Elements of forecasting:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Mason, Ohio
Thomson/South-Western
2007
|
Ausgabe: | 4. ed. |
Schlagworte: | |
Online-Zugang: | Table of contents only Inhaltsverzeichnis |
Beschreibung: | XVIII, 366 S. zahlr. graph. Darst. |
ISBN: | 032432359X 0324359047 9780324323597 9780324359046 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022537221 | ||
003 | DE-604 | ||
005 | 20090309 | ||
007 | t | ||
008 | 070731s2007 xxud||| |||| 00||| eng d | ||
010 | |a 2006909336 | ||
020 | |a 032432359X |9 0-324-32359-X | ||
020 | |a 0324359047 |9 0-324-35904-7 | ||
020 | |a 9780324323597 |9 978-0-324-32359-7 | ||
020 | |a 9780324359046 |9 978-0-324-35904-6 | ||
035 | |a (OCoLC)77258238 | ||
035 | |a (DE-599)DNB 2006909336 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-945 |a DE-739 |a DE-1050 |a DE-355 |a DE-19 |a DE-573 |a DE-11 |a DE-188 |a DE-523 |a DE-N2 | ||
050 | 0 | |a H61.4 | |
082 | 0 | |a 003.2 | |
084 | |a QH 300 |0 (DE-625)141566: |2 rvk | ||
084 | |a QH 330 |0 (DE-625)141569: |2 rvk | ||
084 | |a QP 325 |0 (DE-625)141857: |2 rvk | ||
100 | 1 | |a Diebold, Francis X. |d 1959- |e Verfasser |0 (DE-588)123909104 |4 aut | |
245 | 1 | 0 | |a Elements of forecasting |c Francis X. Diebold |
250 | |a 4. ed. | ||
264 | 1 | |a Mason, Ohio |b Thomson/South-Western |c 2007 | |
300 | |a XVIII, 366 S. |b zahlr. graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Forecasting |x Statistical methods | |
650 | 4 | |a Forecasting |v Problems, exercises, etc | |
650 | 0 | 7 | |a Statistik |0 (DE-588)4056995-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wirtschaft |0 (DE-588)4066399-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognose |0 (DE-588)4047390-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognoseverfahren |0 (DE-588)4358095-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ökonometrie |0 (DE-588)4132280-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Regressionsanalyse |0 (DE-588)4129903-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 0 | 1 | |a Ökonometrie |0 (DE-588)4132280-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 1 | 1 | |a Statistik |0 (DE-588)4056995-0 |D s |
689 | 1 | |5 DE-188 | |
689 | 2 | 0 | |a Wirtschaft |0 (DE-588)4066399-1 |D s |
689 | 2 | 1 | |a Prognose |0 (DE-588)4047390-9 |D s |
689 | 2 | |8 1\p |5 DE-604 | |
689 | 3 | 0 | |a Regressionsanalyse |0 (DE-588)4129903-6 |D s |
689 | 3 | |8 2\p |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/toc/fy0707/2006909336.html |3 Table of contents only | |
856 | 4 | 2 | |m Digitalisierung UB Passau |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015743718&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015743718 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136649018310656 |
---|---|
adam_text | PART I:
GETTINO
STARTED
Chapter·
!:
Intraductian to Forecasting; Applications,
Methods, Banks, Journals, and SoftwarB
1
1.
Forecasting in Action
1
2.
Forecasting Methods: An Overview of the Book
3
3.
Useful Books, Journals, Software, and Online Information
6
4.
Looking Ahead
9
Exercises, Problems, and Complements
9
Forecasting in daily life: We are all forecasting, all the time
9
Forecasting in business, finance, economics, and government
9
The basic forecasting framework
10
Degrees of forecastability
10
Data on the web
10
Univariate and multivariate forecasting models
10
Concepts for Review
11
References and Additional Readings
11
Chapter
2:
Â
Brief Review of Probability, Statistics,
and Regression far Forecasting
13
1.
Why This Chapter?
13
2.
Random Variables, Distributions, and Moments
14
3.
Multivariate Random Variables
15
4.
Statistics
16
5.
Regression Analysis
18
Exercises,
Problems,
and Complements
Interpreting distributions and densities
Covariance and correlation
Conditional expectations versus linear projections
Conditional mean and variance
Scatterplots and regression lines
Desired values of regression diagnostic statistics
Mechanics of fitting a linear regression
Regression with and without a constant term
Interpreting coefficients and variables
Nonlinear least squares
Regression semantics
Bibliographical and Computational Notes
Concepts for Review
References and Additional Readings
Chapter
3:
Six Considerations Basic to Successful
Forecasting
1.
