Mid-infrared semiconductor optoelectronics: with 443 figures
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
London [u.a.]
Springer
2006
|
Schriftenreihe: | Springer series in optical sciences
118 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 751 S. Ill., graph. Darst. |
ISBN: | 184628208X 9781846282089 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022543385 | ||
003 | DE-604 | ||
005 | 20120806 | ||
007 | t | ||
008 | 070803s2006 ad|| |||| 00||| eng d | ||
020 | |a 184628208X |9 1-84628-208-X | ||
020 | |a 9781846282089 |9 978-1-84628-208-9 | ||
035 | |a (OCoLC)634886825 | ||
035 | |a (DE-599)BVBBV022543385 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-83 |a DE-11 |a DE-703 | ||
084 | |a UH 5100 |0 (DE-625)145654: |2 rvk | ||
084 | |a UH 5500 |0 (DE-625)145663: |2 rvk | ||
245 | 1 | 0 | |a Mid-infrared semiconductor optoelectronics |b with 443 figures |c A. Krier (ed.) |
264 | 1 | |a London [u.a.] |b Springer |c 2006 | |
300 | |a XVIII, 751 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Springer series in optical sciences |v 118 | |
650 | 0 | 7 | |a Halbleiter |0 (DE-588)4022993-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optoelektronik |0 (DE-588)4043687-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Infrarot |0 (DE-588)4161686-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Infrarot |0 (DE-588)4161686-8 |D s |
689 | 0 | 1 | |a Halbleiter |0 (DE-588)4022993-2 |D s |
689 | 0 | 2 | |a Optoelektronik |0 (DE-588)4043687-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Krier, Anthony |e Sonstige |4 oth | |
830 | 0 | |a Springer series in optical sciences |v 118 |w (DE-604)BV000000237 |9 118 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015749792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015749792 |
Datensatz im Suchindex
_version_ | 1804136657941692416 |
---|---|
adam_text | A. KRIER (ED.) MID-INFRARED SEMICONDUCTOR OPTOELECTRONICS WITH 443
FIGURES SPRINGER CONTENTS PART I MATERIALS AND DEVICE DESIGN
CONSIDERATIONS THEORY OF MID-WAVELENGTH INFRARED LASER ACTIVE REGIONS:
INTRINSIC PROPERTIES AND DESIGN STRATEGIES J.T. OLESBERG ANDM.E. FLATTE
3 1 CHALLENGES AND OPPORTUNITIES IN MWIR LASER ACTIVE REGION DESIGN 3
1.1 INTRINSIC MATERIAL PROPERTIES DOMINATE DEVICE PERFORMANCE 4 1.2
OPPORTUNITIES PROVIDED BY HETEROSTRUCTURE DESIGN 5 2 METRICS FOR
MATERIAL COMPARISON AND DEVICE DESIGN 6 2.1 SINGLE-STAGE ACTIVE REGIONS
8 2.1.1 THRESHOLDFIGUREOFMERITFORBULKGAAS 12 2.2 CHOICE OF ACTIVE REGION
THICKNESS 14 2.2.1 OPTIMAL THICKNESS OF BULK GAAS 14 2.3 MAXIMIZING THE
SLOPE EFFICIENCY 16 2.3.1 MAXIMISING EFFICIENCY FOR A SPECIFIC OPTICAL
POWER 16 2.4 CASCADED ACTIVE REGIONS 17 3 BAND-EDGE OPTIMIZATION OF
ACTIVE REGION MATERIALS 21 3.1 DENSITY OF STATES IMBALANCE 21 3.2 THE
EFFECTS OF DENSITY OF STATES IMBALANCE 25 3.3 REDUCING DENSITY OF STATES
IMBALANCE USING STRAIN 30 3.4 REDUCING DENSITY OF STATES IMBALANCE USING
QUANTUM CONFINEMENT 30 3.5 DEVELOPMENT OF 2-3 (IM GALNASSB DIODES 32 3.6
OPTIMIZING BAND EDGE PROPERTIES USING INAS/GASB/ALSB MATERIALS 40 4
FINAL STATE OPTIMIZATION OF ACTIVE REGION MATERIALS 47 4.1 SUPPRESSION
OF INTERSUBBAND ABSORPTION 48 4.2 SUPPRESSION OF AUGER RECOMBINATION 50
5 CAVITY-INTEGRATED ACTIVE REGION DESIGN FOR OPTIMAL LASER PERFORMANCE
53 5.1 OPTIMIZATION OF THE ACTIVE REGION 53 5.2 TRANSPORT AND OPTICAL
CLADDING 56 6 CALCULATING THE ELECTRONIC AND OPTICAL PROPERTIES OF
SEMICONDUCTORS 59 6.1 ELECTRONIC STRUCTURE AND MOMENTUM MATRIX ELEMENTS
59 6.1.1 K.P METHODS FOR BULK MATERIALS 61 6.1.2 K.P METHODS FOR
HETEROSTRUCTURES 63 6.1.3 INFLUENCE OF INTERFACE BONDS 68 VIII CONTENTS
6.2 COMPARISON WITH EXPERIMENT 70 6.2.1 NON-EQUILIBRIUM ABSORPTION 70
6.2.2 AUGER RECOMBINATION 73 7 CONCLUDING REMARKS 75 APPENDIX.
DERIVATION OF EXPRESSIONS FOR THE ELECTRONIC AND OPTICAL PROPERTIES OF
SEMICONDUCTORS 76 AI DENSITY OF STATES 77 A2 OPTICAL PROPERTIES 77 A3
CARRIER RECOMBINATION RATES 80 A4 CARRIER MOBILITIES 82 REFERENCES 84
BANDSTRUCTURE AND HIGH-PRESSURE MEASUREMENTS B.N. MURDIN, A.R. ADAMS
ANDS.J. SWEENEY 93 1 BANDSTRUCTURE CALCULATION BY THE K.P METHOD 93 1.1
BULK BANDSTRUCTURE 94 1.1.1 ZINC-BLENDE CRYSTALS 96 1.1.2 LEAD-SALTS 99
1.2 QUANTUM WELL STRUCTURES 101 1.3 TEMPERATURE DEPENDENCE OF THE
BANDSTRUCTURE 103 1.4 HYDROSTATIC PRESSURE AND STRAINED LAYER QUANTUM
WELLS 103 2 TRANSITION RATES 105 2.1 INTERBAND OPTICAL TRANSITION RATES
106 2.2 AUGER RECOMBINATION 106 2.3 AUGER RATES IN BULK ZINC BLENDE
MATERIALS 109 2.4 AUGER SUPPRESSION IN BULK MATERIALS: PB-SALTS 110 2.5
AUGER SUPPRESSION IN BULK MATERIALS: DILUTE III-V NITRIDES 111 2.6 AUGER
SUPPRESSION IN QUANTUM WELLS 112 3 HIGH PRESSURE 114 3.1 NEAR-INFRARED
APPLICATIONS 114 3.1.1 RADIATIVE RECOMBINATION 114 3.1.2 NON-RADIATIVE
RECOMBINATION 118 3.2 DETERMINATION OF MID-IR MATERIAL PRESSURE
COEFFICIENTS 120 3.3 INTERBAND MID-IR DEVICES 121 3.3.1 INASLEDS 121
3.3.2 COMPARISON OF NEAR-IR AND 2.37 UM INGAASSB LASERS 122 4 CONCLUSION
125 REFERENCES 126 PART II LASERS IH-SB-BASED TYPE-I QW DIODE LASERS M.
RATTUNDE, J. SCHMITZ, C. MERMELSTEIN, R. KIEFER AND J. WAGNER 131 1
INTRODUCTION 131 2 III-SB-BASED MATERIAL SYSTEM 132 2.1 ALGAASSB 132
CONTENTS IX 2.2 STRAINED GALNASSB LAYERS 132 2.3 LASER STRUCTURE 134 3
FABRICATION OF (ALGAIN)(ASSB)-BASED DIODE LASERS 136 3.1 GROWTH 136 3.2
EPITAXIAL LAYER CHARACTERIZATION 137 3.3 DEVICE PROCESSING 139 4 GAIN
AND LOSS MECHANISMS IN III-SB-BASED LASERS EMITTING AT AROUND2 UM 140
4.1 OPTICAL GAIN AND ELECTRIC LOSS IN THE QW ACTIVE REGION 140 4.2
OPTICAL LOSSES IN THE LASER STRUCTURE 143 5 HIGH-POWER PERFORMANCE OF 2
UM III-SB-BASED DIODE LASERS 146 6 LONG-WAVELENGTH III-SB-BASED TYPE-I
QW LASERS 150 7 OUTLOOK 151 ACKNOWLEDGMENTS 153 REFERENCES 153 VCSELS
EMITTING IN THE 2 - 3 PM WAVELENGTH RANGE F. GENTY, A. GARNACHE ANDL.
