3.9.4.
CHARACTERISTICS 129 3.10. FLOW MEASUREMENTS FOR SOLID SUBSTANCES 129
3.10.1. FLOW MEASUREMENT OF SOLIDS BY MEANS OF AN IMPACT PLATE 130
3.10.2. FLOW MEASUREMENT OF SOLIDS BASED ON THE WEIGHING METHOD. . . .
132 3.10.3. CAPACITIVE FLOW MEASUREMENT OF SOLID SUBSTANCES , . 133
3.10.4. DETECTION OF SOLID SUBSTANCES USING MICROWAVES 134 3.11: FLOW
MEASUREMENT FOR OPEN CHANNELS WITH WEIRS 135 3.12. CHOICE AND COMPARISON
OF FLOW MEASUREMENTS 137 3.13. BIBLIOGRAPHY 137 3.14. WEBSITE
REFERENCES 137 CHAPTER 4. INTELLIGENT SENSORS AND SENSOR NETWORKS 141
JIF I NOVAK 4.1. INTRODUCTION 141 4.2. INTELLIGENT SENSORS 142 4.2.1.
SENSORS AND TRANSDUCERS *. 143 4.2.1.1. VARIABLE VOLTAGE OR CURRENT
SOURCE 143 4.2.1.2. VARIABLE RESISTANCE 143 4.2.1.3. VARIABLE IMPEDANCE
OR MUTUAL IMPEDANCE 144 4.2.1.4. CHARGE GENERATOR 144 4.2.2. SIGNAL
CONDITIONING (SC) 144 4.2.2.1. AMPLIFICATION AND SIGNAL CONVERSION 145
4.2.2.2. SENSOR INSULATION 145 4.2.2.3. FILTRATION 145 TABLE OF CONTENTS
IX 4.2.2.4. DETECTION 145 4.2.2.5. CORRECTION OF NON-LINEARITY 145
4.2.2.6. CORRECTION OF INFLUENCE OF DISTURBING QUANTITIES 146 4.2.2.7.
SENSOR EXCITATION 146 4.2.3. A/D CONVERSION 146 4.2.3.1. SAR CONVERTERS
.- 146 4.2.3.2. SIGMA-DELTA MODULATOR CONVERTERS 147 4.2.3.3. FLASH
(PIPELINED FLASH) CONVERTERS 147 4.2.4. DATA PROCESSING 147 4.2.5.
HUMAN-MACHINE INTERFACE 148 4.2.6. COMMUNICATION INTERFACE 148 4.2.6.1.
IEEE 1451 148 4.2.7. INDUSTRIAL EXAMPLES 149 4.2.7.1. MICRONAS HAL805
HALL SENSOR 149 4.2.7.2. YOKOGAWA DPHARP FAMILY OF PRESSURE SENSORS 150
4.3. SENSOR NETWORKS AND INTERFACES 151 4.3.1. CENTRALIZED AND
DISTRIBUTED INDUSTRIAL SYSTEMS 152 4.3.2. HIERARCHICAL STRUCTURE OF
DISTRIBUTED COMMUNICATION 154 4.3.3. DATA COMMUNICATION BASICS 155
4.3.3.1. OPEN SYSTEMS INTERCONNECTION (OSI) MODEL 155 4.3.3.2. PHYSICAL
LAYER 157 4.3.3.3. DATA LINK LAYER 160 4.3.3.4. NETWORK LAYER 163
4.3.3.5. TRANSPORT LAYER . 164 4.3.3.6. SESSION LAYER 164 4.3.3.7.
PRESENTATION LAYER 164 4.3.3.8. APPLICATION LAYER . . . 164 4.3.3.9.
DATA DISTRIBUTION MODELS 165 4.3.4. SIMPLE SENSOR INTERFACES 166
4.3.4.1. ANALOG INTERFACES 166 4.3.4.2. DIGITAL INTERFACES 167 4.3.5.
SENSOR NETWORKS 171 4.3.5.1. AS-INTERFACE 171 4.3.5.2. CAN (CONTROLLER
AREA NETWORK) AND CANOPEN 173 4.3.5.3. HART (HIGHWAY ADDRESSABLE REMOTE
TRANSDUCER) 180 4.3.5.4. FOUNDATION FIELDBUS (FF) . . 181 4.3.5.5.
INTERBUS 184 4.3.5.6. M-BUS 186 4.3.5.7. PROFIBUS 188 4.3.5.8. OTHER
STANDARDS 190 4.3.6. WIRELESS SENSOR NETWORKS 190 4.3.6.1. IEEE 802.15.4
190 4.3.6.2. ZIGBEE 191 X MODERN SENSORS HANDBOOK 4.3.6.3. IEEE 802.15.4
AND ZIGBEE SUMMARY 192 4.3.6.4. OTHER WIRELESS STANDARDS 192 CHAPTER 5.
ACCELEROMETERS AND INCLINOMETERS 193 ANDRE MIGEON AND ANNE-ELISABETH
LENEL 5.1. INTRODUCTION 193 5.2. ACCELERATION 194 5.2.1. PHYSICAL
QUANTITY 194 5.2.2. APPLICATION TO VELOCITY AND POSITION MEASUREMENTS
198 5.2.3. APPLICATION TO POSITION MEASUREMENTS 199 5.2.4. THE
INCLINOMETERS 200 5.3. APPLICATION RANGES 201 5.3.1. STATIC AND
LOW-FREQUENCY ACCELERATION 201 5.3.2. VIBRATIONS 202 5.3.3. SHOCKS 203
5.3.4. INCLINATION 204 5.4. MAIN MODELS OF ACCELEROMETERS 205 5.4.1.
PIEZOELECTRIC ACCELEROMETERS 206 5.4.1.1. GENERAL PRINCIPLE 208 5.4.1.2.
ACCELEROMETERS WITH COMPRESSION 208 5.4.1.3. SHEAR-MODE ACCELEROMETERS
209 5.4.1.4. FEATURES AND LIMITS OF THESE ACCELEROMETERS 209 5.4.2.
PIEZORESISTIVE ACCELEROMETERS 213 5.4.2.1. GENERAL PRINCIPLE 213
5.4.2.2. SILICON SEMICONDUCTOR STRAIN GAUGES 213 5.4.2.3. FEATURES AND
LIMITS OF THESE ACCELEROMETERS 217 5.4.3. ACCELEROMETERS WITH RESONATORS
219 5.4.3.1. PRINCIPLE 219 5.4.3.2. FEATURES AND LIMITS OF THESE
ACCELEROMETERS 220 5.4.4. CAPACITIVE ACCELEROMETERS 221 5.4.4.1.
PRINCIPLE 221 5.4.4.2. FEATURES AND LIMITS OF THESE ACCELEROMETERS 224
5.4.5. POTENTIOMETRIC ACCELEROMETERS 224 5.4.5.1. PRINCIPLE F 224
5.4.5.2. FEATURES AND LIMITS OF THESE ACCELEROMETERS 225 5.4.6. OPTICAL
DETECTION ACCELEROMETERS 226 5.4.6.1. PRINCIPLE 226 5.4.6.2. FEATURES
AND LIMITS OF THESE ACCELEROMETERS 226 5.4.7. MAGNETIC DETECTION
ACCELEROMETERS 227 5.4.7.1. PRINCIPLE 227 5.4.7.2. FEATURES AND LIMITS
OF THESE ACCELEROMETERS 228 TABLE OF CONTENTS XI 5.4.8. SERVO
ACCELEROMETERS WITH CONTROLLED DISPLACEMENT 229 5.4.8.1. PRINCIPLE 229
5.4.8.2. SERVO ACCELEROMETERS WITH BALANCE OF TORQUE 229 5.4.8.3. SERVO
ACCELEROMETERS WITH BALANCE OF FORCE 230 5.4.8.4. FEATURES AND LIMITS OF
THESE ACCELEROMETERS 231 5.5. THE SIGNAL PROCESSING ASSOCIATED WITH
ACCELEROMETERS 231 5.6. MANUFACTURING PROCESS 232 5.6.1. THE MONOLITHIC
PROCESSES 232 5.6.1.1. CMOS (COMPLEMENTARY MOS) - BICMOS STANDARD
(BIPOLAR TECHNOLOGY AND MOS) 233 5.6.1.2. CMOS-BICMOS STANDARD + BACK
ETCHING 233 5.6.1.3. ABOVE IC 233 5.6.1.4. SPECIFIC PROCESS 234 5.6.2.