The Decision Environment and Loss Function
2.
The Forecast Object
3.
The Forecast Statement
4.
The Forecast Horizon
5.
The Information Set
6.
Methods and Complexity, the Parsimony Principle,
and the Shrinkage Principle
7.
Concluding Remarks
Exercises, Problems, and Complements
Data and forecast timing conventions
Properties of loss functions
Relationships among point, interval, and density forecasts
Forecasting at short through long horizons
Forecasting as an ongoing process in organizations
Assessing forecasting situations
Bibliographical and Computational Notes
Concepts for Review
References and Additional Readings
PART II: BUILDING, USING, AND EVALUATING
FORECASTING MODELS
Chapter
4:
Statistical Graphics for Forecasting
1.
The Power of Statistical Graphics
2.
Simple Graphical Techniques
3.
Elements of Graphical Style
4.
Application:
Graphing Four Components of Real GDP
63
5.
Concluding Remarks
66
Exercises, Problems, and Complements
67
Outliers
67
Simple versus partial correlation
67
Graphical regression diagnostic
1:
time series plot of yt, yt, and et
67
2
Graphical regression diagnostic
2:
time series plot of et or et
68
Graphical regression diagnostic
3:
scatterplot of et versus xt
68
Graphical analysis of foreign exchange rate data
68
Common scales
69
Graphing real GDP, continued from Section
4 69
Color
69
Regression, regression diagnostics, and regression graphics in action
69
Bibliographical and Computational Notes
70
Concepts for Review
71
References and Additional Readings
71
Chapter
5:
Modeling and Farenasting
Trend
72
1.
Modeling Trend
72
2.
Estimating Trend Models
80
3.
Forecasting Trend
81
4.
Selecting Forecasting Models Using the
Akaiké
and
Schwarz
Criteria
82
5.
Application: Forecasting Retail Sales
87
Exercises, Problems, and Complements
94
Calculating forecasts from trend models
94
Identifying and testing trend models
94
Understanding model selection criteria
94
Mechanics of trend estimation and forecasting
95
Properties of polynomial trends
95
Specialized nonlinear trends
95
Moving average smoothing for trend estimation
95
Bias corrections when forecasting from logarithmic models
96
Model selection for long-horizon forecasting
97
The variety of information criteria reported across software packages
97
Bibliographical and Computational Notes
97
Concepts for Review
98
References and Additional Readings
98
Chapter B: Modelling and Forecasting SHasonality
93
1.
The Nature and Sources of Seasonality
99
2.
Modeling Seasonality
101
3.
Forecasting Seasonal Series
103
4.
Application: Forecasting Housing Starts
104
Exercises,
Problems,
and Complements
108
Log transformations in seasonal models
108
Seasonal adjustment
108
Selecting forecasting models involving calendar effects
108
Testing for seasonality
109
Seasonal regressions with an intercept and
s
— 1
seasonal dummies
109
Applied trend and seasonal modeling
109
Periodic models
109
Interpreting dummy variables
110
Constructing seasonal models
110
Calendar effects
110
Bibliographical and Computational Notes 111
Concepts for Review 111
References and Additional Readings 111
Chapter
7;
Characterizing Cycles
912
1.
Covariance Stationary Time Series
113
2.
White Noise
117
3.
The Lag Operator
123
4.
Wold s Theorem, the General Linear Process,
and Rational Distributed Lags
124
5.
Estimation and Inference for the Mean, Autocorrelation, and Partial
Autocorrelation Functions
127
6.
Application: Characterizing Canadian Employment Dynamics
130
Exercises, Problems, and Complements
132
Lag operator expressions
1 132
Lag operator expressions
2 133
Autocorrelation functions of covariance stationary series
133
Autocorrelation vs. partial autocorrelation
133
Conditional and unconditional means
133
White noise residuals
133
Selecting an employment forecasting model with the AIC and SIC
134
Simulation of a time series process
134
Sample autocorrelation functions for trending series
134
Sample autocorrelation functions for seasonal series
134
Volatility dynamics: correlograms of squares
135
Bibliographical and Computational Notes
135
Concepts for Review
135
References and Additional Readings
136
Chapter
8;
Modeling Cycles: MA,
AR,
and
ARMA
Models
137
1.
Moving Average (MA) Models
138
2. Autoregressive (AR)
Models
145
3.
Autoregressive
Moving Average
(ARMA)
Models
152
4.