CERUTTI 159 1 INTRODUCTION 159 2 A SHORT DESCRIPTION OF VERTICAL-CAVITY
LASERS 160 2.1 CONVENTIONAL MICROCAVITY VCSELS 160 2.2 EXTERNAL-CAVITY
VCSELS (VECSELS) 163 2.2.1 STRUCTURE DESCRIPTION 163 2.2.2 GEOMETRICAL
STABILITY OF A CONCAVE/PLANE LASER CAVITY 165 3 VCSELS EMITTING IN THE
2-3 UM RANGE 168 3.1 CDHGTE-BASED STRUCTURES - CEA, GRENOBLE (FRANCE)
169 3.2 INP-BASED STRUCTURES - WALTER SCHOTTKY INSTITUTE, UNIVERSITY OF
MUNICH, GARCHING (GERMANY) 171 3.3 GASB-BASED STRUCTURES I - NAVAL
RESEARCH LABORATORY/ HUGHES RESEARCH LABORATORY (USA) 173 3.4 GASB-BASED
STRUCTURES II - UNIVERSITY OF MONTPELLIER 2 (FRANCE) 176 3.4.1
ELECTRICALLY-PUMPED MICROCAVITY VCSEL EMITTING NEAR 2.2 UM 176 3.4.2
OPTICALLY-PUMPED GASB-BASED VCSEL STRUCTURES 177 4 CONCLUSION 184
ACKNOWLEDGMENTS 185 REFERENCES 185 ANTIMONIDE TYPE-II W LASERS I.
VURGAFIMAN, W.W. BEWLEY, C.L. CANEDY, CS. KIM, J. R. LINDLE, M. KIM, AND
J.R.MEYER 18 9 1 INTRODUCTION 189 2 ADVANCES IN THE MBE GROWTH OF W
LASER STRUCTURES 191 3 OPTICALLY PUMPED W LASERS 196 4 SINGLE-STAGE
W DIODE LASERS 199 5 INTERBAND CASCADE W LASERS 201 6 W VCSELS AND
PCDFB LASERS 203 7 CRITICAL ISSUES IN IMPROVING THE PERFORMANCE OF W
LASERS 208 X CONTENTS 8 CONCLUSIONS 212 REFERENCES 213 INTERFACE LASERS
WITH ASYMMETRIE BAND OFFSET CONFINEMENT K.D. MOISEEV AND Y.P. YAKOVLEV
219 1 INTRODUCTION 219 2 THE 2D-ELECTRON CHANNEL IN A TYPE II BROKEN-GAP
P-GALNASSB/P-INAS HETEROINTERFACE 220 3 INTERFACE LUMINESCENCE
PROPERTIES OF THE TYPE II BROKEN-GAP SINGLE P-GALNASSB/P-INAS
HETEROJUNCTION 220 3.1 INTERFACE EL IN A SINGLE P-GALNASSB/P-INAS
HETEROJUNCTION 220 3.2 TUNNELLING-INJECTION LASER BASED ON THE TYPE II
P-GAINO.I 7 ASSB/P-IN 0 .83GAASSB HETEROJUNCTION 224 3.3 SUPPRESSION OF
AUGER-RECOMBINATION PROCESSES AT THE TYPE II HETEROINTERFACE 226 4
INTERFACE LASER WITH IMPROVED TEMPERATURE DEPENDENCE 228 4.1
ELECTROLUMINESCENCE IN A SINGLE P^GAFIIO. / *TASSB/N-INFL.GJGAASSB
HETEROSTRUCTURE 228 4.2 ADVANCED TUNNEL-INJECTION HETEROSTRUCTURE LASER
230 4.3 PROSPECTS FOR HIGH-TEMPERATURE LUMINESCENCE IN TYPE II
BROKEN-GAP HETEROJUNCTIONS 233 5 CONCLUSIONS 235 REFERENCES 235 IV-VI
SEMICONDUCTORS FOR MID-INFRARED OPTOELECTRONIC DEVICES P.J.MCCANN 237 1
INTRODUCTION 237 2 SPECTROSCOPY WITH IV-VI SEMICONDUCTOR LASERS 237 3
IV-VI SEMICONDUCTOR GROWTH AND CHARACTERIZATION 241 3.1 IV-VI LAYERS ON
BAF 2 242 3.2 IV-VI LAYERS ON SILICON 245 4 SELF-HEATING EFFECTS IN
IV-VI MID-IR LASERS 248 5 ELECTROPHONON RESONANCE IN PBSE QWS 249 6
PROGRESS IN LASER FABRICATION USING SUBSTRATE REMOVAL 254 7 SUMMARY 259
ACKNOWLEDGEMENTS 260 REFERENCES 260 MID-INFRARED VERTICAL CAVITY SURFACE
EMITTING LASERS BASED ON THE LEAD SALT COMPOUNDS G. SPRINGHOLZ, T.
SCHWARZL AND W. HEISS 265 1 INTRODUCTION 265 2 VERTICAL SURFACE EMITTING
LASERS 266 3 LEAD SALT-BASED BRAGG INTERFERENCE MIRRORS 268 3.1 MIRROR
MATERIALS 268 3.2 EXAMPLES AND RESULTS 270 4 LEAD SALT VERTICAL CAVITY
SURFACE EMITTING LASERS 272 4.1 DESIGN ISSUES AND RESONATOR STRUCTURE
272 CONTENTS XI 4.2 PBTE/EUTE QUANTUM WELL VCSELS 274 4.2.1 STRUCTURE
AND OPTICAL CHARACTERIZATION 274 4.2.2 THRESHOLD AND LASER EMISSION 275
4.2.3 TEMPERATURE DEPENDENCE OF EMISSION 276 4.3 ROOM TEMPERATURE PBTE
QW VCSELS 277 4.4 PBSE/PBSRSE VCSELS 280 5 SELF-ASSEMBLED INFRARED
QUANTUM DOT LASERS 281 5.1 SELF-ASSEMBLED PBSE QUANTUM DOTS 281 5.2
QUANTUM DOT VCSELS: GROWTH AND CHARACTERIZATION 284 5.3 QUANTUM DOT
LASER EMISSION 286 6 LEAD SALT VCSELS WITH DIFFERENT ACTIVE REGIONS 288
6.1 VCSEL STRUCTURES AND OPTICAL PROPERTIES 288 6.2 LASER EMISSION 289
6.2.1 BULK-LIKE PBTE VCSEL 289 6.2.2 PBTE/PBEUTE QUANTUM WELL VCSEL 291
6.2.3 LASING PROPERTIES OF THE QUANTUM DOT VCSEL 292 6.2.4 TUNING
PROPERTIES 292 7 CW-VCSELS EMITTING AT 6-8 UM 293 7.1 STRUCTURE AND
OPTICAL PROPERTIES 293 7.2 LASER EMISSION 294 8 CONCLUSIONS 298
ACKNOWLEDGEMENTS 298 REFERENCES 299 OPTICALLY PUMPED MIR LASERS R.
KASPI, G.C. DENTE ANDA.P. ONGSTAD 303 1 INTRODUCTION 303 2 OPTICALLY
PUMPED LASER DESIGN 303 2.1 GUIDELINES FOR OPTICAL PUMPING AND THE
MIR-OPSL 303 2.2 TYPE-II QUANTUM WELLS 306 2.3 DIELECTRIC WAVEGUIDE
DESIGN FOR THE MIR-OPSL 309 2.3.1 CONNECTION BETWEEN CONFMEMENT FACTOR
AND BEAM QUALITY 309 2.3.2 GHOST MODES IN THE MIR-OPSL 313 3 LASER
CHARACTERISTICS 315 3.1 SPECTRAL POWER AND LOSS MEASUREMENTS 315 3.2
BEAM QUALITY 319 4 CONCLUSION 321 REFERENCES 321 MID-INFRARED QUANTUM
CASCADE LASERS J. COCKBURN 323 1 INTRODUCTION 323 1.1 GENERAL QCL
CONCEPTS AND CURRENT STATUS 323 2 QCL ACTIVE REGION DESIGN 326 2.1
INTERSUBBAND POPULATION INVERSION 327 2.2 TWO-WELL AND THREE-WELL ACTIVE
REGIONS 328 2.3 DOUBLE PHONON RESONANCE ACTIVE REGION 330 XII CONTENTS
2.4 BOUND TO CONTINUUM ACTIVE REGION 330 2.5 COMPARISON OF INP-BASED AND
GAAS-BASED QCLS 333 3 QUANTUM CASCADE LASERS FOR 3-5UM OPERATION 336 3.1
STRAIN COMPENSATED INGAAS-ALINAS-INP 338 3.2 INGAAS-ALASSB-INP 340 3.3
INAS-ALSB 344 4 QUANTUM CASCADE LASERS GROWN BY METAL-ORGANIC VAPOUR
PHASE EPITAXY.... 347 5 CONCLUSIONS 351 ACKNOWLEDGEMENTS 351 REFERENCES
351 PART III LEDS AND DETECTORS MID-INFRARED ELECTROLUMINESCENCE IN LEDS
BASED ON INAS AND RELATED AUOYS A. KRIER, X.L. HUANG AND V. V. SHERSTNEV
359 1 INTRODUCTION 359 1.1 BACKGROUND 360 2 LIMITATIONS TO LED
PERFORMANCE 362 2.1 INTERNAL QUANTUM EFFICIENCY 362 2.2 PURIFICATION
USING RARE EARTH GETTERING AND PB NEUTRAL SOLVENT EPITAXY 363 2.3
PURIFICATION OF EPITAXIAL INAS USING GD GETTERING 364 2.4 FABRICATION OF
INASSB LEDS AT 4.6UM 366 2.5 INAS LEDS FOR METHANE DETECTION AT 3.3UM
368 2.6 NEUTRAL SOLVENT EPITAXY 370 3 HIGH-PRESSURE MEASUREMENTS 374 4
OPTICAL EXTRACTION 377 5 COMPARISON OF DEVICES 379 6 INASSB QUANTUM DOT
LIGHT EMITTING DIODES GROWN BY LIQUID PHASE EPITAXY 381 7
SUPERLUMINESCENCE AND RING LASERS 386 8 CONCLUSION 389 ACKNOWLEDGEMENTS
390 REFERENCES 390 LED-PHOTODIODE OPTO-PAIRS B.A. MATVEEV 395 1
INTRODUCTION 395 2 DEVICE CONFIGURATION AND FABRICATION 396 2.1
SUBSTRATE AND BUFFER LAYERS 397 2.2 ACTIVE LAYER PROPERTIES 400 2.2.1
LAYER DOPING 400 2.2.2 LAYER THICKNESS 401 2.2.3 ACTIVE LAYER MESA
DIAMETER 402 2.3 CONTACTS 403 3 CHOICE OF THE OPERATING MODE 408
CONTENTS XIII 4 OUT-COUPLING OF RADIATION IN MID-IR DEVICES 415 5 THE
USE OF DIODE OPTO-PAIRS FOR CHEMICAL SENSING 419 6 SUMMARY 424
ACKNOWLEDGEMENTS 424 REFERENCES 425 QWIP DETECTORS FOR THE MWIR S.