HYBRID PROCESS 234 5.6.3. PACKAGING 234 5.7. THE CALIBRATIONS 235 5.7.1.
INCLINOMETERS AND ACCELEROMETERS WITH RANGE LOWER THAN 1 G .... 235
5.7.2. ACCELERATION RANGE HIGHER THAN 1 G 235 5.8. EXAMPLES OF
ACCELEROMETERS AND INCLINOMETERS 236 5.9. LIST OF MANUFACTURERS OF
ACCELEROMETERS 242 5.10. REFERENCES 243 5.11. BIBLIOGRAPHY 244 CHAPTER
6. CHEMICAL SENSORS AND BIOSENSORS 245 GILLIAN MCMAHON 6.1. INTRODUCTION
245 6.2. WHAT IS INVOLVED IN DEVELOPING A SENSOR? 249 6.2.1. MOLECULAR
RECOGNITION 250 6.2.2. IMMOBILIZATION OF HOST MOLECULES 252 6.2.3.
TRANSDUCTION OF SIGNAL 253 6.3. ELECTROCHEMICAL SENSORS 253 6.3.1.
AMPEROMETRIC AND VOLTAMMETRIC SENSORS 254 6.3.1.1. CYCLIC VOLTAMMETRY
256 6.3.1.2. HYDRODYNAMIC AMPEROMETRY 257 6.3.2. POTENTIOMETRIC SENSORS
258 6.3.2.1. ION-SELECTIVE ELECTRODES 259 6.3.2.2. COATED-WIRE
ELECTRODES AND POLYMER-MEMBRANE ELECTRODES . . . 260 6.3.2.3.
POTENTIOMETRIC SENSOR ARRAYS 262 6.3.3. RESISTANCE, CONDUCTANCE AND
IMPEDANCE SENSORS 263 6.4. OPTICAL SENSORS 265 6.4.1. METHODS OF
DETECTION 265 6.4.1.1. EVANESCENT WAVE SENSORS 266 XII MODERN SENSORS
HANDBOOK 6.4.2. REAGENT-MEDIATED SENSORS 268 6.5. ACOUSTIC (MASS)
SENSORS 269 6.5.1. QUARTZ CRYSTAL MICROBALANCE SENSORS 270 6.5.2. SENSOR
ARRAYS 272 6.6. BIOSENSORS 274 6.6.1. AFFINITY BIOSENSORS 275 6.6.1.1.
ELECTROCHEMICAL TRANSDUCTION 275 6.6.1.2. PIEZOELECTRIC TRANSDUCTION 276
6.6.1.3. SPR BIOSENSORS 278 6.6.1.4. PROTEOMICS 283 6.6.1.5. IASYS
BIOSENSOR 283 6.6.1.6. MINIATURE TI-SPR SENSOR 284 6.6.2. CATALYTIC
BIOSENSORS 285 6.6.2.1. ELECTROCHEMICAL TRANSDUCTION 286 6.6.2.2.
CALORIMETRIC TRANSDUCTION 290 6.7. FUTURE TRENDS 290 6.7.1.
MICROANALYTICAL INSTRUMENTS AS SENSORS 291 6.7.1.1. DESIGN
CONSIDERATIONS 292 6.7.1.2. ON-CHIP CHROMATOGRAPHIC AND ELECTROPHORETIC
SEPARATIONS. . . . 294 6.7.2. AUTONOMOUS SENSING DEVICES 298 6.7.3.
SUB-MICRON DIMENSIONED SENSORS 298 6.7.3.1. MICROAMPEROMETRIC SENSORS
298 6.7.3.2. MICROELECTRODES IN BIOLOGICAL SYSTEMS 299 6.8. CONCLUSIONS
301 6.9. REFERENCES 302 CHAPTER 7. LEVEL, POSITION AND DISTANCE 305
STANISLAV DADO AND G. HARTUNG 7.1. INTRODUCTION 305 7.1.1.
CLASSIFICATION OF LPD SENSORS 305 7.2. RESISTIVE LPD SENSORS 306 7.2.1.
POTENTIOMETER 306 7.2.2. ANGULAR POSITION MEASUREMENT 307 7.2.3. DRAW
WIRE SENSORS F 308 7.2.4. INCLINATION DETECTORS 308 7.2.5. APPLICATION
OF POTENTIOMETERS 309 7.3. INDUCTIVE LPD SENSORS 309 7.3.1. LINEAR
VARIABLE DIFFERENTIAL TRANSFORMERS 310 7.3.2. INDUCTOSYNS 311 7.3.3.
RESOLVERS 312 7.3.4. SELSYN. 313 7.3.5. INDUCTIVE SENSORS OF ANGULAR
VELOCITY 313 TABLE OF CONTENTS XIII 7.3.6. EDDY CURRENT DISTANCE SENSORS
314 7.4. MAGNETIC LPD SENSORS 315 7.4.1. MAGNETIC FIELD SENSORS 315
7.4.2. REED SWITCHES 316 7.4.3. HALL SENSORS 316 7.4.4. SEMICONDUCTOR
MAGNETORESISTORS 317 7.4.5. WIEGANDWIRE 318 7.4.6. MAGNETOSTRICTIVE
SENSOR 318 7.5. CAPACITIVE LPD SENSORS 319 7.5.1. INTRODUCTION 319
7.5.2. SIGNAL CONDITIONING CIRCUITS FOR CAPACITIVE SENSORS 320 7.5.3.
USING CAPACITIVE SENSORS 321 7.6. OPTICAL LPD SENSORS 323 7.6.1.
INTRODUCTION 323 7.6.2. PHOTO-ELECTRIC SWITCHES (PES) 323 7.6.3. LPD
SENSORS BASED ON TRIANGULATION 327 7.6.4. OPTICAL ENCODERS 328 7.6.4.1.
INCREMENTAL SENSORS 328 7.6.4.2. ABSOLUTE ENCODERS 329 7.6.4.3. GRAY
CODE 330 7.6.5. INTERFEROMETRY 330 7.6.6. OPTICAL LPD SENSORS BASED ON
TRAVEL TIME (TIME-OF-FLY) MEASUREMENT 331 7.6.7. IMAGE-BASED
MEASUREMENT-MACHINE VISION, VIDEOMETRY 332 7.6.7.1. INTRODUCTION 332
7.6.7.2. LIGHT SHEET METHOD 332 7.7. ULTRASONIC SENSORS * : 333 7.7.1.
INTRODUCTION 333 7.7.2. TRAVEL TIME PRINCIPLE 334 7.7.3. DOPPLEREFFECT
334 7.8. MICROWAVE DISTANCE SENSORS (RADAR) 335 7.8.1. INTRODUCTION 335
7.8.2. MICROWAVE SENSORS BASED ON FMCW 336 7.8.3. PROPERTIES OF
MICROWAVE SENSORS 337 7.9 LEVEL MEASUREMENT F 337 7.9.1. INTRODUCTION
337 7.9.2. DETECTION LIMITS 338 7.9.2.1. CAPACITIVE LEVEL SWITCH 338
7.9.2.2. ULTRASONIC SWITCH 338 7.9.2.3. VIBRATIONAL SWITCH 338 7.9.2.4.
CONDUCTIVE SENSORS 338 7.9.2.5. FLOATING SWITCH 338 7.9.2.6. FIBER
OPTICS LEVEL SWITCHES 339 XIV MODERN SENSORS HANDBOOK 7.9.3. CONTINUOUS
LEVEL MEASUREMENT 339 7.9.3.1. PRINCIPLES OF MEASUREMENT 339 7.9.3.2.
CAPACITIVE SENSORS 339 7.9.3.3. ULTRASONIC SENSORS 341 7.9.3.4.
MICROWAVE SENSORS (RADAR) 342 7.9.3.5. PRESSURE DIFFERENCE (HYDROSTATIC)
SENSORS 342 7.10. CONCLUSIONS AND TRENDS 343 7.11. REFERENCES 343 7.12.
ONLINE REFERENCES. 344 CHAPTER 8. TEMPERATURE SENSORS 347 F. PEETERS, M.