Application:
Specifying and Estimating Models
for Employment Forecasting
154
Exercises, Problems, and Complements
163
ARMA lag
inclusion
163
Shapes of correlograms
163
The autocovariance function of the MA(1) process, revisited
163
ARMA
algebra
163
Diagnostic checking of model residuals
163
Mechanics of fitting
ARMA
models
165
Modeling cyclical dynamics
165
Aggregation and disaggregation: top-down forcasting model
vs. bottom-up forecasting model
165
Nonlinear forecasting models: regime switching
165
Difficulties with nonlinear optimization
166
Bibliographical and Computational Notes
167
Concepts for Review
168
References and Additional Readings
169
Chapter
Э;
Forecasting Cycles
171
1.
Optimal Forecasts
171
2.
Forecasting Moving Average Processes
172
3.
Making the Forecasts Operational
176
4.
The Chain Rule of Forecasting
177
5.
Application: Forecasting Employment
180
Exercises, Problems, and Complements
184
Forecast accuracy across horizons
184
Mechanics of forecasting with
ARMA
models: Bankwire continued
184
Forecasting an AR(1) process with known and unknown parameters
185
Forecasting an ARMA(2,
2)
process
185
Optimal forecasting under asymmetric loss
186
Truncation of infinite distributed lags, state space representations,
and the
Kalman
filter
187
Point and interval forecasts allowing for serial correlation
—
Nile.com continued
187
Bootstrapping simulation to acknowledge innovation distribution
uncertainty and parameter estimation uncertainty
188
Bibliographical and Computational Notes
189
Concepts for Review
190
References and Additional Readings
190
Chapter ID; Putting It All Together;
Â
Forecasting
Model with Trend, Seasonal and Cyclical Components
131
1.
Assembling What We ve Learned
191
2.
Application: Forecasting Liquor Sales
193
3.
Recursive Estimation Procedures for Diagnosing
and Selecting Forecasting Models
207
4.
Liquor Sales, Continued
212
Exercises, Problems, and Complements
214
Serially correlated disturbances vs. lagged dependent variables
214
Assessing the adequacy of the liquor sales forecasting model
trend specification
214
Improving
non
trend aspects of the liquor sales forecasting model
214
CUSUM analysis of the housing starts model
215
Model selection based on simulated forecasting performance
215
Seasonal models with time-varying parameters: forecasting
AirSpeed passenger-miles
215
Formal models of unobserved components
216
The restrictions associated with unobserved-components structures
216
Additive unobserved-components decomposition and multiplicative
unobserved-components decomposition
217
Signal, noise, and overfitting
217
Bibliographical and Computational Notes
217
Concepts for Review
218
References and Additional Readings
218
Chapter
11:
Forecasting with
Regression
Models
21Э
1.
Conditional Forecasting Models and Scenario Analysis
220
2.
Accounting for Parameter Uncertainty in Confidence
Intervals for Conditional Forecasts
220
3.
Unconditional Forecasting Models
223
4.
Distributed Lags, Polynomial Distributed Lags,
and Rational Distributed Lags
224
5.
Regressions with Lagged Dependent Variables, Regressions with
ARMA
Disturbances, and Transfer Function Models
225
6.
Vector
Autoregressions 228
7.
Predictive Causality
230
8.
Impulse-Response Functions and Variance Decompositions
231
9.
Application: Housing Starts and Completions
235
Exercises, Problems, and Complements
249
Econometrics, time series analysis, and forecasting
249
Forecasting crop yields
249
Regression forecasting models with expectations, or anticipatory, data
249
Business cycle analysis and forecasting: expansions, contractions,
turning points, and leading indicators
250
Subjective information, Bayesian VARs, and the Minnesota prior
251
Housing starts and completions, continued
251
Nonlinear regression models
1:
functional form and Ramsey s test
251
Nonlinear regression models
2:
logarithmic regression models
252
Nonlinear regression models
3:
neural networks
252
Spurious regression
253
Comparative forecasting performance of
VAR
and univariate models
254
Bibliographical and Computational Notes
254
Concepts for Review
255
References and Additional Readings
255
Chapter·
12;
Evaluating and Combining Forecasts
257
1.
Evaluating a Single Forecast
257
2.
Evaluating Two or More Forecasts: Comparing Forecast Accuracy
260
3.
Forecast Encompassing and Forecast Combination
263
4.