HAYWOOD, K.T. LAI ANDM. MISSOUS 429 1 INTRODUCTION 429 1.1 QWIPS VS
INTERBAND DETECTORS 429 2 MWIR TRANSITIONS IN QWS 431 2.1 SQUARE QW
STRUCTURES 431 2.1.1 (IN)GAAS/ALGAAS ON GAAS 432 2.1.2 INGAAS/ALINAS ON
INP 433 2.2 DOUBLE-BARRIER QWS 433 2.2.1 DBQWS ON GAAS SUBSTRATES 434
2.2.2 DBQWS ON INP SUBSTRATES 435 3 STRAIN-BALANCED QWIPS FOR
HIGH-TEMPERATURE OPERATION 436 3.1 MATERIALS GROWTH AND CHARACTERISATION
436 3.2 STOICHIOMETRIC GROWTH CONDITIONS 437 3.3 STRUCTURAL AND
ELECTRICAL PROPERTIES 438 3.4 MODELLING THE INTERSUBBAND TRANSITIONS 441
3.5 MEASURED TRANSITIONS 442 3.6 PREDICTED TEMPERATURE PERFORMANCE 443 4
ENHANCED DETECTOR PERFORMANCE AND FUNCTIONALITY 444 4.1 ASYMMETRIE WELLS
445 4.1.1 NORMAL INCIDENCE ABSORPTION 445 4.1.2 VOLTAGE TUNING VIA THE
STARK EFFECT 445 4.2 PHOTOVOLTAIC OPERATION 446 4.3 HIGH-SPEED OPERATION
447 5 CONCLUSIONS 447 ACKNOWLEDGEMENTS 448 REFERENCES 448 NEGATIVE
LUMINESCENCE T. ASHLEY AND G.R. NASH 453 1 INTRODUCTION 453 2 NEGATIVE
LUMINESCENT PARAMETERS 455 2.1 KEY PARAMETERS 455 2.2 OPTICAL
CONCENTRATORS 456 3 THE MAGNETOCONCENTRATION EFFECT 458 3.1 PRINCIPLE OF
OPERATION 458 3.2 INDIUM ANTIMONIDE AND CADMIUM MERCURY TELLURIDE
DEVICES 459 3.3 OTHER MATERIAL SYSTEMS 461 3.4 CONCLUSIONS 462 4
PHOTODIODES 462 4.1 PRINCIPLE OF OPERATION 462 4.2 INDIUM ANTIMONIDE
DEVICES 464 XIV CONTENTS 4.3 CADMIUM MERCURY TELLURIDE DEVICES 467 4.4
OTHER DEVICE STRUCTURES AND MATERIAL SYSTEMS 471 4.5 CONCLUSIONS 472 5
APPLICATIONS OF NEGATIVE LUMINESCENCE 473 5.1 IR SOURCES FOR GAS SENSING
473 5.1.1 TEMPERATURE STABILISATION 474 5.1.2 EFFICIENT LONG WAVELENGTH
IR SOURCES 474 5.2 DYNAMIC INFRARED SCENE PROJECTION 476 5.3 RADIATIVE
COOLING 477 5.4 UNCOOLED IR RADIATION SHIELDS FOR BLIP IR DETECTORS 478
5.5 RADIOMETRIE REFERENCE PLANES FOR THERMAL IMAGERS 479 5.5.1 DC
RESTORATION IN SCANNED THERMAL IMAGERS 479 5.5.2 NON-UNIFORMITY
CORRECTION IN STARING ARRAYS 481 5.6 CAMOUFLAGE 482 6 SUMMARY 482
REFERENCES 483 MID-INFRARED QUANTUM DOT PHOTODETECTORS P. BHATTACHARYA,
A. D. STIFF-ROBERTS ANDS. CHAKRABARTI 487 1 INTRODUCTION 487 1.1 QUANTUM
DOT PHOTODETECTORS IN THE MID-INFRARED 487 1.2 COMPARISON OF HGCDTE
PHOTODIODES AND INAS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS 490 2
INFRARED DETECTION WITH QUANTUM DOTS 491 2.1 BOUND-STATE ENERGY LEVELS
IN QDS 492 2.2 DENSITY OF STATES AND CARRIER DISTRIBUTION IN QDS 494 2.3
INTRABAND ABSORPTION IN QDS 495 2.4 PHONON BOTTLENECK AND EFFECTIVE
CARRIER LIFETIME IN QDS 497 3 SELF-ASSEMBLY OF QUANTUM DOTS BY THE
STRANSKI-KRASTANOW GROWTH MODE 498 4 CHARACTERIZATION OF MID-INFRARED
QUANTUM DOT PHOTODETECTORS 500 4.1 QDIP HETEROSTRUCTURE DESIGNS 500 4.2
DARKCURRENT 501 4.3 MID-INFRARED SPECTRAL RESPONSE IN QDIPS 502 4.4
STATE-OF-THE-ART PERFORMANCE IN MIR QDIPS AT HIGH OPERATING TEMPERATURES
503 5 CONCLUSIONS 506 APPENDIX. INFRARED PHOTODETECTOR FIGURES OF MERIT
507 AI PHOTOCURRENT 507 A2 DARKCURRENT 507 A3 NOISECURRENT 507 A4
NORMALIZED SPECTRAL RESPONSE AND PEAK RESPONSIVITY 508 A5 PEAK SPECIFIC
DETECTIVITY 508 A6 PHOTOCONDUCTIVE GAIN AND QUANTUM EFFICIENCY 509
ACKNOWLEDGEMENTS 510 REFERENCES 510 CONTENTS XV QUANTUM PHOTOVOLTAIC
DEVICES BASED ON ANTIMONY COMPOUND SEMICONDUCTORS Y. WEI, A. GIN AND M.
RAZEGHI 515 1 INTRODUCTION 515 2 THEORETICAL MODELING 516 2.1 THE
TYPE-II INAS/GASB SUPERLATTICE 516 2.2 NANOPILLAR STRUCTURES 521 3
MATERIAL GROWTH AND CHARACTERIZATION 526 4 PHOTODIODES WITH CUT-OFF
WAVELENGTH ~8 UM 531 5 TYPE II FOCAL PLANE ARRAYS ; 533 6 NANOPILLAR
FABRICATION 535 6.1 ELECTRON BEAM LITHOGRAPHY 535 6.2 NANOPILLAR DEVICE
FABRICATION PROCESS 535 6.3 NANOPILLARS IN GASB MATERIAL 537 6.4
NANOPILLARS IN INAS/GASB SUPERLATTICE MATERIAL 538 6.5 REACTIVE ION
ETCHING USING BCL 3 :AR AND CH 4 :H 2 :AR 538 6.6 REACTIVE ION ETCHING
USING CYCLIC CH 4 :H 2 :AR / 0 2 539 6.7 DEVICE FABRICATION 540 6.7.1
POLYIMIDE PLANARIZATION 540 6.7.2 POLYIMIDE ETCHBACK 540 6.7.3 TOP
CONTACT DEPOSITION 541 6.7.4 DARK CURRENT MEASUREMENTS 542 7 CONCLUSION
543 ACKNOWLEDGEMENT 543 APPENDIX. SUPERLATTICE HAMILTONIAN MATRIX 543
REFERENCES 545 HIGH-SPEED AVALANCHE PHOTODIODES FOR THE 2-5 UM SPECTRAL
RANGE M.P. MIKHAILOVA ANDI.A.ANDREEV 547 1 INTRODUCTION 547 2 IMPACT
LONIZATION IN III-V SEMICONDUCTORS 548 2.1 INTERBAND LONIZATION IN
SEMICONDUCTORS 548 2.2 THRESHOLD ENERGY OF IMPACT LONIZATION 549 2.3 THE
DEPENDENCE OF THE LONIZATION COEFFICIENTS ON THE ELECTRIC FIELD 551 2.4
TWO-VALLEY MODEL 552 2.5 INTER-RELATIONSHIP BETWEEN MULTIPLICATION
COEFFICIENTS AND LONIZATION COEFFICIENTS OF ELECTRONS AND HOLES 553 2.6
NOISE AND RESPONSE SPEED OF APDS 554 3 LONIZATION COEFFICIENTS IN III-V
SEMICONDUCTORS AND THEIR ALLOYS 557 3.1 ELECTRON IMPACT LONIZATION 557
3.1.1 ANISOTROPY OF LONIZATION COEFFICIENTS IN MULTI-VALLEY
SEMICONDUCTORS OF GAAS, INP TYPE 557 3.1.2 ANISOTROPY OF LONIZATION
COEFFICIENTS IN MULTI-VALLEY SEMICONDUCTORS OF GASB AND THEIR ALLOYS 558