PEETERMANS AND L. INDESTEEGE 8.1. INTRODUCTION 347 8.2. THERMAL
MEASURING TECHNIQUES 348 8.2.1. HEAT AND TEMPERATURE 348 8.2.2. STATIC
AND DYNAMIC READINGS 348 8.2.3. TIME CONSTANT AND RESPONSE TIME 349
8.2.4. THERMAL UNITS 349 8.2.5. THERMAL EQUILIBRIUM 350 8.2.6.
TEMPERATURE MEASURING OPTIONS 354 8.2.7. QUALITY OF A MEASUREMENT 355
8.3. PHYSICAL OR DIRECT TEMPERATURE MEASUREMENT 355 8.3.1. GLASS
THERMOMETER 355 8.3.2. LIQUID FILLED EXPANSION THERMOMETERS 356 8.3.3.
GAS FILLED EXPANSION THERMOMETER OR PRESSURE THERMOMETER DETECTOR 358
8.3.4. VAPOR-PRESSURE SYSTEMS 359 8.3.5. BIMETALLIC THERMOMETER 361 8.4.
THERMOELECTRIC MEASUREMENTS (THERMOCOUPLES) 363 8.4.1. MEASURING
PRINCIPLE: THERMOELECTRICITY 363 8.4.2. THERMOELECTRIC LAWS 364 8.4.3.
PRACTICAL TEMPERATURE MEASUREMENT WITH THERMOCOUPLES 367 8.4.4.
TECHNOLOGICAL REALIZATIONS OF THERMOCOUPLES 371 8.4.5. APPLICATIONS 374
8.4.6. PARALLEL AND SERIES CONNECTIONS OF THERMOCOUPLES 375 8.5.
RESISTANCE TEMPERATURE DETECTORS (RTDS) 377 8.5.1. PRINCIPLE 377 8.5.2.
USED MATERIALS AND CONSTRUCTION 379 8.5.3. APPLICATIONS 380 8.6.
THERMISTORS 382 8.6.1. PRINCIPLE 382 8.6.2. THERMISTOR TECHNOLOGY 383
8.6.3. APPLICATION 384 TABLE OF CONTENTS XV 8.7. MONOLITHIC TEMPERATURE
SENSORS (IC SENSOR) 384 8.8. PYROMETERS 385 8.8.1. INTRODUCTION 385
8.8.2. BASIC PRINCIPLES OF PYROMETRY 386 8.8.3. MEASUREMENT
POSSIBILITIES FOR PYROMETERS 387 8.8.4. IMPLEMENTATION AND CONSTRUCTION
OF PYROMETERS 389 8.9. REFERENCES 391 8.10 BIBLIOGRAPHY 391 CHAPTER 9.
SOLID STATE GYROSCOPES AND NAVIGATION 395 ANDRE MIGEON AND
ANNE-ELISABETH LENEL 9.1. INTRODUCTION 395 9.2. THE ANGULAR RATE . .
396 9.2.1. DEFINITION OF RATE GYRO 399 9.2.1.1. COMPARISON BETWEEN A
GYROSCOPE AND ANGULAR RATE METER (GYROMETER) 399 9.2.2. USE OF RATE
SENSORS 401 9.3. DIFFERENT RANGES OF RATE GYRO 401 9.3.1. CONTROL OF
TRAJECTORY 402 9.3.2. PILOTING AND STABILIZATION . 402 9.3.3. GUIDANCE
402 9.3.4. NAVIGATION 402 9.4. MAIN MODELS OF RATE GYRO 404 9.4.1.
ROTARY GYROMETERS -. 404 9.4.2. VIBRATING GYROMETERS 404 9.4.2.1.
GYROMETERS WITH ELEMENTARY OR COUPLED BARS 406 9.4.2.2. GYROMETERS WITH
A TUNING FORK 409 9.4.2.3. GYROMETERS WITH COPLANAR INTERDIGITATED COMB
FINGERS 411 9.4.2.4. GYROMETERS WITH VIBRATING SHELL AND CYLINDER 414
9.4.2.5. GYROMETERS WITH VIBRATING DISK 417 9.4.2.6. GYROSCOPES WITH
VIBRATING RING 418 9.4.3. OPTICAL GYROMETERS 420 9.4.3.1. RING LASER
GYROMETERS 420 9.4.3.2. FIBER OPTIC GYROMETERS (FOG) 421 9.4.4. OTHER
ORIGINAL PRINCIPLES **. 426 9.5. CALIBRATION OF RATE SENSORS 426 9.6.
GENERAL FEATURES OF THE GYROMETERS 427 9.7. THE MAIN MANUFACTURERS 429
9.8. REFERENCES 430 9.9. BIBLIOGRAPHY 431 XVI MODERN SENSORS HANDBOOK
CHAPTER 10. MAGNETIC SENSORS 433 S. RIPKA AND PAVEL RIPKA 10.1.
INTRODUCTION 433 10.2. HALL SENSORS 434 10.2.1. THE HALL EFFECT , 435
10.2.2. NEW TYPES OF HALL SENSORS 437 10.2.3.1. HIGH MOBILITY INSB HALL
ELEMENTS 437 10.2.3.2. INTEGRATED HALL SENSORS 437 10.3. AMR SENSORS 439
10.3.1. OPERATING PRINCIPLES OF THE AMR EFFECT 439 10.3.1.1. GEOMETRICAL
LINEARIZATION OF THE AMR 441 10.3.2. MEASURING CONFIGURATION OF THE AMR
443 10.3.3. FLIPPING 444 10.3.4. MAGNETIC FEEDBACK , 446 10.4. GMR
SENSORS 447 10.4.1. PHYSICAL MECHANISM 450 10.4.2. SPIN VALVES 450
10.4.3. SANDWICHES AND MULTILAYERS 453 10.4.3.1. TEMPERATURE
CHARACTERISTICS 453 10.4.3.2. CROSS-FIELD ERROR 453 10.4.3.3. UNPINNED
SANDWICH 453 10.4.3.4. GMR MULTILAYER 454 10.4.4. SDT SENSORS - 454
10.4.5. LINEAR GMR SENSORS 454 10.4.5.1. BIPOLAR RESPONSE USING BIASING
COILS 456 10.4.5.2. GMR GRADIOMETER 456 10.4.6. ROTATIONAL GMR SENSORS
456 , 10.5. INDUCTION AND FLUXGATE SENSORS 457 10.5.1. INDUCTION COIL
SENSORS 458 10.5.2. FLUXGATE SENSORS 459 10.5.2.1. CORE SHAPES OF
FLUXGATES 461 10.5.2.2. DOUBLE-ROD SENSORS 461 10.5.2.3. RING-CORE
SENSORS 461 10.5.2.4. RACE-TRACK SENSORS * 461 10.5.2.5. PRINCIPLES OF
FLUXGATE MAGNETOMETERS 462 10.6. OTHER MAGNETIC FIELD SENSORS 463
10.6.1. RESONANCE SENSORS 463 10.6.1.1. MAGNETIC SENSORS BASED ON
ELECTRON SPIN RESONANCE (ESR). . . 464 10.6.1.2. OVERHAUSER
MAGNETOMETERS 465 10.7. MAGNETIC POSITION SENSORS 465 10.7.1. SENSORS
USING PERMANENT MAGNETS 465 10.7.1.1. INDUCTION POSITION SENSORS 465
TABLE OF CONTENTS XVII 10.7.2. EDDY CURRENT SENSORS 466 10.7.3. LINEAR
AND ROTATIONAL TRANSFORMERS 467 10.7.3.1. LINEAR TRANSFORMER SENSORS 467
10.7.3.2. ROTATION TRANSFORMER SENSORS 468 10.7.4. MAGNETOSTRICTIVE
POSITION SENSORS 469 10.7.5. PROXIMITY SWITCHES 469 10.7.5.1. REED
CONTACTS 470 10.7.5.2. WIEGAND SENSORS 470 10.8. CONTACTLESS CURRENT
SENSORS 471 10.8.1. HALL CURRENT SENSORS 472 10.8.2. MAGNETORESISTIVE
CURRENT SENSORS 472 10.8.3. AC AND DC TRANSFORMERS 472 10.8.4. CURRENT
CLAMPS 472 10.9. REFERENCES. 473 CHAPTER 11. NEW TECHNOLOGIES AND
MATERIALS 477 A. TIPEK, P. RIPKA AND E. HULICIUS, WITH CONTRIBUTIONS
FROM A. HOSPODKOVA AND P. NEUZIL 11.1. INTRODUCTION: MEMS 477 11.2.