Application: OverSea Shipping Volume
on the Atlantic East Trade Lane
268
Exercises, Problems, and Complements
280
Forecast evaluation in action
280
Forecast error analysis
280
Combining forecasts
280
Quantitative forecasting, judgmental forecasting, forecast
combination, and shrinkage
281
The algebra of forecast combination
281
The mechanics of practical forecast evaluation and combination
282
What are we forecasting? Preliminary series, revised series,
and the limits to forecast accuracy
282
Ex post versus real-time forecast evaluation
283
What do we know about the accuracy of
macroeconomic
forecasts?
283
Forecast evaluation when realizations are unobserved
283
Forecast error variances in models with estimated parameters
283
The empirical success of forecast combination
284
Forecast combination and the Box-Jenkins paradigm
284
Consensus forecasts
285
The Delphi method for combining experts forecasts
285
Bibliographical and Computational Notes
285
Concepts for Review
286
References and Additional Readings
286
PART III: MORE ADVANCED TOPICS
Chapter·
13;
Unit Roots, Stochastic Trends, ARIMA
Forecasting
Modais,
and Smoothing
■
2BS
1.
Stochastic Trends and Forecasting
288
2.
Unit Roots: Estimation and Testing
295
3.
Application: Modeling and Forecasting the Yen/Dollar Exchange Rate
302
4.
Smoothing
312
5.
Exchange Rates, Continued
318
Exercises, Problems, and Complements
320
Modeling and forecasting the
deutschemark/
dollar
(DEM/USD) exchange rate
320
Housing starts and completions, continued
320
АШМА
models, smoothers, and shrinkage
320
Using stochastic trend unobserved-components models to
implement smoothing techniques in a probabilistic framework
320
Automatic ARIMA modeling
321
The multiplicative seasonal ARIMA^,
d, q) x (P, D, Q) model
321
The Dickey-Fuller regression in the
AR(2)
case
321
Holt-Winters smoothing with multiplicative seasonality
322
Cointegration
323
Error correction
323
Forecast encompassing tests for
/(1)
series
324
Evaluating forecasts of integrated series
324
Theiľs
tZ-statistic
324
Bibliographical and Computational Notes
325
Concepts for Review
326
References and Additional Readings
326
Chapter
Ą
Volatility Measurement,
Modeling, and Forecasting
■ 329
1.
The Basic ARCH Process
330
2.
The GARCH Process
333
3.
Extensions of ARCH and GARCH Models
337
4.
Estimating, Forecasting, and Diagnosing GARCH Models
340
5.
Application: Stock Market Volatility
341
Exercises, Problems, and Complements
349
Removing conditional mean dynamics before modeling
volatility dynamics
349
Variations on the basic ARCH and GARCH models
349
Empirical performance of pure ARCH models as approximations
to volatility dynamics
349
Direct modeling of volatility proxies
350
GARCH volatility forecasting
350
Assessing volatility dynamics in observed returns and in
standardized returns
350
Allowing for leptokurtic conditional densities
351
Optimal prediction under asymmetric loss
351
Multivariate GARCH models
351
Bibliographical and Computational Notes
352
Concepts for Review
352
References and Additional Readings
353
Bibliography
355
Name Index
361
Subject Index
363
|
adam_txt |
PART I:
GETTINO
STARTED
Chapter·
!:
Intraductian to Forecasting; Applications,
Methods, Banks, Journals, and SoftwarB
1
1.
Forecasting in Action
1
2.
Forecasting Methods: An Overview of the Book
3
3.
Useful Books, Journals, Software, and Online Information
6
4.
Looking Ahead
9
Exercises, Problems, and Complements
9
Forecasting in daily life: We are all forecasting, all the time
9
Forecasting in business, finance, economics, and government
9
The basic forecasting framework
10
Degrees of forecastability
10
Data on the web
10
Univariate and multivariate forecasting models
10
Concepts for Review
11
References and Additional Readings
11
Chapter
2:
Â
Brief Review of Probability, Statistics,
and Regression far Forecasting
13
1.
Why This Chapter?
13
2.
Random Variables, Distributions, and Moments
14
3.
Multivariate Random Variables
15
4.
Statistics
16
5.
Regression Analysis
18
Exercises,
Problems,
and Complements
Interpreting distributions and densities
Covariance and correlation
Conditional expectations versus linear projections
Conditional mean and variance
Scatterplots and regression lines
Desired values of regression diagnostic statistics
Mechanics of fitting a linear regression
Regression with and without a constant term
Interpreting coefficients and variables
Nonlinear least squares
Regression semantics
Bibliographical and Computational Notes
Concepts for Review
References and Additional Readings
Chapter
3:
Six Considerations Basic to Successful
Forecasting
1.
