Cell cycle control and plant development:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Blackwell
2007
|
Ausgabe: | 1. publ. |
Schriftenreihe: | Annual plant reviews
32 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 364 S. Ill., graph. Darst. |
ISBN: | 1405150432 9781405150439 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV022506910 | ||
003 | DE-604 | ||
005 | 20080222 | ||
007 | t | ||
008 | 070711s2007 xxuad|| |||| 00||| eng d | ||
010 | |a 2006048022 | ||
020 | |a 1405150432 |c alk. paper |9 1-4051-5043-2 | ||
020 | |a 9781405150439 |9 978-1-4051-5043-9 | ||
035 | |a (OCoLC)77047871 | ||
035 | |a (DE-599)BVBBV022506910 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-M49 |a DE-19 |a DE-29T |a DE-11 | ||
050 | 0 | |a QK725 | |
082 | 0 | |a 571.8/4929 | |
084 | |a WE 2500 |0 (DE-625)148269: |2 rvk | ||
084 | |a WN 1800 |0 (DE-625)150985: |2 rvk | ||
084 | |a BIO 456f |2 stub | ||
084 | |a BIO 470f |2 stub | ||
245 | 1 | 0 | |a Cell cycle control and plant development |c edited by Dirk Inzé |
250 | |a 1. publ. | ||
264 | 1 | |a Oxford [u.a.] |b Blackwell |c 2007 | |
300 | |a XVIII, 364 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Annual plant reviews |v 32 | |
650 | 4 | |a Kinases dépendantes des cyclines | |
650 | 4 | |a Plantes - Cellules et tissus - Croissance - Régulation | |
650 | 4 | |a Plantes - Cycle cellulaire | |
650 | 4 | |a Plant cell cycle | |
650 | 4 | |a Cyclin-dependent kinases | |
650 | 4 | |a Plant cells and tissues |x Growth |x Regulation | |
650 | 0 | 7 | |a Zellwachstum |0 (DE-588)4190674-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zellzyklus |0 (DE-588)4129960-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pflanzenzelle |0 (DE-588)4115551-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pflanzenzelle |0 (DE-588)4115551-8 |D s |
689 | 0 | 1 | |a Zellzyklus |0 (DE-588)4129960-7 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Pflanzenzelle |0 (DE-588)4115551-8 |D s |
689 | 1 | 1 | |a Zellwachstum |0 (DE-588)4190674-3 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Inzé, Dirk |e Sonstige |4 oth | |
830 | 0 | |a Annual plant reviews |v 32 |w (DE-604)BV012859776 |9 32 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015713885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015713885 |
Datensatz im Suchindex
_version_ | 1804136608092389376 |
---|---|
adam_text | Contents
Contributors xüi
Preface xvii
1 The growing family of plant cyclin-dependent kinases with
multiple functions in cellular and developmental regulation 1
DENES DUDITS, MÂTYÂS CSERHÄTI, PAL MISKOLCZI
AND GABOR V. HORVÄTH
1.1 Introduction 1
1.2 Structural diversity in the family of plant CDKs 2
1.3 Expression profiles of CDK genes: structures and functions
of promoters 14
1.4 Diverse functions of CDK protein complexes in multiple
regulatory mechanisms 20
1.5 Developmental consequences of altered CDK functions 24
1.6 Perspectives 25
Acknowledgments 25
References 26
2 The plant cyclins 31
JEROEN NIEUWLAND, MARGIT MENGES AND
JAMES A.H. MURRAY
2.1 Introduction 31
2.1.1 Cyclins and the cell cycle oscillator 31
2.2 The plant cyclin family 32
2.2.1 Phylogenetic relationships between animal
and plant cyclins 33
2.2.2 Cyclin domains 34
2.2.3 A-type cyclins 34
2.2.4 B-type cyclins 40
2.2.5 D-type cyclins 41
2.2.6 Other cyclins 42
2.3 Expression of cyclins during the cell cycle 47
2.3.1 The G1 checkpoint 47
2.3.2 S phase 48
2.3.3 G2-M 49
2.4 Cyclins in plant development 49
2.5 Concluding remarks 53
vi CONTENTS
Acknowledgments 54
References 54
3 CDK inhibitors 62
HONG WANG, YONGMING ZHOU, JUAN ANTONIO
TORRES ACOSTA AND LARRY C. FOWKE
3.1 Introduction 62
3.2 Plant CDK inhibitors and sequence uniqueness 64
3.3 Expression 66
3.4 Interactions with cell cycle proteins and CDK inhibition 68
3.5 Protein stability and modifications 71
3.6 Cellular localization 72
3.7 CDK inhibitors and plant growth and development 74
3.8 Cell cycle phase transitions 77
3.9 Cell cycle exit and endoreduplication 78
3.10 Concluding remarks 80
Notes added at proofing stage 82
Acknowledgments 82
References 82
4 The UPS: an engine that drives the cell cycle 87
PASCAL GENSCHIK AND MARIE CLAIRE CRIQUI
4.1 The molecular machinery mediating ubiquitin-dependent
proteolysis 87
4.1.1 Ubiquitylation reaction 87
4.1.2 Ubiquitin protein ligases 89
4.2 The SCF and APC/C: the two master E3s regulating
the cell cycle 89
4.2.1 The SCF: an E3 regulating the G1/S transition 90
4.2.2 The APC/C: the E3 coordinating cell cycle