MATERIALS 480 11.2.1. PASSIVE MATERIALS 480 11.2.2. ACTIVE MATERIALS 481
11.2.3. SILICON 481 11.2.4. OTHER SEMICONDUCTORS 483 11.2.5. PLASTICS
484 11.2.6. METALS _ 486 11.2.7. CERAMICS . . . . / 486 11.2.8. GLASS
486 11.3. SILICON PLANAR IC TECHNOLOGY 487 11.3.1. THE SUBSTRATE:
CRYSTAL GROWTH 488 11.3.2. DIFFUSION AND ION IMPLANTATION 488 11.3.3.
OXIDATION 489 11.3.4. LITHOGRAPHY AND ETCHING 489 11.3.5. DEPOSITION OF
MATERIALS 490 11.3.6. METALLIZATION AND WIRE BONDING T 490 11.3.7.
PASSIVATION AND ENCAPSULATION 491 11.4. DEPOSITION TECHNOLOGIES 491
11.4.1. INTRODUCTION 491 11.4.2. CHEMICAL REACTIONS 492 11.4.3. PHYSICAL
REACTIONS 495 11.4.4. EPITAXIAL TECHNIQUES FOR SEMICONDUCTOR DEVICE
PREPARATION .... 498 XVIII MODERN SENSORS HANDBOOK 11.5. ETCHING
PROCESSES 500 11.5.1. WET ETCHING/MICROMACHINING 501 11.5.2. DRY
ETCHING/MICROMACHINING 502 11.6. 3-D MICROFABRICATION TECHNIQUES 503
11.6.1. LIGA 504 11.6.2. LASER ASSISTED ETCHING (LAE) ..... 504 11.6.3.
PHOTO-FORMING AND STEREO LITHOGRAPHY 505 11.6.4. MICROELECTRODISCHARGING
(MEDM AND WEDG) 506 11.6.5. MICROCHIP FABRICATION 507 11.6.6.
MANUFACTURING USING SCANNING PROBE MICROSCOPES AND ELECTRON MICROSCOPES
508 11.6.7. HANDLING OF MICRO PARTICLES WITH LASER TWEEZERS 508 11.6.8.
ATOMIC MANIPULATION 509 11.7. REFERENCES 510 LIST OF AUTHORS 513 INDEX
515
|
adam_txt |
MODERN SENSORS HANDBOOK EDITED BY PAVEL RIPKA ALOIS TIPEK TABLE OF
CONTENTS CHAPTER 1. PRESSURE SENSORS 1 ANDRE MIGEON AND ANNE-ELISABETH
LENEL 1.1. INTRODUCTION 1 1.2. PRESSURE 2 1.2.1. PRESSURE AS A PHYSICAL
QUANTITY 2 1.2.1.1. STATIC PRESSURE 2 1.2.1.2. UNITS 3 1.2.2. ABSOLUTE,
RELATIVE AND DIFFERENTIAL SENSORS 3 1.2.3. FLUID PHYSICAL PROPERTIES 5
1.2.3.1. LIQUIDS ' 5 1.2.3.2. GASES 5 1.2.3.3. SENSOR PNEUMATIC
CONNECTION INFLUENCE 6 1.3. PRESSURE RANGES ' 6 1.3.1. VACUUM AND
ULTRA-VACUUM 6 1.3.2. MIDDLE RANGE PRESSURE 8 1.3.3. HIGH PRESSURE 10
1.4. MAIN PHYSICAL PRINCIPLES 10 1.4.1. THE SENSING DEVICE 11 1.4.2.
SENSORS WITH ELASTIC ELEMENT 13 1.4.2.1. CONVERSION BY RESISTANCE
VARIATION 13 1.4.2.2. CONVERSION BY CAPACITANCE VARIATION . . F 21
1.4.2.3. CONVERSION BY INDUCTANCE VARIATION 26 1.4.2.4. CONVERSION BY
PIEZOELECTRIC EFFECT 27 1.4.2.5. CONVERSION BY OSCILLATORS 30 1.4.2.6.
OPTICAL CONVERSION 38 1.4.2.7. SERVO CONTROLLED SENSORS WITH BALANCE OF
FORCE 40 1.4.3. VACUUM SENSORS 41 1.4.3.1. IONIZATION PRESSURE SENSORS
41 1.4.3.2. HEATING EFFECT SENSORS 42 VI MODERN SENSORS HANDBOOK 1.5.
CALIBRATION: PRESSURE STANDARDS 43 1.5.1. LOW PRESSURE STANDARD 43
1.5.2. HIGH PRESSURE STANDARD 43 1.6. CHOOSING A PRESSURE SENSOR 45 1.7.
REFERENCES 45 1.8. OTHER PRESSURE SENSOR MANUFACTURERS 46 1.9.
BIBLIOGRAPHY 46 CHAPTER 2. OPTICAL SENSORS 49 STANISLAV DADO AND JAN
FISCHER 2.1. OPTICAL WAVEGUIDES AND FIBERS 49 2.2. LIGHT SOURCES AND
DETECTORS 51 2.2.1. LIGHT SOURCES 51 2.2.1.1. SEMICONDUCTOR SOURCES OF
LIGHT 51 2.2.1.2. LASER DIODES 53 2.2.2. LIGHT DETECTORS 54 2.2.2.1.
PHOTORESISTORS 54 2.2.2.2. PHOTODIODES 54 2.2.2.3. PHOTOTRANSISTOR 57
2.2.2.4. POSITION SENSITIVE PHOTO-DETECTORS (PSD) 57 2.2.2.5. CHARGED
COUPLED DEVICE IMAGE SENSORS 59 2.3. SENSORS OF POSITION AND MOVEMENT 62
2.3.1. POSITION SENSORS USING THE PRINCIPLE OF TRIANGULATION 62 2.3.2.
INCREMENTAL SENSORS OF POSITION OR DISPLACEMENT 63 2.3.2.1. GENERAL
PRINCIPLES 63 2.3.2.2. LINEAR INCREMENTAL ENCODER 63 2.3.2.3. OPTICAL
SENSORS OF DISPLACEMENT WITH ABSOLUTE ENCODING DISK. . 65 2.3.2.4.
SENSORS WITH PSEUDORANDOM CODING 65 2.3.3. PHOTOELECTRIC SWITCHES 66
2.3.3.1. THROUGH BEAM PES 66 2.3.3.2. DIFFUSE REFLECTIVE PES 67 2.3.3.3.
RETRO-REFLECTIVE PES 68 2.3.3.4. PES FOR DETECTION OF COLORS OR COLOR
MARKS 70 2.4. OPTICAL SENSORS OF DIMENSIONS R 71 2.4.1. DIMENSIONAL
GAUGE WITH SCANNED BEAM 71 2.5. OPTICAL SENSORS OF PRESSURE AND FORCE 73
2.5.1. PRESSURE SENSOR USING THE OPTICAL RESONATOR 73 2.6. OPTICAL FIBER
SENSORS 74 2.6.1. INTRODUCTION AND CLASSIFICATION OF SENSORS WITH
OPTICAL FIBERS . 74 2.6.2. OPTICAL FIBER SENSORS WITH AMPLITUDE
MODULATION 75 2.6.3. SENSOR WITH WAVELENGTH MODULATION 77 TABLE OF
CONTENTS VII 2.6.4. OPTICAL SENSORS WITH PHASE MODULATION 78 2.6.5.
PERSPECTIVE OF OPTICAL FIBER SENSORS 78 2.7. OPTICAL CHEMICAL SENSORS 78
2.7.1. INTRODUCTION 78 2.7.2. CHEMICAL SENSORS BASED ON THE ABSORBENCY
MEASUREMENT 79 2.7.3. TURBIDITY SENSORS ' 80 2.8. BIBLIOGRAPHY 81 2.8.1.
BOOKS : : 81 2.8.2. PHYSICAL BACKGROUND - WEBSITES 82 CHAPTER 3. FLOW
SENSORS 83 R. MEYLAERS, F. PEETERS, M. PEETERMANS AND L. INDESTEEGE 3.1.