The Decision Environment and Loss Function
2.
The Forecast Object
3.
The Forecast Statement
4.
The Forecast Horizon
5.
The Information Set
6.
Methods and Complexity, the Parsimony Principle,
and the Shrinkage Principle
7.
Concluding Remarks
Exercises, Problems, and Complements
Data and forecast timing conventions
Properties of loss functions
Relationships among point, interval, and density forecasts
Forecasting at short through long horizons
Forecasting as an ongoing process in organizations
Assessing forecasting situations
Bibliographical and Computational Notes
Concepts for Review
References and Additional Readings
PART II: BUILDING, USING, AND EVALUATING
FORECASTING MODELS
Chapter
4:
Statistical Graphics for Forecasting
1.
The Power of Statistical Graphics
2.
Simple Graphical Techniques
3.
Elements of Graphical Style
4.
Application:
Graphing Four Components of Real GDP
63
5.
Concluding Remarks
66
Exercises, Problems, and Complements
67
Outliers
67
Simple versus partial correlation
67
Graphical regression diagnostic
1:
time series plot of yt, yt, and et
67
2
Graphical regression diagnostic
2:
time series plot of et or \et\
68
Graphical regression diagnostic
3:
scatterplot of et versus xt
68
Graphical analysis of foreign exchange rate data
68
Common scales
69
Graphing real GDP, continued from Section
4 69
Color
69
Regression, regression diagnostics, and regression graphics in action
69
Bibliographical and Computational Notes
70
Concepts for Review
71
References and Additional Readings
71
Chapter
5:
Modeling and Farenasting
Trend
72
1.
Modeling Trend
72
2.
Estimating Trend Models
80
3.
Forecasting Trend
81
4.
Selecting Forecasting Models Using the
Akaiké
and
Schwarz
Criteria
82
5.
Application: Forecasting Retail Sales
87
Exercises, Problems, and Complements
94
Calculating forecasts from trend models
94
Identifying and testing trend models
94
Understanding model selection criteria
94
Mechanics of trend estimation and forecasting
95
Properties of polynomial trends
95
Specialized nonlinear trends
95
Moving average smoothing for trend estimation
95
Bias corrections when forecasting from logarithmic models
96
Model selection for long-horizon forecasting
97
The variety of "information criteria" reported across software packages
97
Bibliographical and Computational Notes
97
Concepts for Review
98
References and Additional Readings
98
Chapter B: Modelling and Forecasting SHasonality
93
1.
The Nature and Sources of Seasonality
99
2.
Modeling Seasonality
101
3.
Forecasting Seasonal Series
103
4.
Application: Forecasting Housing Starts
104
Exercises,
Problems,
and Complements
108
Log transformations in seasonal models
108
Seasonal adjustment
108
Selecting forecasting models involving calendar effects
108
Testing for seasonality
109
Seasonal regressions with an intercept and
s
— 1
seasonal dummies
109
Applied trend and seasonal modeling
109
Periodic models
109
Interpreting dummy variables
110
Constructing seasonal models
110
Calendar effects
110
Bibliographical and Computational Notes 111
Concepts for Review 111
References and Additional Readings 111
Chapter
7;
Characterizing Cycles
912
1.
Covariance Stationary Time Series
113
2.
White Noise
117
3.
The Lag Operator
123
4.
Wold's Theorem, the General Linear Process,
and Rational Distributed Lags
124
5.
Estimation and Inference for the Mean, Autocorrelation, and Partial
Autocorrelation Functions
127
6.
Application: Characterizing Canadian Employment Dynamics
130
Exercises, Problems, and Complements
132
Lag operator expressions
1 132
Lag operator expressions
2 133
Autocorrelation functions of covariance stationary series
133
Autocorrelation vs. partial autocorrelation
133
Conditional and unconditional means
133
White noise residuals
133
Selecting an employment forecasting model with the AIC and SIC
134
Simulation of a time series process
134
Sample autocorrelation functions for trending series
134
Sample autocorrelation functions for seasonal series
134
Volatility dynamics: correlograms of squares
135
Bibliographical and Computational Notes
135
Concepts for Review
135
References and Additional Readings
136
Chapter
8;
Modeling Cycles: MA,
AR,
and
ARMA
Models
137
1.
Moving Average (MA) Models
138
2. Autoregressive (AR)
Models
145
3.
Autoregressive
Moving Average
(ARMA)
Models
152
4.