progression through mitosis and G1 90
4.3 Cell cycle targets of the proteolytic machinery 92
4.3.1 The transition from Gl to S phase 92
4.3.2 Regulators that control DNA replication licensing 95
4.3.3 Metaphase to anaphase transition 98
4.3.4 Mitotic cyclin destruction: the essential step to exit
mitosis 99
4.3.5 APC™020 versus APCCDH^CCS52 101
4.3.6 Regulation of endoreduplication by the APC/C 103
4.4 Conclusion 104
References 104
5 CDK phosphorylation 114
AKIE SHIMOTOHNO AND MASAAKIUMEDA
5.1 Introduction 114
5.2 Overview of CAKs in yeasts and vertebrates 116
CONTENTS vii
5.3 Vertebrate-type CAK in plants 117
5.3.1 CDKD, cyclin H and MAT1 117
5.3.2 CDKD protein complexes 119
5.3.3 CDKD in cell cycle regulation and transcriptional
control 120
5.4 Plant-specific CAK 121
5.4.1 Unique features of CDKF 121
5.4.2 CAK-activating kinase activity of CDKF 122
5.5 Manipulation of in vivo CDK activities by CAK 124
5.6 Inhibitory phosphorylation of yeast and vertebrate CDKs 125
5.7 Inhibitory phosphorylation of plant CDKs 126
5.7.1 Plant WEE 1 kinases 126
5.7.2 Requirement for tyrosine dephosphorylation in plant
cell division 127
5.7.3 A CDC25-like phosphatase and an antiphosphatase in
Arabidopsis 129
5.8 Conclusion and perspectives 130
Acknowledgments 131
References 131
E2F-DP transcription factors 138
ELENA RAMIREZ-PARRA, JUAN CARLOS DEL POZO,
BÉNÉDICTE DESVOYES, MARIA DE LA PAZ SANCHEZ
AND CRISANTO GUTIERREZ
6.1 E2F-DP transcription factors: a historical perspective 138
6.2 Domain organization of E2F-DP proteins 139
6.2.1 DNA-binding and dimerization domains 139
6.2.2 RBR-binding domain 141
6.3 Transcriptional and post-translational regulation of E2F 141
6.3.1 Transcription 141
6.3.2 Phosphorylation 143
6.3.3 Subcellular localization 143
6.3.4 Selective proteolysis of E2F and DP 143
6.4 E2F-DP target genes 144
6.4.1 DNA replication genes 148
6.4.2 Cell cycle genes 151
6.4.3 E2F targets in differentiated cells 152
6.4.4 Genome-wide approaches to identify E2F target
genes 153
6.5 Functional relevance of E2F—DP in development 154
6.6 E2F and epigenetic regulation of gene expression 155
6.7 Concluding remarks: complexity of E2F-dependent
regulation of gene expression 157
Acknowledgments 158
References 158
viii CONTENTS
7 Function of the retinoblastoma-related protein in plants 164
WILHELM GRUISSEM
7.1 Introduction 164
7.2 Retinoblastoma proteins and the tumor suppressor concept 164
7.3 The retinoblastoma pathway is conserved in animals and
plants 165
7.4 Retinoblastoma proteins form complexes with E2F
transcription factors to control entry into the cell cycle 166
7.5 Gl restriction point control is mediated by retinoblastoma
protein phosphorylation 168
7.6 Animal and plant DNA viruses target retinoblastoma proteins
to induce host DNA replication 169
7.7 Information on retinoblastoma protein function in animal
development is still incomplete 169
7.8 Retinoblastoma proteins may have conserved functions in
germline development 171
7.9 Retinoblastoma proteins connect stem cell maintenance to
cell proliferation and differentiation 172
7.10 Perturbation of RBR during leaf development affects cell
proliferation and control of DNA replication 174
7.11 Roles of retinoblastoma proteins in transcription activation
and repression 175
7.12 Retinoblastoma proteins interact with polycomb group
complexes in controlling gene expression 176
7.13 Conclusion 178
Acknowledgments 179
References 179
8 Auxin fuels the cell cycle engine during lateral root initiation 187
STEFFEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN
8.1 Introduction 187
8.2 Cell cycle regulation during lateral root development 188
8.3 Sternness of the xylem pole associated pericycle 189
8.4 Auxin signalling during lateral root initiation 190
8.5 Post-transcriptional feedback mechanisms on auxin signalling 193
8.6 Polar auxin transport defines lateral root boundaries 194
8.7 Cytokinins inhibit lateral root development 195
8.8 Brassinosteroids regulate auxin transport 196
8.9 Light alters auxin sensitivity 197
8.10 Conclusions and perspectives 197
References 198
9 Cell cycle control during leaf development 203
ANDREW J. FLEMING
9.1 Introduction 203
9.2 The cell cycle and cell division during leaf initiation 204
CONTENTS ix
9.2.1 Patterns of the cell cycle and cell division during
leaf initiation 204
9.2.2 Manipulation of the cell cycle and cell division during
leaf initiation 208
9.2.3 The role of the cell cycle and cell division during
leaf initiation 211
9.3 The cell cycle and cell division during leaf growth 212