INTRODUCTION 83 3.1.1. VOLUME FLOW AND MASS FLOW 83 3.1.2. INFLUENCES ON
THE FLOW 85 3.1.3. BERNOULLI EQUATION 86 3.2. FLOW MEASUREMENTS BASED ON
THE PRINCIPLE OF DIFFERENCE IN PRESSURE. . 88 3.2.1. THE PITOT AND
PRANDTL TUBE 89 3.2.1.1. PRINCIPLE 89 3.2.1.2. PRACTICAL SET-UP 91
3.2.1.3. CHARACTERISTICS 93 3.2.2. THE ORIFICE PLATE 93 3.2.2.1.
PRINCIPLE - 93 3.2.2.2. PRACTICAL INSTALLATION 95 3.2.3. THE FLOW NOZZLE
98 3.2.4. THE VENTURI TUBE 99 3.2.5. THE DALL TUBE 99 3.2.6. GENERAL
GUIDELINES FOR A CORRECT READING 100 3.3. FLOW MEASUREMENTS BASED ON
VARIABLE PASSAGE 101 3.3.1. THE FLOAT FLOW METER (ROTAMETER) 101
3.3.1.1. PRINCIPLE 101 3.3.1.2. CHARACTERISTICS 103 3.3.2. TARGET FLOW
METER 103 3.3.2.1. PRINCIPLE .* 103 3.3.2.2. CHARACTERISTICS 104 3.4.
TURBINE FLOW METER 104 3.4.1. PRINCIPLE 104 3.4.2. PRACTICAL
INSTALLATION 106 3.4.3. CHARACTERISTICS 107 3.5. THE MECHANICAL FLOW
METER (POSITIVE DISPLACEMENT) 108 3.5.1. PRINCIPLES. 108 3.5.2.
CHARACTERISTICS 110 VIII MODERN SENSORS HANDBOOK 3.6. MAGNETIC FLOW
METER 110 3.6.1. PRINCIPLE 110 3.6.2. CONSTRUCTION OF THE MEASURING
INSTRUMENT 112 3.6.3. PRACTICAL INSTALLATION 113 3.6.4. CHARACTERISTICS
115 3.7. THE VORTEX FLOW METER 116 3.7.1. PRINCIPLE 116 3.7.2.
CONSTRUCTION OF THE VORTEX FLOW METER 117 3.7.3. PRACTICAL INSTALLATION
120 3.7.4. CHARACTERISTICS 121 3.8. ULTRASONIC FLOW METER 122 3.8.1.
PRINCIPLE 122 3.8.2. PRACTICAL INSTALLATION 125 3.8.3. CHARACTERISTICS
125 3.9. CORIOLIS MASS FLOW METERS 126 3.9.1. PRINCIPLE 126 3.9.2.
APPLICATIONS 128 3.9.3. PRACTICAL INSTALLATION 129 3.9.4.
CHARACTERISTICS 129 3.10. FLOW MEASUREMENTS FOR SOLID SUBSTANCES 129
3.10.1. FLOW MEASUREMENT OF SOLIDS BY MEANS OF AN IMPACT PLATE 130
3.10.2. FLOW MEASUREMENT OF SOLIDS BASED ON THE WEIGHING METHOD. . . .
132 3.10.3. CAPACITIVE FLOW MEASUREMENT OF SOLID SUBSTANCES , . 133
3.10.4. DETECTION OF SOLID SUBSTANCES USING MICROWAVES 134 3.11: FLOW
MEASUREMENT FOR OPEN CHANNELS WITH WEIRS 135 3.12. CHOICE AND COMPARISON
OF FLOW MEASUREMENTS 137 3.13. BIBLIOGRAPHY ' 137 3.14. WEBSITE
REFERENCES 137 CHAPTER 4. INTELLIGENT SENSORS AND SENSOR NETWORKS 141
JIF I NOVAK 4.1. INTRODUCTION 141 4.2. INTELLIGENT SENSORS 142 4.2.1.
SENSORS AND TRANSDUCERS *. 143 4.2.1.1. VARIABLE VOLTAGE OR CURRENT
SOURCE 143 4.2.1.2. VARIABLE RESISTANCE 143 4.2.1.3. VARIABLE IMPEDANCE
OR MUTUAL IMPEDANCE 144 4.2.1.4. CHARGE GENERATOR 144 4.2.2. SIGNAL
CONDITIONING (SC) 144 4.2.2.1. AMPLIFICATION AND SIGNAL CONVERSION 145
4.2.2.2. SENSOR INSULATION 145 4.2.2.3. FILTRATION 145 TABLE OF CONTENTS
IX 4.2.2.4. DETECTION 145 4.2.2.5. CORRECTION OF NON-LINEARITY 145
4.2.2.6. CORRECTION OF INFLUENCE OF DISTURBING QUANTITIES 146 4.2.2.7.
SENSOR EXCITATION 146 4.2.3. A/D CONVERSION 146 4.2.3.1. SAR CONVERTERS
.- 146 4.2.3.2. SIGMA-DELTA MODULATOR CONVERTERS 147 4.2.3.3. FLASH
(PIPELINED FLASH) CONVERTERS 147 4.2.4. DATA PROCESSING 147 4.2.5.
HUMAN-MACHINE INTERFACE 148 4.2.6. COMMUNICATION INTERFACE 148 4.2.6.1.
IEEE 1451 148 4.2.7. INDUSTRIAL EXAMPLES 149 4.2.7.1. MICRONAS HAL805
HALL SENSOR 149 4.2.7.2. YOKOGAWA DPHARP FAMILY OF PRESSURE SENSORS 150
4.3. SENSOR NETWORKS AND INTERFACES 151 4.3.1. CENTRALIZED AND
DISTRIBUTED INDUSTRIAL SYSTEMS 152 4.3.2. HIERARCHICAL STRUCTURE OF
DISTRIBUTED COMMUNICATION 154 4.3.3. DATA COMMUNICATION BASICS 155
4.3.3.1. OPEN SYSTEMS INTERCONNECTION (OSI) MODEL 155 4.3.3.2. PHYSICAL
LAYER 157 4.3.3.3. DATA LINK LAYER 160 4.3.3.4. NETWORK LAYER 163
4.3.3.5. TRANSPORT LAYER '. 164 4.3.3.6. SESSION LAYER 164 4.3.3.7.
PRESENTATION LAYER 164 4.3.3.8. APPLICATION LAYER . . .' ' 164 4.3.3.9.
DATA DISTRIBUTION MODELS 165 4.3.4. SIMPLE SENSOR INTERFACES 166
4.3.4.1. ANALOG INTERFACES 166 4.3.4.2. DIGITAL INTERFACES 167 4.3.5.
SENSOR NETWORKS 171 4.3.5.1. AS-INTERFACE 171 4.3.5.2. CAN (CONTROLLER
AREA NETWORK) AND CANOPEN 173 4.3.5.3. HART (HIGHWAY ADDRESSABLE REMOTE
TRANSDUCER) 180 4.3.5.4. FOUNDATION FIELDBUS (FF) '. . 181 4.3.5.5.
INTERBUS 184 4.3.5.6. M-BUS 186 4.3.5.7. PROFIBUS 188 4.3.5.8. OTHER
STANDARDS 190 4.3.6. WIRELESS SENSOR NETWORKS 190 4.3.6.1. IEEE 802.15.4
190 4.3.6.2. ZIGBEE 191 X MODERN SENSORS HANDBOOK 4.3.6.3. IEEE 802.15.4
AND ZIGBEE SUMMARY 192 4.3.6.4. OTHER WIRELESS STANDARDS 192 CHAPTER 5.
ACCELEROMETERS AND INCLINOMETERS 193 ANDRE MIGEON AND ANNE-ELISABETH
LENEL 5.1. INTRODUCTION 193 5.2. ACCELERATION 194 5.2.1. PHYSICAL
QUANTITY 194 5.2.2. APPLICATION TO VELOCITY AND POSITION MEASUREMENTS
198 5.2.3. APPLICATION TO POSITION MEASUREMENTS 199 5.2.4. THE
INCLINOMETERS 200 5.3. APPLICATION RANGES 201 5.3.1. STATIC AND
LOW-FREQUENCY ACCELERATION 201 5.3.2. VIBRATIONS 202 5.3.3. SHOCKS 203
5.3.4. INCLINATION 204 5.4. MAIN MODELS OF ACCELEROMETERS 205 5.4.1.
PIEZOELECTRIC ACCELEROMETERS 206 5.4.1.1. GENERAL PRINCIPLE 208 5.4.1.2.