Application:
Specifying and Estimating Models
for Employment Forecasting
154
Exercises, Problems, and Complements
163
ARMA lag
inclusion
163
Shapes of correlograms
163
The autocovariance function of the MA(1) process, revisited
163
ARMA
algebra
163
Diagnostic checking of model residuals
163
Mechanics of fitting
ARMA
models
165
Modeling cyclical dynamics
165
Aggregation and disaggregation: top-down forcasting model
vs. bottom-up forecasting model
165
Nonlinear forecasting models: regime switching
165
Difficulties with nonlinear optimization
166
Bibliographical and Computational Notes
167
Concepts for Review
168
References and Additional Readings
169
Chapter
Э;
Forecasting Cycles
171
1.
Optimal Forecasts
171
2.
Forecasting Moving Average Processes
172
3.
Making the Forecasts Operational
176
4.
The Chain Rule of Forecasting
177
5.
Application: Forecasting Employment
180
Exercises, Problems, and Complements
184
Forecast accuracy across horizons
184
Mechanics of forecasting with
ARMA
models: Bankwire continued
184
Forecasting an AR(1) process with known and unknown parameters
185
Forecasting an ARMA(2,
2)
process
185
Optimal forecasting under asymmetric loss
186
Truncation of infinite distributed lags, state space representations,
and the
Kalman
filter
187
Point and interval forecasts allowing for serial correlation
—
Nile.com continued
187
Bootstrapping simulation to acknowledge innovation distribution
uncertainty and parameter estimation uncertainty
188
Bibliographical and Computational Notes
189
Concepts for Review
190
References and Additional Readings
190
Chapter ID; Putting It All Together;
Â
Forecasting
Model with Trend, Seasonal and Cyclical Components
131
1.
Assembling What We've Learned
191
2.
Application: Forecasting Liquor Sales
193
3.
Recursive Estimation Procedures for Diagnosing
and Selecting Forecasting Models
207
4.
Liquor Sales, Continued
212
Exercises, Problems, and Complements
214
Serially correlated disturbances vs. lagged dependent variables
214
Assessing the adequacy of the liquor sales forecasting model
trend specification
214
Improving
non
trend aspects of the liquor sales forecasting model
214
CUSUM analysis of the housing starts model
215
Model selection based on simulated forecasting performance
215
Seasonal models with time-varying parameters: forecasting
AirSpeed passenger-miles
215
Formal models of unobserved components
216
The restrictions associated with unobserved-components structures
216
Additive unobserved-components decomposition and multiplicative
unobserved-components decomposition
217
Signal, noise, and overfitting
217
Bibliographical and Computational Notes
217
Concepts for Review
218
References and Additional Readings
218
Chapter
11:
Forecasting with
Regression
Models
21Э
1.
Conditional Forecasting Models and Scenario Analysis
220
2.
Accounting for Parameter Uncertainty in Confidence
Intervals for Conditional Forecasts
220
3.
Unconditional Forecasting Models
223
4.
Distributed Lags, Polynomial Distributed Lags,
and Rational Distributed Lags
224
5.
Regressions with Lagged Dependent Variables, Regressions with
ARMA
Disturbances, and Transfer Function Models
225
6.
Vector
Autoregressions 228
7.
Predictive Causality
230
8.
Impulse-Response Functions and Variance Decompositions
231
9.
Application: Housing Starts and Completions
235
Exercises, Problems, and Complements
249
Econometrics, time series analysis, and forecasting
249
Forecasting crop yields
249
Regression forecasting models with expectations, or anticipatory, data
249
Business cycle analysis and forecasting: expansions, contractions,
turning points, and leading indicators
250
Subjective information, Bayesian VARs, and the Minnesota prior
251
Housing starts and completions, continued
251
Nonlinear regression models
1:
functional form and Ramsey's test
251
Nonlinear regression models
2:
logarithmic regression models
252
Nonlinear regression models
3:
neural networks
252
Spurious regression
253
Comparative forecasting performance of
VAR
and univariate models
254
Bibliographical and Computational Notes
254
Concepts for Review
255
References and Additional Readings
255
Chapter·
12;
Evaluating and Combining Forecasts
257
1.
Evaluating a Single Forecast
257
2.
Evaluating Two or More Forecasts: Comparing Forecast Accuracy
260
3.
Forecast Encompassing and Forecast Combination
263
4.