9.3.1 Patterns of the cell cycle and cell division during
leaf growth 212
9.3.2 Manipulation of the cell cycle and cell division during
leaf growth 214
9.3.3 The role of the cell cycle and cell division during
leaf growth 218
9.4 The cell cycle and cell division during leaf differentiation 218
9.4.1 Patterns of the cell cycle and cell division during
leaf differentiation 218
9.4.2 Manipulation of the cell cycle and cell division during
leaf differentiation 219
9.4.3 The role of the cell cycle and cell division during
leaf differentiation 220
9.5 Conclusions 221
Acknowledgments 222
References 222
10 Physiological relevance and molecular control of the endocycle
in plants 227
KOBE VLIEGHE, DIRK INZÉ AND LIEVEN DE VEYLDER
10.1 Introduction 227
10.2 Occurrence and physiological role of endoreduplication
in nature 227
10.2.1 Endoreduplication in nonplant species 229
10.2.2 Endoreduplication in plants 229
10.3 Molecular control of the endocycle 233
10.4 Environmental and hormonal control of the endocycle 240
10.5 Outlook 241
Acknowledgments 242
References 242
11 Insights into the endocycle from trichome development 249
JOHN C. LARKIN, MATTHEW L. BROWN
AND MICHELLE L. CHURCHMAN
11.1 Introduction 249
11.2 The regulation and cell cycle context of trichome
development 251
11.3 Regulation of endoreduplication during trichome
development 253
X CONTENTS
11.3.1 Control of trichome endoreduplication by
developmental regulators 253
11.3.2 Regulators of the Gl/S transition and S-phase
progression affect endoreduplication levels in
trichomes 256
11.3.3 Inhibitors of trichome endoreduplication levels 257
11.3.4 Genes affecting division potential of developing
trichomes 259
11.4 Conclusions and outlook 261
11.4.1 Basic mechanism of endoreduplication in trichomes
resembles that of other cell types 261
11.4.2 The role of D-cyclins in trichome endoreduplication 262
11.4.3 A speculative model of endoreduplication during
trichome development 263
11.4.4 Open questions and future prospects 265
Acknowledgments 265
References 265
12 Cell cycle control and fruit development 269
CHRISTIAN CHEVALIER
12.1 Introduction 269
12.2 Fruit development: a matter of cell number and cell size 270
12.2.1 Brief description of tomato fruit development 270
12.2.2 Hormonal signalling in fruit set and development 272
12.3 Cell cycle gene expression and fruit development 274
12.3.1 Core cell cycle genes in tomato 274
12.3.2 Expression of cell cycle genes during fruit
development 277
12.3.3 Temporal expression of cell cycle genes in the
different fruit tissues 278
12.4 Altering the cell cycle towards endoreduplication: a key
feature for fruit growth 280
12.4.1 Role of WEE1 in endoreduplication during tomato
fruit development 281
12.4.2 Role of ICK/KRP in endoreduplication during tomato
fruit development 283
12.5 Genetic control of fruit size 285
12.6 Metabolic control of fruit development and growth 286
12.7 Conclusion 288
Acknowledgments 290
References 290
13 Cell cycle and endosperm development 294
PAOLO A. SABELLI, HONG NGUYEN AND BRIAN A. LARKINS
13.1 Introduction 294
13.2 Endosperm development: a cell cycle perspective 294
CONTENTS XI
13.3 Genetic control of endosperm cell proliferation 298
13.4 The cell cycle molecular engine during endosperm
development 301
13.5 Role of CDKA in the endoreduplication cell cycle 302
13.6 Environmental and hormonal control of the cell cycle 303
13.7 Epigenetic control 305
13.8 Perspectives 306
Acknowledgments 307
References 307
14 Hormonal regulation of cell cycle progression and its
role in development 311
PETER C.L. JOHN
14.1 Introduction 311
14.2 Auxin and cytokinin have paramount roles in cell
proliferation control 312
14.3 Growth and cell cycle gene expression induced by auxin and
cytokinin 312
14.4 Does cell cycle progression affect growth? 314
14.5 Division sustains continuation of growth 315
14.6 Localized growth 316
14.7 Hormonal impacts at the Gl/S phase progression 316
14.8 Hormonal impacts at the G2/M phase progression 318
14.9 Roots and shoots provide each other with hormones
essential for division 322
14.10 Cytokinin contributions to stem cell and meristem identity
at the shoot apex 322
14.11 Auxin contributions to stem cell and meristem activity at the
root apex 323
14.12 Hormones and the balance of cell proliferation between root
and shoot 324
14.13 Auxin/cytokinin ratio and initiation of cell proliferation in
lateral meristems 325
14.14 Possible mechanisms for cell cycle response to hormone
concentration and ratio 326