ACCELEROMETERS WITH COMPRESSION 208 5.4.1.3. SHEAR-MODE ACCELEROMETERS
209 5.4.1.4. FEATURES AND LIMITS OF THESE ACCELEROMETERS 209 5.4.2.
PIEZORESISTIVE ACCELEROMETERS 213 5.4.2.1. GENERAL PRINCIPLE 213
5.4.2.2. SILICON SEMICONDUCTOR STRAIN GAUGES 213 5.4.2.3. FEATURES AND
LIMITS'OF THESE ACCELEROMETERS 217 5.4.3. ACCELEROMETERS WITH RESONATORS
219 5.4.3.1. PRINCIPLE 219 5.4.3.2. FEATURES AND LIMITS OF THESE
ACCELEROMETERS 220 5.4.4. CAPACITIVE ACCELEROMETERS 221 5.4.4.1.
PRINCIPLE 221 5.4.4.2. FEATURES AND LIMITS OF THESE ACCELEROMETERS 224
5.4.5. POTENTIOMETRIC ACCELEROMETERS 224 5.4.5.1. PRINCIPLE F 224
5.4.5.2. FEATURES AND LIMITS OF THESE ACCELEROMETERS 225 5.4.6. OPTICAL
DETECTION ACCELEROMETERS 226 5.4.6.1. PRINCIPLE 226 5.4.6.2. FEATURES
AND LIMITS OF THESE ACCELEROMETERS 226 5.4.7. MAGNETIC DETECTION
ACCELEROMETERS 227 5.4.7.1. PRINCIPLE 227 5.4.7.2. FEATURES AND LIMITS
OF THESE ACCELEROMETERS 228 TABLE OF CONTENTS XI 5.4.8. SERVO
ACCELEROMETERS WITH CONTROLLED DISPLACEMENT 229 5.4.8.1. PRINCIPLE 229
5.4.8.2. SERVO ACCELEROMETERS WITH BALANCE OF TORQUE 229 5.4.8.3. SERVO
ACCELEROMETERS WITH BALANCE OF FORCE 230 5.4.8.4. FEATURES AND LIMITS OF
THESE ACCELEROMETERS 231 5.5. THE SIGNAL PROCESSING ASSOCIATED WITH
ACCELEROMETERS 231 5.6. MANUFACTURING PROCESS 232 5.6.1. THE MONOLITHIC
PROCESSES 232 5.6.1.1. CMOS (COMPLEMENTARY MOS) - BICMOS STANDARD
(BIPOLAR TECHNOLOGY AND MOS) 233 5.6.1.2. CMOS-BICMOS STANDARD + BACK
ETCHING 233 5.6.1.3. ABOVE IC 233 5.6.1.4. SPECIFIC PROCESS 234 5.6.2.
HYBRID PROCESS 234 5.6.3. PACKAGING 234 5.7. THE CALIBRATIONS 235 5.7.1.
INCLINOMETERS AND ACCELEROMETERS WITH RANGE LOWER THAN 1 G . 235
5.7.2. ACCELERATION RANGE HIGHER THAN 1 G 235 5.8. EXAMPLES OF
ACCELEROMETERS AND INCLINOMETERS 236 5.9. LIST OF MANUFACTURERS OF
ACCELEROMETERS 242 5.10. REFERENCES 243 5.11. BIBLIOGRAPHY 244 CHAPTER
6. CHEMICAL SENSORS AND BIOSENSORS 245 GILLIAN MCMAHON 6.1. INTRODUCTION
245 6.2. WHAT IS INVOLVED IN DEVELOPING A SENSOR? 249 6.2.1. MOLECULAR
RECOGNITION 250 6.2.2. IMMOBILIZATION OF HOST MOLECULES 252 6.2.3.
TRANSDUCTION OF SIGNAL 253 6.3. ELECTROCHEMICAL SENSORS 253 6.3.1.
AMPEROMETRIC AND VOLTAMMETRIC SENSORS 254 6.3.1.1. CYCLIC VOLTAMMETRY
256 6.3.1.2. HYDRODYNAMIC AMPEROMETRY 257 6.3.2. POTENTIOMETRIC SENSORS
258 6.3.2.1. ION-SELECTIVE ELECTRODES 259 6.3.2.2. COATED-WIRE
ELECTRODES AND POLYMER-MEMBRANE ELECTRODES . . . 260 6.3.2.3.
POTENTIOMETRIC SENSOR ARRAYS 262 6.3.3. RESISTANCE, CONDUCTANCE AND
IMPEDANCE SENSORS 263 6.4. OPTICAL SENSORS 265 6.4.1. METHODS OF
DETECTION 265 6.4.1.1. EVANESCENT WAVE SENSORS 266 XII MODERN SENSORS
HANDBOOK 6.4.2. REAGENT-MEDIATED SENSORS 268 6.5. ACOUSTIC (MASS)
SENSORS 269 6.5.1. QUARTZ CRYSTAL MICROBALANCE SENSORS 270 6.5.2. SENSOR
ARRAYS 272 6.6. BIOSENSORS 274 6.6.1. AFFINITY BIOSENSORS 275 6.6.1.1.
ELECTROCHEMICAL TRANSDUCTION 275 6.6.1.2. PIEZOELECTRIC TRANSDUCTION 276
6.6.1.3. SPR BIOSENSORS 278 6.6.1.4. PROTEOMICS 283 6.6.1.5. IASYS
BIOSENSOR 283 6.6.1.6. MINIATURE TI-SPR SENSOR 284 6.6.2. CATALYTIC
BIOSENSORS 285 6.6.2.1. ELECTROCHEMICAL TRANSDUCTION 286 6.6.2.2.
CALORIMETRIC TRANSDUCTION 290 6.7. FUTURE TRENDS 290 6.7.1.
MICROANALYTICAL INSTRUMENTS AS SENSORS 291 6.7.1.1. DESIGN
CONSIDERATIONS 292 6.7.1.2. ON-CHIP CHROMATOGRAPHIC AND ELECTROPHORETIC
SEPARATIONS. . . . 294 6.7.2. AUTONOMOUS SENSING DEVICES 298 6.7.3.
SUB-MICRON DIMENSIONED SENSORS 298 6.7.3.1. MICROAMPEROMETRIC SENSORS
298 6.7.3.2. MICROELECTRODES IN BIOLOGICAL SYSTEMS 299 6.8. CONCLUSIONS
301 6.9. REFERENCES 302 CHAPTER 7. LEVEL, POSITION AND DISTANCE 305
STANISLAV DADO AND G. HARTUNG 7.1. INTRODUCTION 305 7.1.1.
CLASSIFICATION OF LPD SENSORS 305 7.2. RESISTIVE LPD SENSORS 306 7.2.1.
POTENTIOMETER 306 7.2.2. ANGULAR POSITION MEASUREMENT 307 7.2.3. DRAW
WIRE SENSORS F" 308 7.2.4. INCLINATION DETECTORS 308 7.2.5. APPLICATION
OF POTENTIOMETERS 309 7.3. INDUCTIVE LPD SENSORS 309 7.3.1. LINEAR
VARIABLE DIFFERENTIAL TRANSFORMERS 310 7.3.2. INDUCTOSYNS 311 7.3.3.
RESOLVERS 312 7.3.4. SELSYN. 313 7.3.5. INDUCTIVE SENSORS OF ANGULAR
VELOCITY 313 TABLE OF CONTENTS XIII 7.3.6. EDDY CURRENT DISTANCE SENSORS
314 7.4. MAGNETIC LPD SENSORS 315 7.4.1. MAGNETIC FIELD SENSORS 315
7.4.2. REED SWITCHES 316 7.4.3. HALL SENSORS 316 7.4.4. SEMICONDUCTOR
MAGNETORESISTORS 317 7.4.5. WIEGANDWIRE 318 7.4.6. MAGNETOSTRICTIVE
SENSOR 318 7.5. CAPACITIVE LPD SENSORS 319 7.5.1. INTRODUCTION 319
7.5.2. SIGNAL CONDITIONING CIRCUITS FOR CAPACITIVE SENSORS 320 7.5.3.
USING CAPACITIVE SENSORS 321 7.6. OPTICAL LPD SENSORS 323 7.6.1.