3.2 ELECTRON IMPACT LONIZATION IN SEMICONDUCTORS OF INAS, INSB TYPE 560
3.3 HOLE IMPACT LONIZATION 561 3.4 HOLE IMPACT LONIZATION IN
SEMICONDUCTORS WITH BAND GAP RESONANCE , E G =A(INAS, GASB) 562 4
AVALANCHE PHOTODIODES FOR THE 2-2.5 UM SPECTRAL RANGE 564 XVI CONTENTS
4.1 EXPERIMENTAL IONIZATION COEFFICIENTS IN SOLID SOLUTIONS BASEDON GASB
565 4.1.1 IONIZATION COEFFICIENTS IN GASB, GAALSB AND GAALASSB 565 4.1.2
EXPERIMENTAL IONIZATION COEFFICIENTS IN GALNASSB 567 4.2 DARK CURRENT IN
APDS WITH A RESONANT GAAL(AS)SB COMPOSITION 570 4.3 GALNASSB/GAALASSB
AVALANCE PHOTODIODE WITH SEPARATE ABSORPTION AND MULTIPLICATION REGION
(SAM APD) 572 4.4 NOISE AND RESPONSE SPEED OF GALNASSB/GAALASSB APDS 576
5 AVALANCHE PHOTODIODES FOR THE 3-5 UM SPECTRAL RANGE 581 5.1
EXPERIMENTAL INVESTIGATION OF IONIZATION COEFFICIENTS IN INAS, INGAAS
AND INASSB 582 5.2 NOISE AND RESPONSE SPEED OF LONG WAVELENGTH APDS 585
6 METHODS OF SEPARATING IONIZATION COEFFICIENTS USING QUANTUM STRUCTURES
586 7 CONCLUSION 588 REFERENCES 589 PART IV APPLICATIONS INFRARED
METHODS FOR GAS DETECTION J.G. CROWDER, S.D. SMITH, A. VASS ANDJ. KEDDIE
595 1 INTRODUCTION 595 2 GAS ABSORPTION SPECTRA 595 3 METHODS OF GAS
DETECTION 597 4 INFRARED SOURCES FOR GAS DETECTION 598 4.1 THERMAL
SOURCES 599 4.2 SEMICONDUCTOR SOURCES 600 5 INFRARED DETECTORS FOR GAS
DETECTION 601 5.1 OPTICAL IMMERSION 602 6 DESIGN OF OPTICAL AND GAS
SAMPLING SYSTEMS 604 6.1 A NON-IMAGING GAS SENSOR WITH THERMAL SOURCE
AND DETECTOR 606 6.2 A LONG-PATH, IMAGING GAS SENSOR WITH SEMICONDUCTOR
SOURCE AND DETECTOR 608 7 LASER TECHNIQUES 609 8 CONCLUSIONS 610
REFERENCES 610 MID-INFRARED BIOMEDICAL APPLICATIONS I.K. ILEV AND R.W.
WAYNANT 615 1 INTRODUCTION 615 2 MID-IR BIOPHOTONICS 616 2.1
BIOPHOTONICS 616 2.2 FUNDAMENTALS OF MID-IR BIOPHOTONICS APPLICATIONS
617 2.3 MID-IR BIOPHOTONICS DELIVERY SYSTEMS 619 2.3.1 BASIC MID-IR
BIOPHOTONICS DELIVERY SYSTEM 619 2.3.2 MID-IR BIOMEDICAL LASERS 620
2.3.3 MID-IR INCOHERENT LIGHT SOURCES 621 CONTENTS XVII 2.3.4 MID-IR
BIO-MEDICAL DELIVERY FIBERS 622 2.3.5 ALL-HOLLOW-WAVEGUIDE MID-IR LASER
DELIVERY SYSTEM 624 3 MID-IR BIO-PHOTONICS APPLICATIONS 625 3.1 MID-IR
LASER SURGERY AND TISSUE ABLATION 625 3.2 MID-IR BIOIMAGING 627 3.3
MID-IR SPECTROSCOPY AND BIOSENSORS IN BIOMEDICINE 628 3.3.1 NON-INVASIVE
BLOOD GLUCOSE MONITORING 628 3.3.2 BREATH ANALYSIS FOR MEDICAL
APPLICATIONS 629 3.3.3 SUMMARY OF MID-IR SPECTROSCOPY AND BIOSENSORS 630
4 CONCLUSION 631 REFERENCES 631 DEVELOPMENT OF INFRARED COUNTERMEASURE
TECHNOLOGY AND SYSTEMS D.H. TITTERTON 635 1 INTRODUCTION 635 2
HISTORICAL DEVELOPMENT 637 3 PROPAGATION AND ATMOSPHERIC WINDOWS 639 3.1
HUMIDITY 640 3.2 HAZE, FOG, CLOUD AND RAIN 641 3.3 TURBULENCE 641 3.4
EXTINCTION 643 3.5 THERMAL BLOOMING 643 3.6 IONISATION 643 3.7 WAKES AND
PLUMES 644 3.8 AERO-OPTICAL EFFECTS 644 4 DEFEAT MECHANISMS 645 4.1
DENIAL 645 4.1.1 SMOKES AND OBSCURANTS 646 4.1.2 PYROTECHNIC SMOKE 647
4.1.3 RAPID-BLOOM OBSCURANT 647 4.1.4 LARGE-AREA SMOKE SCREENING SYSTEMS
647 4.2 DECEPTION 647 4.2.1 EXPENDABLES (FLARES) 649 4.2.2 ON-BOARD
TECHNIQUES (JAMMERS) 651 4.3 DAZZLE 653 4.4 DAMAGE 654 4.4.1 IN-BAND
DAMAGE ROUTE 655 4.4.2 OUT-OF-BAND DAMAGE 657 4.5 DESTRUCTION 659 5 THE
EVOLUTION OF IR-JAMMER SYSTEMS 661 5.1 INCOHERENT IR SOURCES 662 5.2 ARE
LAMPS 664 5.3 COHERENT SOURCES 666 5.4 DIRCM SYSTEMS 667 6
CHARACTERISTICS OF LASER-BASED JAMMERS 669 7 FUTURE DEVELOPMENTS OF
LASER-BASED SYSTEMS 670 REFERENCES 671 XVIII CONTENTS SURVEY OF
THERMOPHOTOVOLTAIC (TPV) DEVICES M.G.MAUK 673 1 INTRODUCTION AND
OVERVIEW 673 2 TPV LITERATURE AND OTHER SOURCES OF INFORMATION 679 3
BASIC OPERATION OF TPV CELLS 680 4 TPV SYSTEM THERMODYNAMIC LIMITS AND
MODELING 684 5 TPV CELL MODELING 689 5.1 TPV DEVICE STMCTURE AND
DELINEATION 690 5.2 MINORITY CARRIER RECOMBINATION AND LIMITS TO
OPEN-CIRCUIT VOLTAGE 692 6 SURVEY OF TPV MATERIALS AND DEVICES 697 6.1
SILICON, GERMANIUM, AND SI-GE ALLOY TPV CELLS 697 6.2 GASB TPV CELLS 699
6.3 TPV CELLS BASED ON BULK III-V ALLOY TERNARY CRYSTALS 701 6.4 INGAAS
AND INASP/INP TPV CELLS AND MIMS 703 6.5 LOW-BANDGAP ( 0.5 EV) INAS AND
INASSBP TPV CELLS 706 6.6 TPV CELLS BASED ON OTHER SEMICONDUCTORS 710
6.7 QUANTUM WELL TPV CELLS 710 6.8 ISOLATION FOR SERIES INTERCONNECTION,
INTEGRATED REFLECTORS, AND WAFER-BONDING FOR TPV CELLS 713 6.9 TANDEM
TPV CELLS 714 6.10 MICRON-GAP TPV CELLS 717 6.11 SPECTRAL CONTROL,
MICROSTRUCTURED EMITTERS, FILTERS AND PHOTONIC CRYSTALS 720 6.12
THERMOPHOTONICS 720 7 CONCLUDING REMARKS AND OUTLOOK FOR TPV TECHNOLOGY
721 APPENDIX. MODELING OF INGAASSB TPV CELLS 723 AI MATERIALS PROPERTIES
723 A2 TPV DEVICE MODEL 728 REFERENCES 731 INDEX 739
|
adam_txt |
A. KRIER (ED.) MID-INFRARED SEMICONDUCTOR OPTOELECTRONICS WITH 443
FIGURES SPRINGER CONTENTS PART I MATERIALS AND DEVICE DESIGN
CONSIDERATIONS THEORY OF MID-WAVELENGTH INFRARED LASER ACTIVE REGIONS:
INTRINSIC PROPERTIES AND DESIGN STRATEGIES J.T. OLESBERG ANDM.E. FLATTE
3 1 CHALLENGES AND OPPORTUNITIES IN MWIR LASER ACTIVE REGION DESIGN 3
1.1 INTRINSIC MATERIAL PROPERTIES DOMINATE DEVICE PERFORMANCE 4 1.2
OPPORTUNITIES PROVIDED BY HETEROSTRUCTURE DESIGN 5 2 METRICS FOR
MATERIAL COMPARISON AND DEVICE DESIGN 6 2.1 SINGLE-STAGE ACTIVE REGIONS
8 2.1.1 THRESHOLDFIGUREOFMERITFORBULKGAAS 12 2.2 CHOICE OF ACTIVE REGION
THICKNESS 14 2.2.1 OPTIMAL THICKNESS OF BULK GAAS 14 2.3 MAXIMIZING THE
SLOPE EFFICIENCY 16 2.3.1 MAXIMISING EFFICIENCY FOR A SPECIFIC OPTICAL
POWER 16 2.4 CASCADED ACTIVE REGIONS 17 3 BAND-EDGE OPTIMIZATION OF
ACTIVE REGION MATERIALS 21 3.1 DENSITY OF STATES IMBALANCE 21 3.2 THE
EFFECTS OF DENSITY OF STATES IMBALANCE 25 3.3 REDUCING DENSITY OF STATES
IMBALANCE USING STRAIN 30 3.4 REDUCING DENSITY OF STATES IMBALANCE USING
QUANTUM CONFINEMENT 30 3.5 DEVELOPMENT OF 2-3 (IM GALNASSB DIODES 32 3.6
OPTIMIZING BAND EDGE PROPERTIES USING INAS/GASB/ALSB MATERIALS 40 4
FINAL STATE OPTIMIZATION OF ACTIVE REGION MATERIALS 47 4.1 SUPPRESSION
OF INTERSUBBAND ABSORPTION 48 4.2 SUPPRESSION OF AUGER RECOMBINATION 50
5 CAVITY-INTEGRATED ACTIVE REGION DESIGN FOR OPTIMAL LASER PERFORMANCE
53 5.1 OPTIMIZATION OF THE ACTIVE REGION 53 5.2 TRANSPORT AND OPTICAL
CLADDING 56 6 CALCULATING THE ELECTRONIC AND OPTICAL PROPERTIES OF
SEMICONDUCTORS 59 6.1 ELECTRONIC STRUCTURE AND MOMENTUM MATRIX ELEMENTS
59 6.1.1 K.P METHODS FOR BULK MATERIALS 61 6.1.2 K.P METHODS FOR
HETEROSTRUCTURES 63 6.1.3 INFLUENCE OF INTERFACE BONDS 68 VIII CONTENTS
6.2 COMPARISON WITH EXPERIMENT 70 6.2.1 NON-EQUILIBRIUM ABSORPTION 70
6.2.2 AUGER RECOMBINATION 73 7 CONCLUDING REMARKS 75 APPENDIX.
DERIVATION OF EXPRESSIONS FOR THE ELECTRONIC AND OPTICAL PROPERTIES OF
SEMICONDUCTORS 76 AI DENSITY OF STATES 77 A2 OPTICAL PROPERTIES 77 A3
CARRIER RECOMBINATION RATES 80 A4 CARRIER MOBILITIES 82 REFERENCES 84
BANDSTRUCTURE AND HIGH-PRESSURE MEASUREMENTS B.N. MURDIN, A.R. ADAMS
ANDS.J. SWEENEY 93 1 BANDSTRUCTURE CALCULATION BY THE K.P METHOD 93 1.1
BULK BANDSTRUCTURE 94 1.1.1 ZINC-BLENDE CRYSTALS 96 1.1.2 LEAD-SALTS 99
1.2 QUANTUM WELL STRUCTURES 101 1.3 TEMPERATURE DEPENDENCE OF THE
BANDSTRUCTURE 103 1.4 HYDROSTATIC PRESSURE AND STRAINED LAYER QUANTUM
WELLS 103 2 TRANSITION RATES 105 2.1 INTERBAND OPTICAL TRANSITION RATES
106 2.2 AUGER RECOMBINATION 106 2.3 AUGER RATES IN BULK ZINC BLENDE
MATERIALS 109 2.4 AUGER SUPPRESSION IN BULK MATERIALS: PB-SALTS 110 2.5
AUGER SUPPRESSION IN BULK MATERIALS: DILUTE III-V NITRIDES 111 2.6 AUGER
SUPPRESSION IN QUANTUM WELLS 112 3 HIGH PRESSURE 114 3.1 NEAR-INFRARED
APPLICATIONS 114 3.1.1 RADIATIVE RECOMBINATION 114 3.1.2 NON-RADIATIVE
RECOMBINATION 118 3.2 DETERMINATION OF MID-IR MATERIAL PRESSURE
COEFFICIENTS 120 3.3 INTERBAND MID-IR DEVICES 121 3.3.1 INASLEDS 121
3.3.2 COMPARISON OF NEAR-IR AND 2.37 UM INGAASSB LASERS 122 4 CONCLUSION
125 REFERENCES 126 PART II LASERS IH-SB-BASED TYPE-I QW DIODE LASERS M.
RATTUNDE, J. SCHMITZ, C. MERMELSTEIN, R. KIEFER AND J. WAGNER 131 1
INTRODUCTION 131 2 III-SB-BASED MATERIAL SYSTEM 132 2.1 ALGAASSB 132
CONTENTS IX 2.2 STRAINED GALNASSB LAYERS 132 2.3 LASER STRUCTURE 134 3
FABRICATION OF (ALGAIN)(ASSB)-BASED DIODE LASERS 136 3.1 GROWTH 136 3.2
EPITAXIAL LAYER CHARACTERIZATION 137 3.3 DEVICE PROCESSING 139 4 GAIN
AND LOSS MECHANISMS IN III-SB-BASED LASERS EMITTING AT AROUND2 UM 140
4.1 OPTICAL GAIN AND ELECTRIC LOSS IN THE QW ACTIVE REGION 140 4.2
OPTICAL LOSSES IN THE LASER STRUCTURE 143 5 HIGH-POWER PERFORMANCE OF 2
UM III-SB-BASED DIODE LASERS 146 6 LONG-WAVELENGTH III-SB-BASED TYPE-I
QW LASERS 150 7 OUTLOOK 151 ACKNOWLEDGMENTS 153 REFERENCES 153 VCSELS
EMITTING IN THE 2 - 3 PM WAVELENGTH RANGE F. GENTY, A. GARNACHE ANDL.
CERUTTI 159 1 INTRODUCTION 159 2 A SHORT DESCRIPTION OF VERTICAL-CAVITY
LASERS 160 2.1 CONVENTIONAL MICROCAVITY VCSELS 160 2.2 EXTERNAL-CAVITY
VCSELS (VECSELS) 163 2.2.1 STRUCTURE DESCRIPTION 163 2.2.2 GEOMETRICAL
STABILITY OF A CONCAVE/PLANE LASER CAVITY 165 3 VCSELS EMITTING IN THE
2-3 UM RANGE 168 3.1 CDHGTE-BASED STRUCTURES - CEA, GRENOBLE (FRANCE)
169 3.2 INP-BASED STRUCTURES - WALTER SCHOTTKY INSTITUTE, UNIVERSITY OF
MUNICH, GARCHING (GERMANY) 171 3.3 GASB-BASED STRUCTURES I - NAVAL
RESEARCH LABORATORY/ HUGHES RESEARCH LABORATORY (USA) 173 3.4 GASB-BASED
STRUCTURES II - UNIVERSITY OF MONTPELLIER 2 (FRANCE) 176 3.4.1
ELECTRICALLY-PUMPED MICROCAVITY VCSEL EMITTING NEAR 2.2 UM 176 3.4.2
OPTICALLY-PUMPED GASB-BASED VCSEL STRUCTURES 177 4 CONCLUSION 184
ACKNOWLEDGMENTS 185 REFERENCES 185 ANTIMONIDE TYPE-II "W" LASERS I.
VURGAFIMAN, W.W. BEWLEY, C.L. CANEDY, CS. KIM, J. R. LINDLE, M. KIM, AND
J.R.MEYER 18 9 1 INTRODUCTION 189 2 ADVANCES IN THE MBE GROWTH OF "W"
LASER STRUCTURES 191 3 OPTICALLY PUMPED "W" LASERS 196 4 SINGLE-STAGE
"W" DIODE LASERS 199 5 INTERBAND CASCADE "W" LASERS 201 6 "W" VCSELS AND
PCDFB LASERS 203 7 CRITICAL ISSUES IN IMPROVING THE PERFORMANCE OF "W"
LASERS 208 X CONTENTS 8 CONCLUSIONS 212 REFERENCES 213 INTERFACE LASERS
WITH ASYMMETRIE BAND OFFSET CONFINEMENT K.D. MOISEEV AND Y.P. YAKOVLEV
219 1 INTRODUCTION 219 2 THE 2D-ELECTRON CHANNEL IN A TYPE II BROKEN-GAP
P-GALNASSB/P-INAS HETEROINTERFACE 220 3 INTERFACE LUMINESCENCE
PROPERTIES OF THE TYPE II BROKEN-GAP SINGLE P-GALNASSB/P-INAS
HETEROJUNCTION 220 3.1 INTERFACE EL IN A SINGLE P-GALNASSB/P-INAS
HETEROJUNCTION 220 3.2 TUNNELLING-INJECTION LASER BASED ON THE TYPE II
P-GAINO.I 7 ASSB/P-IN 0 .83GAASSB HETEROJUNCTION 224 3.3 SUPPRESSION OF
AUGER-RECOMBINATION PROCESSES AT THE TYPE II HETEROINTERFACE 226 4
INTERFACE LASER WITH IMPROVED TEMPERATURE DEPENDENCE 228 4.1
ELECTROLUMINESCENCE IN A SINGLE P^GAFIIO. / *TASSB/N-INFL.GJGAASSB
HETEROSTRUCTURE 228 4.2 ADVANCED TUNNEL-INJECTION HETEROSTRUCTURE LASER
230 4.3 PROSPECTS FOR HIGH-TEMPERATURE LUMINESCENCE IN TYPE II
BROKEN-GAP HETEROJUNCTIONS 233 5 CONCLUSIONS 235 REFERENCES 235 IV-VI
SEMICONDUCTORS FOR MID-INFRARED OPTOELECTRONIC DEVICES P.J.MCCANN 237 1
INTRODUCTION 237 2 SPECTROSCOPY WITH IV-VI SEMICONDUCTOR LASERS 237 3
IV-VI SEMICONDUCTOR GROWTH AND CHARACTERIZATION 241 3.1 IV-VI LAYERS ON
BAF 2 242 3.2 IV-VI LAYERS ON SILICON 245 4 SELF-HEATING EFFECTS IN
IV-VI MID-IR LASERS 248 5 ELECTROPHONON RESONANCE IN PBSE QWS 249 6
PROGRESS IN LASER FABRICATION USING SUBSTRATE REMOVAL 254 7 SUMMARY 259
ACKNOWLEDGEMENTS 260 REFERENCES 260 MID-INFRARED VERTICAL CAVITY SURFACE
EMITTING LASERS BASED ON THE LEAD SALT COMPOUNDS G. SPRINGHOLZ, T.