14.15 Cell cycle control in the spacing of lateral organs 328
References 329
15 Cell cycle and environmental stresses 335
CHRISTINE GRANIER, SARAH JANE COOKSON,
FRANCOIS TARDIEU AND BERTRAND MULLER
15.1 Introduction 335
15.2 Environmental stresses affect spatial and temporal patterns
of cell division rate in plant organs 336
XÜ CONTENTS
15.2.1 Spatial and temporal patterns of cell division rate in
plant organs are a useful framework for analyzing
the effects of environmental stresses on cell division 336
15.2.2 Effects of water deficit 338
15.2.3 Salt stress, low nitrogen and low phosphorus
produce similar effects to those due to water deficit 339
15.2.4 Effects of light and CO2 339
15.2.5 Effects of temperature 339
15.3 Coupling and uncoupling of cell division and tissue
expansion in response to environmental conditions 340
15.3.1 Under several circumstances, cell division and tissue
expansion are coupled 340
15.3.2 Uncoupling of cell division and tissue expansion is
revealed by the analysis of cell size in response to
environmental stresses 343
15.3.3 Cessation of cell division could be a cause of
cessation of elongation in roots in response to
environmental stimuli 344
15.4 Environmental stresses cause a blockage at the Gl-S and
G2-M transitions 344
15.4.1 The plant cell cycle can be regulated at multiple
points but it appears that major controls operate at
the Gl-S and G2-M transitions in response to
environmental stresses 345
15.4.2 Evidence that non-stressing temperatures lengthen
cell cycle without necessarily blocking it at specific
checkpoints 346
15.4.3 Environmental stresses affect the CDK activity 346
15.4.4 Controls of the Gl-S and G2-M transitions in
response to environmental stresses depend on the
activation state of the CDK 347
15.5 Endoreduplication and abiotic stresses 347
15.5.1 Effects of water deficit 348
15.5.2 Effects of light and elevated CO2 348
15.5.3 Effects of temperature 349
15.5.4 The role of endoreduplication in adaptation to
abiotic stresses 349
15.6 Conclusion 350
References 351
Index 356
The colour plate section appears after page 76
|
adam_txt |
Contents
Contributors xüi
Preface xvii
1 The growing family of plant cyclin-dependent kinases with
multiple functions in cellular and developmental regulation 1
DENES DUDITS, MÂTYÂS CSERHÄTI, PAL MISKOLCZI
AND GABOR V. HORVÄTH
1.1 Introduction 1
1.2 Structural diversity in the family of plant CDKs 2
1.3 Expression profiles of CDK genes: structures and functions
of promoters 14
1.4 Diverse functions of CDK protein complexes in multiple
regulatory mechanisms 20
1.5 Developmental consequences of altered CDK functions 24
1.6 Perspectives 25
Acknowledgments 25
References 26
2 The plant cyclins 31
JEROEN NIEUWLAND, MARGIT MENGES AND
JAMES A.H. MURRAY
2.1 Introduction 31
2.1.1 Cyclins and the cell cycle oscillator 31
2.2 The plant cyclin family 32
2.2.1 Phylogenetic relationships between animal
and plant cyclins 33
2.2.2 Cyclin domains 34
2.2.3 A-type cyclins 34
2.2.4 B-type cyclins 40
2.2.5 D-type cyclins 41
2.2.6 Other cyclins 42
2.3 Expression of cyclins during the cell cycle 47
2.3.1 The G1 checkpoint 47
2.3.2 S phase 48
2.3.3 G2-M 49
2.4 Cyclins in plant development 49
2.5 Concluding remarks 53
vi CONTENTS
Acknowledgments 54
References 54
3 CDK inhibitors 62
HONG WANG, YONGMING ZHOU, JUAN ANTONIO
TORRES ACOSTA AND LARRY C. FOWKE
3.1 Introduction 62
3.2 Plant CDK inhibitors and sequence uniqueness 64
3.3 Expression 66
3.4 Interactions with cell cycle proteins and CDK inhibition 68
3.5 Protein stability and modifications 71
3.6 Cellular localization 72
3.7 CDK inhibitors and plant growth and development 74
3.8 Cell cycle phase transitions 77
3.9 Cell cycle exit and endoreduplication 78
3.10 Concluding remarks 80
Notes added at proofing stage 82
Acknowledgments 82
References 82
4 The UPS: an engine that drives the cell cycle 87
PASCAL GENSCHIK AND MARIE CLAIRE CRIQUI
4.1 The molecular machinery mediating ubiquitin-dependent
proteolysis 87
4.1.1 Ubiquitylation reaction 87
4.1.2 Ubiquitin protein ligases 89
4.2 The SCF and APC/C: the two master E3s regulating
the cell cycle 89
4.2.1 The SCF: an E3 regulating the G1/S transition 90
4.2.2 The APC/C: the E3 coordinating cell cycle
progression through mitosis and G1 90
4.3 Cell cycle targets of the proteolytic machinery 92
4.3.1 The transition from Gl to S phase 92
4.3.2 Regulators that control DNA replication licensing 95
4.3.3 Metaphase to anaphase transition 98
4.3.4 Mitotic cyclin destruction: the essential step to exit