INTRODUCTION 323 7.6.2. PHOTO-ELECTRIC SWITCHES (PES) 323 7.6.3. LPD
SENSORS BASED ON TRIANGULATION 327 7.6.4. OPTICAL ENCODERS 328 7.6.4.1.
INCREMENTAL SENSORS 328 7.6.4.2. ABSOLUTE ENCODERS 329 7.6.4.3. GRAY
CODE 330 7.6.5. INTERFEROMETRY 330 7.6.6. OPTICAL LPD SENSORS BASED ON
TRAVEL TIME (TIME-OF-FLY) MEASUREMENT 331 7.6.7. IMAGE-BASED
MEASUREMENT-MACHINE VISION, VIDEOMETRY 332 7.6.7.1. INTRODUCTION 332
7.6.7.2. LIGHT SHEET METHOD 332 7.7. ULTRASONIC SENSORS * : 333 7.7.1.
INTRODUCTION 333 7.7.2. TRAVEL TIME PRINCIPLE 334 7.7.3. DOPPLEREFFECT
334 7.8. MICROWAVE DISTANCE SENSORS (RADAR) 335 7.8.1. INTRODUCTION 335
7.8.2. MICROWAVE SENSORS BASED ON FMCW 336 7.8.3. PROPERTIES OF
MICROWAVE SENSORS 337 7.9 LEVEL MEASUREMENT F 337 7.9.1. INTRODUCTION
337 7.9.2. DETECTION LIMITS 338 7.9.2.1. CAPACITIVE LEVEL SWITCH 338
7.9.2.2. ULTRASONIC SWITCH 338 7.9.2.3. VIBRATIONAL SWITCH 338 7.9.2.4.
CONDUCTIVE SENSORS 338 7.9.2.5. FLOATING SWITCH 338 7.9.2.6. FIBER
OPTICS LEVEL SWITCHES 339 XIV MODERN SENSORS HANDBOOK 7.9.3. CONTINUOUS
LEVEL MEASUREMENT 339 7.9.3.1. PRINCIPLES OF MEASUREMENT 339 7.9.3.2.
CAPACITIVE SENSORS 339 7.9.3.3. ULTRASONIC SENSORS 341 7.9.3.4.
MICROWAVE SENSORS (RADAR) 342 7.9.3.5. PRESSURE DIFFERENCE (HYDROSTATIC)
SENSORS 342 7.10. CONCLUSIONS AND TRENDS 343 7.11. REFERENCES 343 7.12.
ONLINE REFERENCES. 344 CHAPTER 8. TEMPERATURE SENSORS 347 F. PEETERS, M.
PEETERMANS AND L. INDESTEEGE 8.1. INTRODUCTION 347 8.2. THERMAL
MEASURING TECHNIQUES 348 8.2.1. HEAT AND TEMPERATURE 348 8.2.2. STATIC
AND DYNAMIC READINGS 348 8.2.3. TIME CONSTANT AND RESPONSE TIME 349
8.2.4. THERMAL UNITS 349 8.2.5. THERMAL EQUILIBRIUM 350 8.2.6.
TEMPERATURE MEASURING OPTIONS 354 8.2.7. QUALITY OF A MEASUREMENT 355
8.3. PHYSICAL OR DIRECT TEMPERATURE MEASUREMENT 355 8.3.1. GLASS
THERMOMETER " 355 8.3.2. LIQUID FILLED EXPANSION THERMOMETERS 356 8.3.3.
GAS FILLED EXPANSION THERMOMETER OR PRESSURE THERMOMETER DETECTOR 358
8.3.4. VAPOR-PRESSURE SYSTEMS 359 8.3.5. BIMETALLIC THERMOMETER 361 8.4.
THERMOELECTRIC MEASUREMENTS (THERMOCOUPLES) 363 8.4.1. MEASURING
PRINCIPLE: THERMOELECTRICITY 363 8.4.2. THERMOELECTRIC LAWS 364 8.4.3.
PRACTICAL TEMPERATURE MEASUREMENT WITH THERMOCOUPLES 367 8.4.4.
TECHNOLOGICAL REALIZATIONS OF THERMOCOUPLES 371 8.4.5. APPLICATIONS 374
8.4.6. PARALLEL AND SERIES CONNECTIONS OF THERMOCOUPLES 375 8.5.
RESISTANCE TEMPERATURE DETECTORS (RTDS) 377 8.5.1. PRINCIPLE 377 8.5.2.
USED MATERIALS AND CONSTRUCTION 379 8.5.3. APPLICATIONS 380 8.6.
THERMISTORS 382 8.6.1. PRINCIPLE 382 8.6.2. THERMISTOR TECHNOLOGY 383
8.6.3. APPLICATION 384 TABLE OF CONTENTS XV 8.7. MONOLITHIC TEMPERATURE
SENSORS (IC SENSOR) 384 8.8. PYROMETERS 385 8.8.1. INTRODUCTION 385
8.8.2. BASIC PRINCIPLES OF PYROMETRY 386 8.8.3. MEASUREMENT
POSSIBILITIES FOR PYROMETERS 387 8.8.4. IMPLEMENTATION AND CONSTRUCTION
OF PYROMETERS 389 8.9. REFERENCES 391 8.10 BIBLIOGRAPHY 391 CHAPTER 9.
SOLID STATE GYROSCOPES AND NAVIGATION 395 ANDRE MIGEON AND
ANNE-ELISABETH LENEL 9.1. INTRODUCTION 395 9.2. THE ANGULAR RATE '.'.
396 9.2.1. DEFINITION OF RATE GYRO 399 9.2.1.1. COMPARISON BETWEEN A
GYROSCOPE AND ANGULAR RATE METER (GYROMETER) 399 9.2.2. USE OF RATE
SENSORS 401 9.3. DIFFERENT RANGES OF RATE GYRO 401 9.3.1. CONTROL OF
TRAJECTORY 402 9.3.2. PILOTING AND STABILIZATION . 402 9.3.3. GUIDANCE
402 9.3.4. NAVIGATION 402 9.4. MAIN MODELS OF RATE GYRO 404 9.4.1.
ROTARY GYROMETERS -. 404 9.4.2. VIBRATING GYROMETERS 404 9.4.2.1.
GYROMETERS WITH ELEMENTARY OR COUPLED BARS 406 9.4.2.2. GYROMETERS WITH
A TUNING FORK 409 9.4.2.3. GYROMETERS WITH COPLANAR INTERDIGITATED COMB
FINGERS 411 9.4.2.4. GYROMETERS WITH VIBRATING SHELL AND CYLINDER 414
9.4.2.5. GYROMETERS WITH VIBRATING DISK 417 9.4.2.6. GYROSCOPES WITH
VIBRATING RING 418 9.4.3. OPTICAL GYROMETERS 420 9.4.3.1. RING LASER
GYROMETERS 420 9.4.3.2. FIBER OPTIC GYROMETERS (FOG) 421 9.4.4. OTHER
ORIGINAL PRINCIPLES **. 426 9.5. CALIBRATION OF RATE SENSORS 426 9.6.
GENERAL FEATURES OF THE GYROMETERS 427 9.7. THE MAIN MANUFACTURERS 429
9.8. REFERENCES 430 9.9. BIBLIOGRAPHY 431 XVI MODERN SENSORS HANDBOOK
CHAPTER 10. MAGNETIC SENSORS 433 S. RIPKA AND PAVEL RIPKA 10.1.