SCHWARZL AND W. HEISS 265 1 INTRODUCTION 265 2 VERTICAL SURFACE EMITTING
LASERS 266 3 LEAD SALT-BASED BRAGG INTERFERENCE MIRRORS 268 3.1 MIRROR
MATERIALS 268 3.2 EXAMPLES AND RESULTS 270 4 LEAD SALT VERTICAL CAVITY
SURFACE EMITTING LASERS 272 4.1 DESIGN ISSUES AND RESONATOR STRUCTURE
272 CONTENTS XI 4.2 PBTE/EUTE QUANTUM WELL VCSELS 274 4.2.1 STRUCTURE
AND OPTICAL CHARACTERIZATION 274 4.2.2 THRESHOLD AND LASER EMISSION 275
4.2.3 TEMPERATURE DEPENDENCE OF EMISSION 276 4.3 ROOM TEMPERATURE PBTE
QW VCSELS 277 4.4 PBSE/PBSRSE VCSELS 280 5 SELF-ASSEMBLED INFRARED
QUANTUM DOT LASERS 281 5.1 SELF-ASSEMBLED PBSE QUANTUM DOTS 281 5.2
QUANTUM DOT VCSELS: GROWTH AND CHARACTERIZATION 284 5.3 QUANTUM DOT
LASER EMISSION 286 6 LEAD SALT VCSELS WITH DIFFERENT ACTIVE REGIONS 288
6.1 VCSEL STRUCTURES AND OPTICAL PROPERTIES 288 6.2 LASER EMISSION 289
6.2.1 BULK-LIKE PBTE VCSEL 289 6.2.2 PBTE/PBEUTE QUANTUM WELL VCSEL 291
6.2.3 LASING PROPERTIES OF THE QUANTUM DOT VCSEL 292 6.2.4 TUNING
PROPERTIES 292 7 CW-VCSELS EMITTING AT 6-8 UM 293 7.1 STRUCTURE AND
OPTICAL PROPERTIES 293 7.2 LASER EMISSION 294 8 CONCLUSIONS 298
ACKNOWLEDGEMENTS 298 REFERENCES 299 OPTICALLY PUMPED MIR LASERS R.
KASPI, G.C. DENTE ANDA.P. ONGSTAD 303 1 INTRODUCTION 303 2 OPTICALLY
PUMPED LASER DESIGN 303 2.1 GUIDELINES FOR OPTICAL PUMPING AND THE
MIR-OPSL 303 2.2 TYPE-II QUANTUM WELLS 306 2.3 DIELECTRIC WAVEGUIDE
DESIGN FOR THE MIR-OPSL 309 2.3.1 CONNECTION BETWEEN CONFMEMENT FACTOR
AND BEAM QUALITY 309 2.3.2 GHOST MODES IN THE MIR-OPSL 313 3 LASER
CHARACTERISTICS 315 3.1 SPECTRAL POWER AND LOSS MEASUREMENTS 315 3.2
BEAM QUALITY 319 4 CONCLUSION 321 REFERENCES 321 MID-INFRARED QUANTUM
CASCADE LASERS J. COCKBURN 323 1 INTRODUCTION 323 1.1 GENERAL QCL
CONCEPTS AND CURRENT STATUS 323 2 QCL ACTIVE REGION DESIGN 326 2.1
INTERSUBBAND POPULATION INVERSION 327 2.2 TWO-WELL AND THREE-WELL ACTIVE
REGIONS 328 2.3 DOUBLE PHONON RESONANCE ACTIVE REGION 330 XII CONTENTS
2.4 BOUND TO CONTINUUM ACTIVE REGION 330 2.5 COMPARISON OF INP-BASED AND
GAAS-BASED QCLS 333 3 QUANTUM CASCADE LASERS FOR 3-5UM OPERATION 336 3.1
STRAIN COMPENSATED INGAAS-ALINAS-INP 338 3.2 INGAAS-ALASSB-INP 340 3.3
INAS-ALSB 344 4 QUANTUM CASCADE LASERS GROWN BY METAL-ORGANIC VAPOUR
PHASE EPITAXY. 347 5 CONCLUSIONS 351 ACKNOWLEDGEMENTS 351 REFERENCES
351 PART III LEDS AND DETECTORS MID-INFRARED ELECTROLUMINESCENCE IN LEDS
BASED ON INAS AND RELATED AUOYS A. KRIER, X.L. HUANG AND V. V. SHERSTNEV
359 1 INTRODUCTION 359 1.1 BACKGROUND 360 2 LIMITATIONS TO LED
PERFORMANCE 362 2.1 INTERNAL QUANTUM EFFICIENCY 362 2.2 PURIFICATION
USING RARE EARTH GETTERING AND PB NEUTRAL SOLVENT EPITAXY 363 2.3
PURIFICATION OF EPITAXIAL INAS USING GD GETTERING 364 2.4 FABRICATION OF
INASSB LEDS AT 4.6UM 366 2.5 INAS LEDS FOR METHANE DETECTION AT 3.3UM
368 2.6 NEUTRAL SOLVENT EPITAXY 370 3 HIGH-PRESSURE MEASUREMENTS 374 4
OPTICAL EXTRACTION 377 5 COMPARISON OF DEVICES 379 6 INASSB QUANTUM DOT
LIGHT EMITTING DIODES GROWN BY LIQUID PHASE EPITAXY 381 7
SUPERLUMINESCENCE AND RING LASERS 386 8 CONCLUSION 389 ACKNOWLEDGEMENTS
390 REFERENCES 390 LED-PHOTODIODE OPTO-PAIRS B.A. MATVEEV 395 1
INTRODUCTION 395 2 DEVICE CONFIGURATION AND FABRICATION 396 2.1
SUBSTRATE AND BUFFER LAYERS 397 2.2 ACTIVE LAYER PROPERTIES 400 2.2.1
LAYER DOPING 400 2.2.2 LAYER THICKNESS 401 2.2.3 ACTIVE LAYER MESA
DIAMETER 402 2.3 CONTACTS 403 3 CHOICE OF THE OPERATING MODE 408
CONTENTS XIII 4 OUT-COUPLING OF RADIATION IN MID-IR DEVICES 415 5 THE
USE OF DIODE OPTO-PAIRS FOR CHEMICAL SENSING 419 6 SUMMARY 424
ACKNOWLEDGEMENTS 424 REFERENCES 425 QWIP DETECTORS FOR THE MWIR S.