mitosis 99
4.3.5 APC™020 versus APCCDH^CCS52 101
4.3.6 Regulation of endoreduplication by the APC/C 103
4.4 Conclusion 104
References 104
5 CDK phosphorylation 114
AKIE SHIMOTOHNO AND MASAAKIUMEDA
5.1 Introduction 114
5.2 Overview of CAKs in yeasts and vertebrates 116
CONTENTS vii
5.3 Vertebrate-type CAK in plants 117
5.3.1 CDKD, cyclin H and MAT1 117
5.3.2 CDKD protein complexes 119
5.3.3 CDKD in cell cycle regulation and transcriptional
control 120
5.4 Plant-specific CAK 121
5.4.1 Unique features of CDKF 121
5.4.2 CAK-activating kinase activity of CDKF 122
5.5 Manipulation of in vivo CDK activities by CAK 124
5.6 Inhibitory phosphorylation of yeast and vertebrate CDKs 125
5.7 Inhibitory phosphorylation of plant CDKs 126
5.7.1 Plant WEE 1 kinases 126
5.7.2 Requirement for tyrosine dephosphorylation in plant
cell division 127
5.7.3 A CDC25-like phosphatase and an antiphosphatase in
Arabidopsis 129
5.8 Conclusion and perspectives 130
Acknowledgments 131
References 131
E2F-DP transcription factors 138
ELENA RAMIREZ-PARRA, JUAN CARLOS DEL POZO,
BÉNÉDICTE DESVOYES, MARIA DE LA PAZ SANCHEZ
AND CRISANTO GUTIERREZ
6.1 E2F-DP transcription factors: a historical perspective 138
6.2 Domain organization of E2F-DP proteins 139
6.2.1 DNA-binding and dimerization domains 139
6.2.2 RBR-binding domain 141
6.3 Transcriptional and post-translational regulation of E2F 141
6.3.1 Transcription 141
6.3.2 Phosphorylation 143
6.3.3 Subcellular localization 143
6.3.4 Selective proteolysis of E2F and DP 143
6.4 E2F-DP target genes 144
6.4.1 DNA replication genes 148
6.4.2 Cell cycle genes 151
6.4.3 E2F targets in differentiated cells 152
6.4.4 Genome-wide approaches to identify E2F target
genes 153
6.5 Functional relevance of E2F—DP in development 154
6.6 E2F and epigenetic regulation of gene expression 155
6.7 Concluding remarks: complexity of E2F-dependent
regulation of gene expression 157
Acknowledgments 158
References 158
viii CONTENTS
7 Function of the retinoblastoma-related protein in plants 164
WILHELM GRUISSEM
7.1 Introduction 164
7.2 Retinoblastoma proteins and the tumor suppressor concept 164
7.3 The retinoblastoma pathway is conserved in animals and
plants 165
7.4 Retinoblastoma proteins form complexes with E2F
transcription factors to control entry into the cell cycle 166
7.5 Gl restriction point control is mediated by retinoblastoma
protein phosphorylation 168
7.6 Animal and plant DNA viruses target retinoblastoma proteins
to induce host DNA replication 169
7.7 Information on retinoblastoma protein function in animal
development is still incomplete 169
7.8 Retinoblastoma proteins may have conserved functions in
germline development 171
7.9 Retinoblastoma proteins connect stem cell maintenance to
cell proliferation and differentiation 172
7.10 Perturbation of RBR during leaf development affects cell
proliferation and control of DNA replication 174
7.11 Roles of retinoblastoma proteins in transcription activation
and repression 175
7.12 Retinoblastoma proteins interact with polycomb group
complexes in controlling gene expression 176
7.13 Conclusion 178
Acknowledgments 179
References 179
8 Auxin fuels the cell cycle engine during lateral root initiation 187
STEFFEN VANNESTE, DIRK INZÉ AND TOM BEECKMAN
8.1 Introduction 187
8.2 Cell cycle regulation during lateral root development 188
8.3 Sternness of the xylem pole associated pericycle 189
8.4 Auxin signalling during lateral root initiation 190
8.5 Post-transcriptional feedback mechanisms on auxin signalling 193
8.6 Polar auxin transport defines lateral root boundaries 194
8.7 Cytokinins inhibit lateral root development 195
8.8 Brassinosteroids regulate auxin transport 196
8.9 Light alters auxin sensitivity 197
8.10 Conclusions and perspectives 197
References 198
9 Cell cycle control during leaf development 203
ANDREW J. FLEMING
9.1 Introduction 203
9.2 The cell cycle and cell division during leaf initiation 204
CONTENTS ix
9.2.1 Patterns of the cell cycle and cell division during
leaf initiation 204
9.2.2 Manipulation of the cell cycle and cell division during
leaf initiation 208
9.2.3 The role of the cell cycle and cell division during
leaf initiation 211
9.3 The cell cycle and cell division during leaf growth 212
9.3.1 Patterns of the cell cycle and cell division during
leaf growth 212
9.3.2 Manipulation of the cell cycle and cell division during
leaf growth 214
9.3.3 The role of the cell cycle and cell division during
leaf growth 218
9.4 The cell cycle and cell division during leaf differentiation 218
