Negative math: how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Princeton, NJ [u.a.]
Princeton Univ. Press
2006
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | X, 267 S. graph. Darst. |
ISBN: | 0691123098 9780691123097 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022530590 | ||
003 | DE-604 | ||
005 | 20140325 | ||
007 | t | ||
008 | 070726s2006 xxud||| |||| 00||| eng d | ||
010 | |a 2005043377 | ||
020 | |a 0691123098 |9 0-691-12309-8 | ||
020 | |a 9780691123097 |9 978-0-691-12309-7 | ||
035 | |a (OCoLC)63197732 | ||
035 | |a (DE-599)BVBBV022530590 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-83 | ||
050 | 0 | |a QA155 | |
082 | 0 | |a 510 | |
084 | |a SG 590 |0 (DE-625)143069: |2 rvk | ||
084 | |a 11A05 |2 msc | ||
100 | 1 | |a Martínez, Alberto A. |d 1970- |e Verfasser |0 (DE-588)139661190 |4 aut | |
245 | 1 | 0 | |a Negative math |b how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |c Alberto A. Martinez |
264 | 1 | |a Princeton, NJ [u.a.] |b Princeton Univ. Press |c 2006 | |
300 | |a X, 267 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
648 | 7 | |a Geschichte |2 gnd |9 rswk-swf | |
650 | 7 | |a Getaltheorie |2 gtt | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Numbers, Negative | |
650 | 0 | 7 | |a Kreatives Denken |0 (DE-588)4165549-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Ganze Zahl |0 (DE-588)4134668-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Negative Zahl |0 (DE-588)4323942-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Ganze Zahl |0 (DE-588)4134668-3 |D s |
689 | 0 | 1 | |a Negative Zahl |0 (DE-588)4323942-0 |D s |
689 | 0 | 2 | |a Geschichte |A z |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 1 | 1 | |a Kreatives Denken |0 (DE-588)4165549-7 |D s |
689 | 1 | 2 | |a Geschichte |A z |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015737202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015737202 |
Datensatz im Suchindex
_version_ | 1804136640188252160 |
---|---|
adam_text | NEGATIVE MATH HOW MATHEMATICAL RULES CAN BE POSITIVELY BENT AN EASY
INTRODUCTION TO THE STUDY OF DEVELOPING ALGEBRAIC RULES TO DESCRIBE
RELATIONS AMONG THINGS ALBERTO A. MARTINEZ PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD CONTENTS FIGURES CHAPTER 1 CHAPTER 2 CHAPTER 3
CHAPTER 4 CHAPTER 5 CHAPTER 6 INTRODUCTION THE PROBLEM HISTORY: MUCH ADO
ABOUT LESS THAN NOTHING THE SEARCH FOR EVIDENT MEANING HISTORY:
MEANINGFUL AND MEANINGLESS EXPRESSIONS IMPOSSIBLE NUMBERS? HISTORY:
MAKING RADICALLY NEW MATHEMATICS FROM HINDSIGHT TO CREATIVITY MATH IS
RATHER FLEXIBLE SOMETIMES -1 IS GREATER THAN ZERO TRADITIONAL
COMPLICATIONS CAN MINUS TIMES MINUS BE MINUS? UNITY IN MATHEMATICS IX 1
10 18 36 43 66 80 104 110 112 115 131 166 VIII - CONTENTS CHAPTER 7
MAKING A MEANINGFUL MATH 17 4 FINDING MEANING 175 DESIGNING NUMBERS AND
OPERATIONS 186 PHYSICAL MATHEMATICS? 220 NOTES 235 FURTHER READING 249
ACKNOWLEDGMENTS 259 INDEX 261
|
adam_txt |
NEGATIVE MATH HOW MATHEMATICAL RULES CAN BE POSITIVELY BENT AN EASY
INTRODUCTION TO THE STUDY OF DEVELOPING ALGEBRAIC RULES TO DESCRIBE
RELATIONS AMONG THINGS ALBERTO A. MARTINEZ PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD CONTENTS FIGURES CHAPTER 1 CHAPTER 2 CHAPTER 3
CHAPTER 4 CHAPTER 5 CHAPTER 6 INTRODUCTION THE PROBLEM HISTORY: MUCH ADO
ABOUT LESS THAN NOTHING THE SEARCH FOR EVIDENT MEANING HISTORY:
MEANINGFUL AND MEANINGLESS EXPRESSIONS IMPOSSIBLE NUMBERS? HISTORY:
MAKING RADICALLY NEW MATHEMATICS FROM HINDSIGHT TO CREATIVITY MATH IS
RATHER FLEXIBLE SOMETIMES -1 IS GREATER THAN ZERO TRADITIONAL
COMPLICATIONS CAN MINUS TIMES MINUS BE MINUS? UNITY IN MATHEMATICS IX 1
10 18 36 43 66 80 104 110 112 115 131 166 VIII - CONTENTS CHAPTER 7
MAKING A MEANINGFUL MATH 17 4 FINDING MEANING 175 DESIGNING NUMBERS AND
OPERATIONS 186 PHYSICAL MATHEMATICS? 220 NOTES 235 FURTHER READING 249
ACKNOWLEDGMENTS 259 INDEX 261 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Martínez, Alberto A. 1970- |
author_GND | (DE-588)139661190 |
author_facet | Martínez, Alberto A. 1970- |
author_role | aut |
author_sort | Martínez, Alberto A. 1970- |
author_variant | a a m aa aam |
building | Verbundindex |
bvnumber | BV022530590 |
callnumber-first | Q - Science |
callnumber-label | QA155 |
callnumber-raw | QA155 |
callnumber-search | QA155 |
callnumber-sort | QA 3155 |
callnumber-subject | QA - Mathematics |
classification_rvk | SG 590 |
ctrlnum | (OCoLC)63197732 (DE-599)BVBBV022530590 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
era | Geschichte gnd |