HAYWOOD, K.T. LAI ANDM. MISSOUS 429 1 INTRODUCTION 429 1.1 QWIPS VS
INTERBAND DETECTORS 429 2 MWIR TRANSITIONS IN QWS 431 2.1 SQUARE QW
STRUCTURES 431 2.1.1 (IN)GAAS/ALGAAS ON GAAS 432 2.1.2 INGAAS/ALINAS ON
INP 433 2.2 DOUBLE-BARRIER QWS 433 2.2.1 DBQWS ON GAAS SUBSTRATES 434
2.2.2 DBQWS ON INP SUBSTRATES 435 3 STRAIN-BALANCED QWIPS FOR
HIGH-TEMPERATURE OPERATION 436 3.1 MATERIALS GROWTH AND CHARACTERISATION
436 3.2 STOICHIOMETRIC GROWTH CONDITIONS 437 3.3 STRUCTURAL AND
ELECTRICAL PROPERTIES 438 3.4 MODELLING THE INTERSUBBAND TRANSITIONS 441
3.5 MEASURED TRANSITIONS 442 3.6 PREDICTED TEMPERATURE PERFORMANCE 443 4
ENHANCED DETECTOR PERFORMANCE AND FUNCTIONALITY 444 4.1 ASYMMETRIE WELLS
445 4.1.1 NORMAL INCIDENCE ABSORPTION 445 4.1.2 VOLTAGE TUNING VIA THE
STARK EFFECT 445 4.2 PHOTOVOLTAIC OPERATION 446 4.3 HIGH-SPEED OPERATION
447 5 CONCLUSIONS 447 ACKNOWLEDGEMENTS 448 REFERENCES 448 NEGATIVE
LUMINESCENCE T. ASHLEY AND G.R. NASH 453 1 INTRODUCTION 453 2 NEGATIVE
LUMINESCENT PARAMETERS 455 2.1 KEY PARAMETERS 455 2.2 OPTICAL
CONCENTRATORS 456 3 THE MAGNETOCONCENTRATION EFFECT 458 3.1 PRINCIPLE OF
OPERATION 458 3.2 INDIUM ANTIMONIDE AND CADMIUM MERCURY TELLURIDE
DEVICES 459 3.3 OTHER MATERIAL SYSTEMS 461 3.4 CONCLUSIONS 462 4
PHOTODIODES 462 4.1 PRINCIPLE OF OPERATION 462 4.2 INDIUM ANTIMONIDE
DEVICES 464 XIV CONTENTS 4.3 CADMIUM MERCURY TELLURIDE DEVICES 467 4.4
OTHER DEVICE STRUCTURES AND MATERIAL SYSTEMS 471 4.5 CONCLUSIONS 472 5
APPLICATIONS OF NEGATIVE LUMINESCENCE 473 5.1 IR SOURCES FOR GAS SENSING
473 5.1.1 TEMPERATURE STABILISATION 474 5.1.2 EFFICIENT LONG WAVELENGTH
IR SOURCES 474 5.2 DYNAMIC INFRARED SCENE PROJECTION 476 5.3 RADIATIVE
COOLING 477 5.4 UNCOOLED IR RADIATION SHIELDS FOR BLIP IR DETECTORS 478
5.5 RADIOMETRIE REFERENCE PLANES FOR THERMAL IMAGERS 479 5.5.1 DC
RESTORATION IN SCANNED THERMAL IMAGERS 479 5.5.2 NON-UNIFORMITY
CORRECTION IN STARING ARRAYS 481 5.6 CAMOUFLAGE 482 6 SUMMARY 482
REFERENCES 483 MID-INFRARED QUANTUM DOT PHOTODETECTORS P. BHATTACHARYA,
A. D. STIFF-ROBERTS ANDS. CHAKRABARTI 487 1 INTRODUCTION 487 1.1 QUANTUM
DOT PHOTODETECTORS IN THE MID-INFRARED 487 1.2 COMPARISON OF HGCDTE
PHOTODIODES AND INAS/GAAS QUANTUM DOT INFRARED PHOTODETECTORS 490 2
INFRARED DETECTION WITH QUANTUM DOTS 491 2.1 BOUND-STATE ENERGY LEVELS
IN QDS 492 2.2 DENSITY OF STATES AND CARRIER DISTRIBUTION IN QDS 494 2.3
INTRABAND ABSORPTION IN QDS 495 2.4 PHONON BOTTLENECK AND EFFECTIVE
CARRIER LIFETIME IN QDS 497 3 SELF-ASSEMBLY OF QUANTUM DOTS BY THE
STRANSKI-KRASTANOW GROWTH MODE 498 4 CHARACTERIZATION OF MID-INFRARED
QUANTUM DOT PHOTODETECTORS 500 4.1 QDIP HETEROSTRUCTURE DESIGNS 500 4.2
DARKCURRENT 501 4.3 MID-INFRARED SPECTRAL RESPONSE IN QDIPS 502 4.4
STATE-OF-THE-ART PERFORMANCE IN MIR QDIPS AT HIGH OPERATING TEMPERATURES
503 5 CONCLUSIONS 506 APPENDIX. INFRARED PHOTODETECTOR FIGURES OF MERIT
507 AI PHOTOCURRENT 507 A2 DARKCURRENT 507 A3 NOISECURRENT 507 A4
NORMALIZED SPECTRAL RESPONSE AND PEAK RESPONSIVITY 508 A5 PEAK SPECIFIC
DETECTIVITY 508 A6 PHOTOCONDUCTIVE GAIN AND QUANTUM EFFICIENCY 509
ACKNOWLEDGEMENTS 510 REFERENCES 510 CONTENTS XV QUANTUM PHOTOVOLTAIC
DEVICES BASED ON ANTIMONY COMPOUND SEMICONDUCTORS Y. WEI, A. GIN AND M.
RAZEGHI 515 1 INTRODUCTION 515 2 THEORETICAL MODELING 516 2.1 THE
TYPE-II INAS/GASB SUPERLATTICE 516 2.2 NANOPILLAR STRUCTURES 521 3
MATERIAL GROWTH AND CHARACTERIZATION 526 4 PHOTODIODES WITH CUT-OFF
WAVELENGTH ~8 UM 531 5 TYPE II FOCAL PLANE ARRAYS ; 533 6 NANOPILLAR
FABRICATION 535 6.1 ELECTRON BEAM LITHOGRAPHY 535 6.2 NANOPILLAR DEVICE
FABRICATION PROCESS 535 6.3 NANOPILLARS IN GASB MATERIAL 537 6.4
NANOPILLARS IN INAS/GASB SUPERLATTICE MATERIAL 538 6.5 REACTIVE ION
ETCHING USING BCL 3 :AR AND CH 4 :H 2 :AR 538 6.6 REACTIVE ION ETCHING
USING CYCLIC CH 4 :H 2 :AR / 0 2 539 6.7 DEVICE FABRICATION 540 6.7.1
POLYIMIDE PLANARIZATION 540 6.7.2 POLYIMIDE ETCHBACK 540 6.7.3 TOP
CONTACT DEPOSITION 541 6.7.4 DARK CURRENT MEASUREMENTS 542 7 CONCLUSION
543 ACKNOWLEDGEMENT 543 APPENDIX. SUPERLATTICE HAMILTONIAN MATRIX 543
REFERENCES 545 HIGH-SPEED AVALANCHE PHOTODIODES FOR THE 2-5 UM SPECTRAL
RANGE M.P. MIKHAILOVA ANDI.A.ANDREEV 547 1 INTRODUCTION 547 2 IMPACT
LONIZATION IN III-V SEMICONDUCTORS 548 2.1 INTERBAND LONIZATION IN
SEMICONDUCTORS 548 2.2 THRESHOLD ENERGY OF IMPACT LONIZATION 549 2.3 THE
DEPENDENCE OF THE LONIZATION COEFFICIENTS ON THE ELECTRIC FIELD 551 2.4
TWO-VALLEY MODEL 552 2.5 INTER-RELATIONSHIP BETWEEN MULTIPLICATION
COEFFICIENTS AND LONIZATION COEFFICIENTS OF ELECTRONS AND HOLES 553 2.6
NOISE AND RESPONSE SPEED OF APDS 554 3 LONIZATION COEFFICIENTS IN III-V
SEMICONDUCTORS AND THEIR ALLOYS 557 3.1 ELECTRON IMPACT LONIZATION 557
3.1.1 ANISOTROPY OF LONIZATION COEFFICIENTS IN MULTI-VALLEY
SEMICONDUCTORS OF GAAS, INP TYPE 557 3.1.2 ANISOTROPY OF LONIZATION
COEFFICIENTS IN MULTI-VALLEY SEMICONDUCTORS OF GASB AND THEIR ALLOYS 558
3.2 ELECTRON IMPACT LONIZATION IN SEMICONDUCTORS OF INAS, INSB TYPE 560
3.3 HOLE IMPACT LONIZATION 561 3.4 HOLE IMPACT LONIZATION IN
SEMICONDUCTORS WITH BAND GAP "RESONANCE", E G =A(INAS, GASB) 562 4
AVALANCHE PHOTODIODES FOR THE 2-2.5 UM SPECTRAL RANGE 564 XVI CONTENTS
4.1 EXPERIMENTAL IONIZATION COEFFICIENTS IN SOLID SOLUTIONS BASEDON GASB
565 4.1.1 IONIZATION COEFFICIENTS IN GASB, GAALSB AND GAALASSB 565 4.1.2
EXPERIMENTAL IONIZATION COEFFICIENTS IN GALNASSB 567 4.2 DARK CURRENT IN
APDS WITH A 'RESONANT' GAAL(AS)SB COMPOSITION 570 4.3 GALNASSB/GAALASSB
AVALANCE PHOTODIODE WITH SEPARATE ABSORPTION AND MULTIPLICATION REGION
(SAM APD) 572 4.4 NOISE AND RESPONSE SPEED OF GALNASSB/GAALASSB APDS 576
5 AVALANCHE PHOTODIODES FOR THE 3-5 UM SPECTRAL RANGE 581 5.1
EXPERIMENTAL INVESTIGATION OF IONIZATION COEFFICIENTS IN INAS, INGAAS
AND INASSB 582 5.2 NOISE AND RESPONSE SPEED OF LONG WAVELENGTH APDS 585
6 METHODS OF SEPARATING IONIZATION COEFFICIENTS USING QUANTUM STRUCTURES
586 7 CONCLUSION 588 REFERENCES 589 PART IV APPLICATIONS INFRARED
METHODS FOR GAS DETECTION J.G. CROWDER, S.D. SMITH, A. VASS ANDJ. KEDDIE
595 1 INTRODUCTION 595 2 GAS ABSORPTION SPECTRA 595 3 METHODS OF GAS
DETECTION 597 4 INFRARED SOURCES FOR GAS DETECTION 598 4.1 THERMAL
SOURCES 599 4.2 SEMICONDUCTOR SOURCES 600 5 INFRARED DETECTORS FOR GAS
DETECTION 601 5.1 OPTICAL IMMERSION 602 6 DESIGN OF OPTICAL AND GAS
SAMPLING SYSTEMS 604 6.1 A NON-IMAGING GAS SENSOR WITH THERMAL SOURCE
AND DETECTOR 606 6.2 A LONG-PATH, IMAGING GAS SENSOR WITH SEMICONDUCTOR
SOURCE AND DETECTOR 608 7 LASER TECHNIQUES 609 8 CONCLUSIONS 610
REFERENCES 610 MID-INFRARED BIOMEDICAL APPLICATIONS I.K. ILEV AND R.W.