9.4.1 Patterns of the cell cycle and cell division during
leaf differentiation 218
9.4.2 Manipulation of the cell cycle and cell division during
leaf differentiation 219
9.4.3 The role of the cell cycle and cell division during
leaf differentiation 220
9.5 Conclusions 221
Acknowledgments 222
References 222
10 Physiological relevance and molecular control of the endocycle
in plants 227
KOBE VLIEGHE, DIRK INZÉ AND LIEVEN DE VEYLDER
10.1 Introduction 227
10.2 Occurrence and physiological role of endoreduplication
in nature 227
10.2.1 Endoreduplication in nonplant species 229
10.2.2 Endoreduplication in plants 229
10.3 Molecular control of the endocycle 233
10.4 Environmental and hormonal control of the endocycle 240
10.5 Outlook 241
Acknowledgments 242
References 242
11 Insights into the endocycle from trichome development 249
JOHN C. LARKIN, MATTHEW L. BROWN
AND MICHELLE L. CHURCHMAN
11.1 Introduction 249
11.2 The regulation and cell cycle context of trichome
development 251
11.3 Regulation of endoreduplication during trichome
development 253
X CONTENTS
11.3.1 Control of trichome endoreduplication by
developmental regulators 253
11.3.2 Regulators of the Gl/S transition and S-phase
progression affect endoreduplication levels in
trichomes 256
11.3.3 Inhibitors of trichome endoreduplication levels 257
11.3.4 Genes affecting division potential of developing
trichomes 259
11.4 Conclusions and outlook 261
11.4.1 Basic mechanism of endoreduplication in trichomes
resembles that of other cell types 261
11.4.2 The role of D-cyclins in trichome endoreduplication 262
11.4.3 A speculative model of endoreduplication during
trichome development 263
11.4.4 Open questions and future prospects 265
Acknowledgments 265
References 265
12 Cell cycle control and fruit development 269
CHRISTIAN CHEVALIER
12.1 Introduction 269
12.2 Fruit development: a matter of cell number and cell size 270
12.2.1 Brief description of tomato fruit development 270
12.2.2 Hormonal signalling in fruit set and development 272
12.3 Cell cycle gene expression and fruit development 274
12.3.1 Core cell cycle genes in tomato 274
12.3.2 Expression of cell cycle genes during fruit
development 277
12.3.3 Temporal expression of cell cycle genes in the
different fruit tissues 278
12.4 Altering the cell cycle towards endoreduplication: a key
feature for fruit growth 280
12.4.1 Role of WEE1 in endoreduplication during tomato
fruit development 281
12.4.2 Role of ICK/KRP in endoreduplication during tomato
fruit development 283
12.5 Genetic control of fruit size 285
12.6 Metabolic control of fruit development and growth 286
12.7 Conclusion 288
Acknowledgments 290
References 290
13 Cell cycle and endosperm development 294
PAOLO A. SABELLI, HONG NGUYEN AND BRIAN A. LARKINS
13.1 Introduction 294
13.2 Endosperm development: a cell cycle perspective 294
CONTENTS XI
13.3 Genetic control of endosperm cell proliferation 298
13.4 The cell cycle molecular engine during endosperm
development 301
13.5 Role of CDKA in the endoreduplication cell cycle 302
13.6 Environmental and hormonal control of the cell cycle 303
13.7 Epigenetic control 305
13.8 Perspectives 306
Acknowledgments 307
References 307
14 Hormonal regulation of cell cycle progression and its
role in development 311
PETER C.L. JOHN
14.1 Introduction 311
14.2 Auxin and cytokinin have paramount roles in cell
proliferation control 312
14.3 Growth and cell cycle gene expression induced by auxin and
cytokinin 312
14.4 Does cell cycle progression affect growth? 314
14.5 Division sustains continuation of growth 315
14.6 Localized growth 316
14.7 Hormonal impacts at the Gl/S phase progression 316
14.8 Hormonal impacts at the G2/M phase progression 318
14.9 Roots and shoots provide each other with hormones
essential for division 322
14.10 Cytokinin contributions to stem cell and meristem identity
at the shoot apex 322
14.11 Auxin contributions to stem cell and meristem activity at the
root apex 323
14.12 Hormones and the balance of cell proliferation between root
and shoot 324
14.13 Auxin/cytokinin ratio and initiation of cell proliferation in
lateral meristems 325
14.14 Possible mechanisms for cell cycle response to hormone
concentration and ratio 326
14.15 Cell cycle control in the spacing of lateral organs 328
References 329
15 Cell cycle and environmental stresses 335
CHRISTINE GRANIER, SARAH JANE COOKSON,
FRANCOIS TARDIEU AND BERTRAND MULLER
15.1 Introduction 335
15.2 Environmental stresses affect spatial and temporal patterns