Application: OverSea Shipping Volume
on the Atlantic East Trade Lane
268
Exercises, Problems, and Complements
280
Forecast evaluation in action
280
Forecast error analysis
280
Combining forecasts
280
Quantitative forecasting, judgmental forecasting, forecast
combination, and shrinkage
281
The algebra of forecast combination
281
The mechanics of practical forecast evaluation and combination
282
What are we forecasting? Preliminary series, revised series,
and the limits to forecast accuracy
282
Ex post versus real-time forecast evaluation
283
What do we know about the accuracy of
macroeconomic
forecasts?
283
Forecast evaluation when realizations are unobserved
283
Forecast error variances in models with estimated parameters
283
The empirical success of forecast combination
284
Forecast combination and the Box-Jenkins paradigm
284
Consensus forecasts
285
The Delphi method for combining experts' forecasts
285
Bibliographical and Computational Notes
285
Concepts for Review
286
References and Additional Readings
286
PART III: MORE ADVANCED TOPICS
Chapter·
13;
Unit Roots, Stochastic Trends, ARIMA
Forecasting
Modais,
and Smoothing
■
2BS
1.
Stochastic Trends and Forecasting
288
2.
Unit Roots: Estimation and Testing
295
3.
Application: Modeling and Forecasting the Yen/Dollar Exchange Rate
302
4.
Smoothing
312
5.
Exchange Rates, Continued
318
Exercises, Problems, and Complements
320
Modeling and forecasting the
deutschemark/
dollar
(DEM/USD) exchange rate
320
Housing starts and completions, continued
320
АШМА
models, smoothers, and shrinkage
320
Using stochastic trend unobserved-components models to
implement smoothing techniques in a probabilistic framework
320
Automatic ARIMA modeling
321
The multiplicative seasonal ARIMA^,
d, q) x (P, D, Q) model
321
The Dickey-Fuller regression in the
AR(2)
case
321
Holt-Winters smoothing with multiplicative seasonality
322
Cointegration
323
Error correction
323
Forecast encompassing tests for
/(1)
series
324
Evaluating forecasts of integrated series
324
Theiľs
tZ-statistic
324
Bibliographical and Computational Notes
325
Concepts for Review
326
References and Additional Readings
326
Chapter
\Ą\
Volatility Measurement,
Modeling, and Forecasting
■ 329
1.
The Basic ARCH Process
330
2.
The GARCH Process
333
3.
Extensions of ARCH and GARCH Models
337
4.
Estimating, Forecasting, and Diagnosing GARCH Models
340
5.
Application: Stock Market Volatility
341
Exercises, Problems, and Complements
349
Removing conditional mean dynamics before modeling
volatility dynamics
349
Variations on the basic ARCH and GARCH models
349
Empirical performance of pure ARCH models as approximations
to volatility dynamics
349
Direct modeling of volatility proxies
350
GARCH volatility forecasting
350
Assessing volatility dynamics in observed returns and in
standardized returns
350
Allowing for leptokurtic conditional densities
351
Optimal prediction under asymmetric loss
351
Multivariate GARCH models
351
Bibliographical and Computational Notes
352
Concepts for Review
352
References and Additional Readings
353
Bibliography
355
Name Index
361
Subject Index
363 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Diebold, Francis X. 1959- |
author_GND | (DE-588)123909104 |
author_facet | Diebold, Francis X. 1959- |
author_role | aut |
author_sort | Diebold, Francis X. 1959- |
author_variant | f x d fx fxd |
building | Verbundindex |
bvnumber | BV022537221 |
callnumber-first | H - Social Science |
callnumber-label | H61 |
callnumber-raw | H61.4 |
callnumber-search | H61.4 |
callnumber-sort | H 261.4 |
callnumber-subject | H - Social Science |
classification_rvk | QH 300 QH 330 QP 325 |
ctrlnum | (OCoLC)77258238 (DE-599)DNB 2006909336 |
dewey-full | 003.2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 003 - Systems |
dewey-raw | 003.2 |
dewey-search | 003.2 |
dewey-sort | 13.2 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Wirtschaftswissenschaften |
discipline_str_mv | Informatik Wirtschaftswissenschaften |
edition | 4. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02666nam a2200661zc 4500</leader><controlfield tag="001">BV022537221</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090309 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070731s2007 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006909336</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">032432359X</subfield><subfield code="9">0-324-32359-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0324359047</subfield><subfield code="9">0-324-35904-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780324323597</subfield><subfield code="9">978-0-324-32359-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780324359046</subfield><subfield code="9">978-0-324-35904-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77258238</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB 2006909336</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-945</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-N2</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">H61.4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">003.