era_facet | Geschichte |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02092nam a2200553zc 4500</leader><controlfield tag="001">BV022530590</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140325 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070726s2006 xxud||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2005043377</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691123098</subfield><subfield code="9">0-691-12309-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691123097</subfield><subfield code="9">978-0-691-12309-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)63197732</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022530590</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA155</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SG 590</subfield><subfield code="0">(DE-625)143069:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11A05</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Martínez, Alberto A.</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)139661190</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Negative math</subfield><subfield code="b">how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things</subfield><subfield code="c">Alberto A. Martinez</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, NJ [u.a.]</subfield><subfield code="b">Princeton Univ. Press</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 267 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Getaltheorie</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numbers, Negative</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreatives Denken</subfield><subfield code="0">(DE-588)4165549-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ganze Zahl</subfield><subfield code="0">(DE-588)4134668-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Negative Zahl</subfield><subfield code="0">(DE-588)4323942-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ganze Zahl</subfield><subfield code="0">(DE-588)4134668-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Negative Zahl</subfield><subfield code="0">(DE-588)4323942-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Kreatives Denken</subfield><subfield code="0">(DE-588)4165549-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015737202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015737202</subfield></datafield></record></collection> |
id | DE-604.BV022530590 |
illustrated | Illustrated |
index_date | 2024-07-02T18:06:29Z |
indexdate | 2024-07-09T20:59:37Z |
institution | BVB |
isbn | 0691123098 9780691123097 |
language | English |
lccn | 2005043377 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015737202 |
oclc_num | 63197732 |
open_access_boolean | |
owner | DE-703 DE-83 |
owner_facet | DE-703 DE-83 |
physical | X, 267 S. graph. Darst. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Princeton Univ. Press |
record_format | marc |
spelling | Martínez, Alberto A. 1970- Verfasser (DE-588)139661190 aut Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things Alberto A. Martinez Princeton, NJ [u.a.] Princeton Univ. Press 2006 X, 267 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Geschichte gnd rswk-swf Getaltheorie gtt Mathematik Mathematics Numbers, Negative Kreatives Denken (DE-588)4165549-7 gnd rswk-swf Ganze Zahl (DE-588)4134668-3 gnd rswk-swf Negative Zahl (DE-588)4323942-0 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Ganze Zahl (DE-588)4134668-3 s Negative Zahl (DE-588)4323942-0 s Geschichte z DE-604 Mathematik (DE-588)4037944-9 s Kreatives Denken (DE-588)4165549-7 s HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015737202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Martínez, Alberto A. 1970- Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things Getaltheorie gtt Mathematik Mathematics Numbers, Negative Kreatives Denken (DE-588)4165549-7 gnd Ganze Zahl (DE-588)4134668-3 gnd Negative Zahl (DE-588)4323942-0 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4165549-7 (DE-588)4134668-3 (DE-588)4323942-0 (DE-588)4037944-9 |
title | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |
title_auth | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |
title_exact_search | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |
title_exact_search_txtP | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |
title_full | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things Alberto A. Martinez |
title_fullStr | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things Alberto A. Martinez |
title_full_unstemmed | Negative math how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things Alberto A. Martinez |
title_short | Negative math |
title_sort | negative math how mathematical rules can be positively bent an easy introduction to the study of developing algebraic rules to describe relations among things |
title_sub | how mathematical rules can be positively bent ; an easy introduction to the study of developing algebraic rules to describe relations among things |
topic | Getaltheorie gtt Mathematik Mathematics Numbers, Negative Kreatives Denken (DE-588)4165549-7 gnd Ganze Zahl (DE-588)4134668-3 gnd Negative Zahl (DE-588)4323942-0 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Getaltheorie Mathematik Mathematics Numbers, Negative Kreatives Denken Ganze Zahl Negative Zahl |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015737202&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT martinezalbertoa negativemathhowmathematicalrulescanbepositivelybentaneasyintroductiontothestudyofdevelopingalgebraicrulestodescriberelationsamongthings |