of cell division rate in plant organs 336
XÜ CONTENTS
15.2.1 Spatial and temporal patterns of cell division rate in
plant organs are a useful framework for analyzing
the effects of environmental stresses on cell division 336
15.2.2 Effects of water deficit 338
15.2.3 Salt stress, low nitrogen and low phosphorus
produce similar effects to those due to water deficit 339
15.2.4 Effects of light and CO2 339
15.2.5 Effects of temperature 339
15.3 Coupling and uncoupling of cell division and tissue
expansion in response to environmental conditions 340
15.3.1 Under several circumstances, cell division and tissue
expansion are coupled 340
15.3.2 Uncoupling of cell division and tissue expansion is
revealed by the analysis of cell size in response to
environmental stresses 343
15.3.3 Cessation of cell division could be a cause of
cessation of elongation in roots in response to
environmental stimuli 344
15.4 Environmental stresses cause a blockage at the Gl-S and
G2-M transitions 344
15.4.1 The plant cell cycle can be regulated at multiple
points but it appears that major controls operate at
the Gl-S and G2-M transitions in response to
environmental stresses 345
15.4.2 Evidence that non-stressing temperatures lengthen
cell cycle without necessarily blocking it at specific
checkpoints 346
15.4.3 Environmental stresses affect the CDK activity 346
15.4.4 Controls of the Gl-S and G2-M transitions in
response to environmental stresses depend on the
activation state of the CDK 347
15.5 Endoreduplication and abiotic stresses 347
15.5.1 Effects of water deficit 348
15.5.2 Effects of light and elevated CO2 348
15.5.3 Effects of temperature 349
15.5.4 The role of endoreduplication in adaptation to
abiotic stresses 349
15.6 Conclusion 350
References 351
Index 356
The colour plate section appears after page 76 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022506910 |
callnumber-first | Q - Science |
callnumber-label | QK725 |
callnumber-raw | QK725 |
callnumber-search | QK725 |
callnumber-sort | QK 3725 |
callnumber-subject | QK - Botany |
classification_rvk | WE 2500 WN 1800 |
classification_tum | BIO 456f BIO 470f |
ctrlnum | (OCoLC)77047871 (DE-599)BVBBV022506910 |
dewey-full | 571.8/4929 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 571 - Physiology & related subjects |
dewey-raw | 571.8/4929 |
dewey-search | 571.8/4929 |
dewey-sort | 3571.8 44929 |
dewey-tens | 570 - Biology |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02178nam a2200589zcb4500</leader><controlfield tag="001">BV022506910</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080222 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070711s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006048022</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1405150432</subfield><subfield code="c">alk. paper</subfield><subfield code="9">1-4051-5043-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781405150439</subfield><subfield code="9">978-1-4051-5043-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77047871</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022506910</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-M49</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QK725</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">571.8/4929</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WE 2500</subfield><subfield code="0">(DE-625)148269:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WN 1800</subfield><subfield code="0">(DE-625)150985:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 456f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIO 470f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cell cycle control and plant development</subfield><subfield code="c">edited by Dirk Inzé</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Blackwell</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 364 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annual plant reviews</subfield><subfield code="v">32</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kinases dépendantes des cyclines</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plantes - Cellules et tissus - Croissance - Régulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plantes - Cycle cellulaire</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant cell cycle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cyclin-dependent kinases</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant cells and tissues</subfield><subfield