INTRODUCTION 433 10.2. HALL SENSORS 434 10.2.1. THE HALL EFFECT , 435
10.2.2. NEW TYPES OF HALL SENSORS 437 10.2.3.1. HIGH MOBILITY INSB HALL
ELEMENTS 437 10.2.3.2. INTEGRATED HALL SENSORS 437 10.3. AMR SENSORS 439
10.3.1. OPERATING PRINCIPLES OF THE AMR EFFECT 439 10.3.1.1. GEOMETRICAL
LINEARIZATION OF THE AMR 441 10.3.2. MEASURING CONFIGURATION OF THE AMR
443 10.3.3. FLIPPING 444 10.3.4. MAGNETIC FEEDBACK , 446 10.4. GMR
SENSORS 447 10.4.1. PHYSICAL MECHANISM 450 10.4.2. SPIN VALVES 450
10.4.3. SANDWICHES AND MULTILAYERS 453 10.4.3.1. TEMPERATURE
CHARACTERISTICS 453 10.4.3.2. CROSS-FIELD ERROR 453 10.4.3.3. UNPINNED
SANDWICH 453 10.4.3.4. GMR MULTILAYER 454 10.4.4. SDT SENSORS - 454
10.4.5. LINEAR GMR SENSORS 454 10.4.5.1. BIPOLAR RESPONSE USING BIASING
COILS 456 10.4.5.2. GMR GRADIOMETER 456 10.4.6. ROTATIONAL GMR SENSORS
456 , 10.5. INDUCTION AND FLUXGATE SENSORS 457 10.5.1. INDUCTION COIL
SENSORS 458 10.5.2. FLUXGATE SENSORS 459 10.5.2.1. CORE SHAPES OF
FLUXGATES 461 10.5.2.2. DOUBLE-ROD SENSORS 461 10.5.2.3. RING-CORE
SENSORS 461 10.5.2.4. RACE-TRACK SENSORS * 461 10.5.2.5. PRINCIPLES OF
FLUXGATE MAGNETOMETERS 462 10.6. OTHER MAGNETIC FIELD SENSORS 463
10.6.1. RESONANCE SENSORS 463 10.6.1.1. MAGNETIC SENSORS BASED ON
ELECTRON SPIN RESONANCE (ESR). . . 464 10.6.1.2. OVERHAUSER
MAGNETOMETERS 465 10.7. MAGNETIC POSITION SENSORS 465 10.7.1. SENSORS"
USING PERMANENT MAGNETS 465 10.7.1.1. INDUCTION POSITION SENSORS 465
TABLE OF CONTENTS XVII 10.7.2. EDDY CURRENT SENSORS 466 10.7.3. LINEAR
AND ROTATIONAL TRANSFORMERS 467 10.7.3.1. LINEAR TRANSFORMER SENSORS 467
10.7.3.2. ROTATION TRANSFORMER SENSORS 468 10.7.4. MAGNETOSTRICTIVE
POSITION SENSORS 469 10.7.5. PROXIMITY SWITCHES 469 10.7.5.1. REED
CONTACTS 470 10.7.5.2. WIEGAND SENSORS 470 10.8. CONTACTLESS CURRENT
SENSORS 471 10.8.1. HALL CURRENT SENSORS 472 10.8.2. MAGNETORESISTIVE
CURRENT SENSORS 472 10.8.3. AC AND DC TRANSFORMERS 472 10.8.4. CURRENT
CLAMPS 472 10.9. REFERENCES. 473 CHAPTER 11. NEW TECHNOLOGIES AND
MATERIALS 477 A. TIPEK, P. RIPKA AND E. HULICIUS, WITH CONTRIBUTIONS
FROM A. HOSPODKOVA AND P. NEUZIL 11.1. INTRODUCTION: MEMS 477 11.2.
MATERIALS 480 11.2.1. PASSIVE MATERIALS 480 11.2.2. ACTIVE MATERIALS 481
11.2.3. SILICON 481 11.2.4. OTHER SEMICONDUCTORS 483 11.2.5. PLASTICS
484 11.2.6. METALS _ 486 11.2.7. CERAMICS '. . . . / 486 11.2.8. GLASS
486 11.3. SILICON PLANAR IC TECHNOLOGY 487 11.3.1. THE SUBSTRATE:
CRYSTAL GROWTH 488 11.3.2. DIFFUSION AND ION IMPLANTATION 488 11.3.3.
OXIDATION 489 11.3.4. LITHOGRAPHY AND ETCHING 489 11.3.5. DEPOSITION OF
MATERIALS 490 11.3.6. METALLIZATION AND WIRE BONDING T 490 11.3.7.
PASSIVATION AND ENCAPSULATION 491 11.4. DEPOSITION TECHNOLOGIES 491
11.4.1. INTRODUCTION 491 11.4.2. CHEMICAL REACTIONS 492 11.4.3. PHYSICAL
REACTIONS 495 11.4.4. EPITAXIAL TECHNIQUES FOR SEMICONDUCTOR DEVICE
PREPARATION . 498 XVIII MODERN SENSORS HANDBOOK 11.5. ETCHING
PROCESSES 500 11.5.1. WET ETCHING/MICROMACHINING 501 11.5.2. DRY
ETCHING/MICROMACHINING 502 11.6. 3-D MICROFABRICATION TECHNIQUES 503
11.6.1. LIGA 504 11.6.2. LASER ASSISTED ETCHING (LAE) .' 504 11.6.3.
PHOTO-FORMING AND STEREO LITHOGRAPHY 505 11.6.4. MICROELECTRODISCHARGING
(MEDM AND WEDG) 506 11.6.5. MICROCHIP FABRICATION 507 11.6.6.
MANUFACTURING USING SCANNING PROBE MICROSCOPES AND ELECTRON MICROSCOPES
508 11.6.7. HANDLING OF MICRO PARTICLES WITH LASER TWEEZERS 508 11.6.8.
ATOMIC MANIPULATION 509 11.7. REFERENCES 510 LIST OF AUTHORS 513 INDEX
515 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022576735 |
callnumber-first | T - Technology |
callnumber-label | TA165 |
callnumber-raw | TA165 |
callnumber-search | TA165 |
callnumber-sort | TA 3165 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZQ 3120 |
ctrlnum | (OCoLC)176909923 (DE-599)BVBBV022576735 |
dewey-full | 681/.2 681.2 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681/.2 681.2 |
dewey-search | 681/.2 681.2 |
dewey-sort | 3681 12 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Handwerk und Gewerbe / Verschiedene Technologien Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01615nam a2200457zc 4500</leader><controlfield tag="001">BV022576735</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071112 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070813s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2007003344</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781905209668</subfield><subfield code="9">978-1-905209-66-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)176909923</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022576735</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA165</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681/.2</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3120</subfield><subfield code="0">(DE-625)158040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modern sensors handbook</subfield><subfield code="c">ed. by Pavel Ripka ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London</subfield><subfield code="b">ISTE</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 518 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Instrumentation and measurement series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield><subfield code="v">Handbooks, manuals, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ripka, Pavel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip079/2007003344.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015782992</subfield></datafield></record></collection> |
id | DE-604.BV022576735 |
illustrated | Illustrated |
index_date | 2024-07-02T18:15:17Z |
indexdate | 2024-07-09T21:00:46Z |
institution | BVB |
isbn | 9781905209668 |
language | English |
lccn | 2007003344 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015782992 |
oclc_num | 176909923 |
open_access_boolean | |
owner | DE-703 |
owner_facet | DE-703 |
physical | XVIII, 518 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | ISTE |
record_format | marc |
series2 | Instrumentation and measurement series |
spelling | Modern sensors handbook ed. by Pavel Ripka ... 1. publ. London ISTE 2007 XVIII, 518 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Instrumentation and measurement series Detectors Handbooks, manuals, etc Sensortechnik (DE-588)4121663-5 gnd rswk-swf Sensor (DE-588)4038824-4 gnd rswk-swf Sensor (DE-588)4038824-4 s DE-604 Sensortechnik (DE-588)4121663-5 s Ripka, Pavel Sonstige oth http://www.loc.gov/catdir/toc/ecip079/2007003344.html Table of contents only HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Modern sensors handbook Detectors Handbooks, manuals, etc Sensortechnik (DE-588)4121663-5 gnd Sensor (DE-588)4038824-4 gnd |
subject_GND | (DE-588)4121663-5 (DE-588)4038824-4 |
title | Modern sensors handbook |
title_auth | Modern sensors handbook |
title_exact_search | Modern sensors handbook |
title_exact_search_txtP | Modern sensors handbook |
title_full | Modern sensors handbook ed. by Pavel Ripka ... |
title_fullStr | Modern sensors handbook ed. by Pavel Ripka ... |
title_full_unstemmed | Modern sensors handbook ed. by Pavel Ripka ... |
title_short | Modern sensors handbook |
title_sort | modern sensors handbook |
topic | Detectors Handbooks, manuals, etc Sensortechnik (DE-588)4121663-5 gnd Sensor (DE-588)4038824-4 gnd |
topic_facet | Detectors Handbooks, manuals, etc Sensortechnik Sensor |
url | http://www.loc.gov/catdir/toc/ecip079/2007003344.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015782992&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ripkapavel modernsensorshandbook |