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 300</subfield><subfield code="0">(DE-625)141566:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 330</subfield><subfield code="0">(DE-625)141569:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 325</subfield><subfield code="0">(DE-625)141857:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Diebold, Francis X.</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)123909104</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of forecasting</subfield><subfield code="c">Francis X. Diebold</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">4. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Mason, Ohio</subfield><subfield code="b">Thomson/South-Western</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 366 S.</subfield><subfield code="b">zahlr. graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting</subfield><subfield code="x">Statistical methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Forecasting</subfield><subfield code="v">Problems, exercises, etc</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ökonometrie</subfield><subfield code="0">(DE-588)4132280-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-188</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Wirtschaft</subfield><subfield code="0">(DE-588)4066399-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Prognose</subfield><subfield code="0">(DE-588)4047390-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Regressionsanalyse</subfield><subfield code="0">(DE-588)4129903-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/fy0707/2006909336.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015743718&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015743718</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV022537221 |
illustrated | Illustrated |
index_date | 2024-07-02T18:08:49Z |
indexdate | 2024-07-09T20:59:45Z |
institution | BVB |
isbn | 032432359X 0324359047 9780324323597 9780324359046 |
language | English |
lccn | 2006909336 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015743718 |
oclc_num | 77258238 |
open_access_boolean | |
owner | DE-945 DE-739 DE-1050 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-573 DE-11 DE-188 DE-523 DE-N2 |
owner_facet | DE-945 DE-739 DE-1050 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-573 DE-11 DE-188 DE-523 DE-N2 |
physical | XVIII, 366 S. zahlr. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Thomson/South-Western |
record_format | marc |
spelling | Diebold, Francis X. 1959- Verfasser (DE-588)123909104 aut Elements of forecasting Francis X. Diebold 4. ed. Mason, Ohio Thomson/South-Western 2007 XVIII, 366 S. zahlr. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Forecasting Statistical methods Forecasting Problems, exercises, etc Statistik (DE-588)4056995-0 gnd rswk-swf Wirtschaft (DE-588)4066399-1 gnd rswk-swf Prognose (DE-588)4047390-9 gnd rswk-swf Prognoseverfahren (DE-588)4358095-6 gnd rswk-swf Ökonometrie (DE-588)4132280-0 gnd rswk-swf Regressionsanalyse (DE-588)4129903-6 gnd rswk-swf Prognose (DE-588)4047390-9 s Ökonometrie (DE-588)4132280-0 s DE-604 Prognoseverfahren (DE-588)4358095-6 s Statistik (DE-588)4056995-0 s DE-188 Wirtschaft (DE-588)4066399-1 s 1\p DE-604 Regressionsanalyse (DE-588)4129903-6 s 2\p DE-604 http://www.loc.gov/catdir/toc/fy0707/2006909336.html Table of contents only Digitalisierung UB Passau application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015743718&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Diebold, Francis X. 1959- Elements of forecasting Forecasting Statistical methods Forecasting Problems, exercises, etc Statistik (DE-588)4056995-0 gnd Wirtschaft (DE-588)4066399-1 gnd Prognose (DE-588)4047390-9 gnd Prognoseverfahren (DE-588)4358095-6 gnd Ökonometrie (DE-588)4132280-0 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
subject_GND | (DE-588)4056995-0 (DE-588)4066399-1 (DE-588)4047390-9 (DE-588)4358095-6 (DE-588)4132280-0 (DE-588)4129903-6 |
title | Elements of forecasting |
title_auth | Elements of forecasting |
title_exact_search | Elements of forecasting |
title_exact_search_txtP | Elements of forecasting |
title_full | Elements of forecasting Francis X. Diebold |
title_fullStr | Elements of forecasting Francis X. Diebold |
title_full_unstemmed | Elements of forecasting Francis X. Diebold |
title_short | Elements of forecasting |
title_sort | elements of forecasting |
topic | Forecasting Statistical methods Forecasting Problems, exercises, etc Statistik (DE-588)4056995-0 gnd Wirtschaft (DE-588)4066399-1 gnd Prognose (DE-588)4047390-9 gnd Prognoseverfahren (DE-588)4358095-6 gnd Ökonometrie (DE-588)4132280-0 gnd Regressionsanalyse (DE-588)4129903-6 gnd |
topic_facet | Forecasting Statistical methods Forecasting Problems, exercises, etc Statistik Wirtschaft Prognose Prognoseverfahren Ökonometrie Regressionsanalyse |
url | http://www.loc.gov/catdir/toc/fy0707/2006909336.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015743718&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dieboldfrancisx elementsofforecasting |