code="x">Growth</subfield><subfield code="x">Regulation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellwachstum</subfield><subfield code="0">(DE-588)4190674-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zellzyklus</subfield><subfield code="0">(DE-588)4129960-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pflanzenzelle</subfield><subfield code="0">(DE-588)4115551-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pflanzenzelle</subfield><subfield code="0">(DE-588)4115551-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zellzyklus</subfield><subfield code="0">(DE-588)4129960-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Pflanzenzelle</subfield><subfield code="0">(DE-588)4115551-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Zellwachstum</subfield><subfield code="0">(DE-588)4190674-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Inzé, Dirk</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annual plant reviews</subfield><subfield code="v">32</subfield><subfield code="w">(DE-604)BV012859776</subfield><subfield code="9">32</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015713885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015713885</subfield></datafield></record></collection> |
id | DE-604.BV022506910 |
illustrated | Illustrated |
index_date | 2024-07-02T17:57:51Z |
indexdate | 2024-07-09T20:59:06Z |
institution | BVB |
isbn | 1405150432 9781405150439 |
language | English |
lccn | 2006048022 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015713885 |
oclc_num | 77047871 |
open_access_boolean | |
owner | DE-703 DE-M49 DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-11 |
owner_facet | DE-703 DE-M49 DE-BY-TUM DE-19 DE-BY-UBM DE-29T DE-11 |
physical | XVIII, 364 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Blackwell |
record_format | marc |
series | Annual plant reviews |
series2 | Annual plant reviews |
spelling | Cell cycle control and plant development edited by Dirk Inzé 1. publ. Oxford [u.a.] Blackwell 2007 XVIII, 364 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Annual plant reviews 32 Kinases dépendantes des cyclines Plantes - Cellules et tissus - Croissance - Régulation Plantes - Cycle cellulaire Plant cell cycle Cyclin-dependent kinases Plant cells and tissues Growth Regulation Zellwachstum (DE-588)4190674-3 gnd rswk-swf Zellzyklus (DE-588)4129960-7 gnd rswk-swf Pflanzenzelle (DE-588)4115551-8 gnd rswk-swf Pflanzenzelle (DE-588)4115551-8 s Zellzyklus (DE-588)4129960-7 s DE-604 Zellwachstum (DE-588)4190674-3 s Inzé, Dirk Sonstige oth Annual plant reviews 32 (DE-604)BV012859776 32 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015713885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Cell cycle control and plant development Annual plant reviews Kinases dépendantes des cyclines Plantes - Cellules et tissus - Croissance - Régulation Plantes - Cycle cellulaire Plant cell cycle Cyclin-dependent kinases Plant cells and tissues Growth Regulation Zellwachstum (DE-588)4190674-3 gnd Zellzyklus (DE-588)4129960-7 gnd Pflanzenzelle (DE-588)4115551-8 gnd |
subject_GND | (DE-588)4190674-3 (DE-588)4129960-7 (DE-588)4115551-8 |
title | Cell cycle control and plant development |
title_auth | Cell cycle control and plant development |
title_exact_search | Cell cycle control and plant development |
title_exact_search_txtP | Cell cycle control and plant development |
title_full | Cell cycle control and plant development edited by Dirk Inzé |
title_fullStr | Cell cycle control and plant development edited by Dirk Inzé |
title_full_unstemmed | Cell cycle control and plant development edited by Dirk Inzé |
title_short | Cell cycle control and plant development |
title_sort | cell cycle control and plant development |
topic | Kinases dépendantes des cyclines Plantes - Cellules et tissus - Croissance - Régulation Plantes - Cycle cellulaire Plant cell cycle Cyclin-dependent kinases Plant cells and tissues Growth Regulation Zellwachstum (DE-588)4190674-3 gnd Zellzyklus (DE-588)4129960-7 gnd Pflanzenzelle (DE-588)4115551-8 gnd |
topic_facet | Kinases dépendantes des cyclines Plantes - Cellules et tissus - Croissance - Régulation Plantes - Cycle cellulaire Plant cell cycle Cyclin-dependent kinases Plant cells and tissues Growth Regulation Zellwachstum Zellzyklus Pflanzenzelle |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015713885&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV012859776 |
work_keys_str_mv | AT inzedirk cellcyclecontrolandplantdevelopment |