WAYNANT 615 1 INTRODUCTION 615 2 MID-IR BIOPHOTONICS 616 2.1
BIOPHOTONICS 616 2.2 FUNDAMENTALS OF MID-IR BIOPHOTONICS APPLICATIONS
617 2.3 MID-IR BIOPHOTONICS DELIVERY SYSTEMS 619 2.3.1 BASIC MID-IR
BIOPHOTONICS DELIVERY SYSTEM 619 2.3.2 MID-IR BIOMEDICAL LASERS 620
2.3.3 MID-IR INCOHERENT LIGHT SOURCES 621 CONTENTS XVII 2.3.4 MID-IR
BIO-MEDICAL DELIVERY FIBERS 622 2.3.5 ALL-HOLLOW-WAVEGUIDE MID-IR LASER
DELIVERY SYSTEM 624 3 MID-IR BIO-PHOTONICS APPLICATIONS 625 3.1 MID-IR
LASER SURGERY AND TISSUE ABLATION 625 3.2 MID-IR BIOIMAGING 627 3.3
MID-IR SPECTROSCOPY AND BIOSENSORS IN BIOMEDICINE 628 3.3.1 NON-INVASIVE
BLOOD GLUCOSE MONITORING 628 3.3.2 BREATH ANALYSIS FOR MEDICAL
APPLICATIONS 629 3.3.3 SUMMARY OF MID-IR SPECTROSCOPY AND BIOSENSORS 630
4 CONCLUSION 631 REFERENCES 631 DEVELOPMENT OF INFRARED COUNTERMEASURE
TECHNOLOGY AND SYSTEMS D.H. TITTERTON 635 1 INTRODUCTION 635 2
HISTORICAL DEVELOPMENT 637 3 PROPAGATION AND ATMOSPHERIC WINDOWS 639 3.1
HUMIDITY 640 3.2 HAZE, FOG, CLOUD AND RAIN 641 3.3 TURBULENCE 641 3.4
EXTINCTION 643 3.5 THERMAL BLOOMING 643 3.6 IONISATION 643 3.7 WAKES AND
PLUMES 644 3.8 AERO-OPTICAL EFFECTS 644 4 DEFEAT MECHANISMS 645 4.1
DENIAL 645 4.1.1 SMOKES AND OBSCURANTS 646 4.1.2 PYROTECHNIC SMOKE 647
4.1.3 RAPID-BLOOM OBSCURANT 647 4.1.4 LARGE-AREA SMOKE SCREENING SYSTEMS
647 4.2 DECEPTION 647 4.2.1 EXPENDABLES (FLARES) 649 4.2.2 ON-BOARD
TECHNIQUES (JAMMERS) 651 4.3 DAZZLE 653 4.4 DAMAGE 654 4.4.1 IN-BAND
DAMAGE ROUTE 655 4.4.2 OUT-OF-BAND DAMAGE 657 4.5 DESTRUCTION 659 5 THE
EVOLUTION OF IR-JAMMER SYSTEMS 661 5.1 INCOHERENT IR SOURCES 662 5.2 ARE
LAMPS 664 5.3 COHERENT SOURCES 666 5.4 DIRCM SYSTEMS 667 6
CHARACTERISTICS OF LASER-BASED JAMMERS 669 7 FUTURE DEVELOPMENTS OF
LASER-BASED SYSTEMS 670 REFERENCES 671 XVIII CONTENTS SURVEY OF
THERMOPHOTOVOLTAIC (TPV) DEVICES M.G.MAUK 673 1 INTRODUCTION AND
OVERVIEW 673 2 TPV LITERATURE AND OTHER SOURCES OF INFORMATION 679 3
BASIC OPERATION OF TPV CELLS 680 4 TPV SYSTEM THERMODYNAMIC LIMITS AND
MODELING 684 5 TPV CELL MODELING 689 5.1 TPV DEVICE STMCTURE AND
DELINEATION 690 5.2 MINORITY CARRIER RECOMBINATION AND LIMITS TO
OPEN-CIRCUIT VOLTAGE 692 6 SURVEY OF TPV MATERIALS AND DEVICES 697 6.1
SILICON, GERMANIUM, AND SI-GE ALLOY TPV CELLS 697 6.2 GASB TPV CELLS 699
6.3 TPV CELLS BASED ON BULK III-V ALLOY TERNARY CRYSTALS 701 6.4 INGAAS
AND INASP/INP TPV CELLS AND MIMS 703 6.5 LOW-BANDGAP ( 0.5 EV) INAS AND
INASSBP TPV CELLS 706 6.6 TPV CELLS BASED ON OTHER SEMICONDUCTORS 710
6.7 QUANTUM WELL TPV CELLS 710 6.8 ISOLATION FOR SERIES INTERCONNECTION,
INTEGRATED REFLECTORS, AND WAFER-BONDING FOR TPV CELLS 713 6.9 TANDEM
TPV CELLS 714 6.10 MICRON-GAP TPV CELLS 717 6.11 SPECTRAL CONTROL,
MICROSTRUCTURED EMITTERS, FILTERS AND PHOTONIC CRYSTALS 720 6.12
THERMOPHOTONICS 720 7 CONCLUDING REMARKS AND OUTLOOK FOR TPV TECHNOLOGY
721 APPENDIX. MODELING OF INGAASSB TPV CELLS 723 AI MATERIALS PROPERTIES
723 A2 TPV DEVICE MODEL 728 REFERENCES 731 INDEX 739 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022543385 |
classification_rvk | UH 5100 UH 5500 |
ctrlnum | (OCoLC)634886825 (DE-599)BVBBV022543385 |
discipline | Physik |
discipline_str_mv | Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01641nam a2200409 cb4500</leader><controlfield tag="001">BV022543385</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120806 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070803s2006 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">184628208X</subfield><subfield code="9">1-84628-208-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781846282089</subfield><subfield code="9">978-1-84628-208-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)634886825</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022543385</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5100</subfield><subfield code="0">(DE-625)145654:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5500</subfield><subfield code="0">(DE-625)145663:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mid-infrared semiconductor optoelectronics</subfield><subfield code="b">with 443 figures</subfield><subfield code="c">A. Krier (ed.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">London [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 751 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">118</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optoelektronik</subfield><subfield code="0">(DE-588)4043687-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Infrarot</subfield><subfield code="0">(DE-588)4161686-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Infrarot</subfield><subfield code="0">(DE-588)4161686-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Halbleiter</subfield><subfield code="0">(DE-588)4022993-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Optoelektronik</subfield><subfield code="0">(DE-588)4043687-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krier, Anthony</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Springer series in optical sciences</subfield><subfield code="v">118</subfield><subfield code="w">(DE-604)BV000000237</subfield><subfield code="9">118</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015749792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015749792</subfield></datafield></record></collection> |
id | DE-604.BV022543385 |
illustrated | Illustrated |
index_date | 2024-07-02T18:11:04Z |
indexdate | 2024-07-09T20:59:53Z |
institution | BVB |
isbn | 184628208X 9781846282089 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015749792 |
oclc_num | 634886825 |
open_access_boolean | |
owner | DE-20 DE-83 DE-11 DE-703 |
owner_facet | DE-20 DE-83 DE-11 DE-703 |
physical | XVIII, 751 S. Ill., graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Springer |
record_format | marc |
series | Springer series in optical sciences |
series2 | Springer series in optical sciences |
spelling | Mid-infrared semiconductor optoelectronics with 443 figures A. Krier (ed.) London [u.a.] Springer 2006 XVIII, 751 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Springer series in optical sciences 118 Halbleiter (DE-588)4022993-2 gnd rswk-swf Optoelektronik (DE-588)4043687-1 gnd rswk-swf Infrarot (DE-588)4161686-8 gnd rswk-swf Infrarot (DE-588)4161686-8 s Halbleiter (DE-588)4022993-2 s Optoelektronik (DE-588)4043687-1 s DE-604 Krier, Anthony Sonstige oth Springer series in optical sciences 118 (DE-604)BV000000237 118 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015749792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Mid-infrared semiconductor optoelectronics with 443 figures Springer series in optical sciences Halbleiter (DE-588)4022993-2 gnd Optoelektronik (DE-588)4043687-1 gnd Infrarot (DE-588)4161686-8 gnd |
subject_GND | (DE-588)4022993-2 (DE-588)4043687-1 (DE-588)4161686-8 |
title | Mid-infrared semiconductor optoelectronics with 443 figures |
title_auth | Mid-infrared semiconductor optoelectronics with 443 figures |
title_exact_search | Mid-infrared semiconductor optoelectronics with 443 figures |
title_exact_search_txtP | Mid-infrared semiconductor optoelectronics with 443 figures |
title_full | Mid-infrared semiconductor optoelectronics with 443 figures A. Krier (ed.) |
title_fullStr | Mid-infrared semiconductor optoelectronics with 443 figures A. Krier (ed.) |
title_full_unstemmed | Mid-infrared semiconductor optoelectronics with 443 figures A. Krier (ed.) |
title_short | Mid-infrared semiconductor optoelectronics |
title_sort | mid infrared semiconductor optoelectronics with 443 figures |
title_sub | with 443 figures |
topic | Halbleiter (DE-588)4022993-2 gnd Optoelektronik (DE-588)4043687-1 gnd Infrarot (DE-588)4161686-8 gnd |
topic_facet | Halbleiter Optoelektronik Infrarot |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015749792&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000237 |
work_keys_str_mv | AT krieranthony midinfraredsemiconductoroptoelectronicswith443figures |