Brain control of wakefulness and sleep:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Kluwer Acad./Plenum Publ.
2005
|
Ausgabe: | 2. ed. |
Schlagworte: | |
Online-Zugang: | UBR01 Volltext Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780306487149 9780387262703 |
DOI: | 10.1007/b102230 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV022505170 | ||
003 | DE-604 | ||
005 | 20160426 | ||
007 | cr|uuu---uuuuu | ||
008 | 070711s2005 gw |||| o||u| ||||||eng d | ||
015 | |a 06,N02,1380 |2 dnb | ||
016 | 7 | |a 977519813 |2 DE-101 | |
020 | |a 9780306487149 |9 978-0-306-48714-9 | ||
020 | |a 9780387262703 |c Online |9 978-0-387-26270-3 | ||
024 | 7 | |a 10.1007/b102230 |2 doi | |
024 | 3 | |a 9780306487149 | |
035 | |a (OCoLC)762184685 | ||
035 | |a (DE-599)BVBBV022505170 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 | ||
084 | |a WX 3350 |0 (DE-625)152192:13423 |2 rvk | ||
084 | |a 610 |2 sdnb | ||
245 | 1 | 0 | |a Brain control of wakefulness and sleep |c Mircea Steriade and Robert W. McCarley |
250 | |a 2. ed. | ||
264 | 1 | |a New York, NY |b Kluwer Acad./Plenum Publ. |c 2005 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a Schlaf-Wach-Rhythmus |0 (DE-588)4129651-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zentralnervensystem |0 (DE-588)4067637-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Schlaf-Wach-Rhythmus |0 (DE-588)4129651-5 |D s |
689 | 0 | 1 | |a Zentralnervensystem |0 (DE-588)4067637-7 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Steriade, Mircea |d 1924-2006 |e Sonstige |0 (DE-588)133940306 |4 oth | |
700 | 1 | |a McCarley, Robert W. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-306-48714-4 |
856 | 4 | 0 | |u https://doi.org/10.1007/b102230 |x Verlag |3 Volltext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712169&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SBL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015712169 | ||
966 | e | |u https://doi.org/10.1007/b102230 |l UBR01 |p ZDB-2-SBL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804136605754064896 |
---|---|
adam_text | Contents
Chapter 1
Changing Concepts of Mechanisms of Waking and Sleep States 1
1.1. Pioneering Steps 2
1.2. Definition of States of Vigilance and Activation 11
1.3. Concepts of Passive and Active Mechanisms Promoting Sleep 20
1.3.1. Theories of Passive Sleep 20
1.3.2. Theories of Active Sleep 24
1.4. Centers and Distributed Systems 30
Chapter 2
Methodology of Morphological and Physiological Substrates
Underlying States of Vigilance 35
2.1. Morphological Tools 35
2.1.1. Nissl and Golgi Staining, and Some Recent Developments... 35
2.1.2. Anterograde and Retrograde Tracing Techniques 39
2.1.3. Immunohistochemical Identification of Various
Cell Groups and their Projections 44
2.2. Electrophysiological Methods 48
2.3. Noninvasive Techniques 54
Chapter 3
Afferent and Efferent Connections of Brainstem and
Forebrain Modulatory Systems 55
3.1. Afferents to Brainstem Cholinergic Nuclei and Classical
Reticular Formation Fields 56
3.1.1. Systematization of Cholinergic Nuclei and Nuclei
with Unidentified Neurotransmitters 56
vii
3.1.1.1. Brainstem Cholinergic Nuclei 56
3.1.1.2. Brainstem Reticular Nuclei With
NTS Unidentified Transmitters 61
3.1.2. Afferents from Spinal Cord and Sensory Cranial Nerves .... 63
3.1.3. Afferents from Diencephalon and Telencephalon 68
3.1.3.1. Thalamic Nuclei 68
3.1.3.2. Hypothalamic Areas 72
3.1.3.3. Basal Forebrain and Related Systems 73
3.1.3.4. Neocortical Areas 76
3.1.3.5. Convergent Inputs Onto Single
Brainstem Reticular Neurons 76
3.1.4. Afferents from Intrabrainstem Sources 78
3.1.4.1. Afferents to the Pontine Reticular Formation 78
3.1.4.2. Afferents to the Midbrain and Bulbar
Reticular Formation 82
3.2. Afferents to Brainstem Monoaminergic Nuclei 85
3.2.1. Locus Coeruleus 85
3.2.2. Raphe Nuclei 87
3.2.3. Ventral Tegmental Area 87
3.2.4. TuberomammillaryArea 88
3.3. Afferents to Basal Forebrain Cholinergic Nuclei 88
3.3.1. Systematization of Basal Forebrain Cholinergic Nuclei 88
3.3.2. Afferents to Basal Forebrain Modulatory Systems 89
3.4. Efferent Connections of Brainstem Cholinergic
Nuclei and Classical Reticular Fields 90
3.4.1. Rostral Projections of Cholinergic and
Noncholinergic Reticular Neurons 91
3.4.1.1. Are There Direct Cortical Projections? 91
3.4.1.2. Thalamic Projections 92
3.4.2. Brainstem and Spinal Cord Projections of Mesopontine
Cholinergic and Pontobulbar Nuclei 106
3.4.2.1. Cholinergic Projections to Pontine FTG 106
3.4.2.2. Bulbar and Spinal Cord Cholinergic Projections... 110
3.4.2.3. Brainstem and Spinal Cord Projections
of the Noncholinergic Pontobulbar
Reticular Formation 112
3.4.3. Intrinsic Cellular Morphology and Projections of
Pontine and Bulbar Gigantocellular Fields 117
3.4.3.1. Cell Size Distribution Within the Pontine and
Bulbar FTG 118
3.4.3.2. Morphology of Pontine FTG Neurons 118
3.4.3.3. Pontine FTG Neurons Sending Axons in the
Ipsilateral MLF 119
3.4.3.4. Pontine FTG Neurons Sending Axons
Directly to Bulbar Reticular Formation 119
3.4.3.5. Dendrites 123
3.4.3.6. Morphology of Bulbar FTG Neurons 124
3.4.3.7. Bulbar FTG Neurons Sending Axons into
the Ipsilateral Bulbar Reticular Core 125
3.4.3.8. General Comments on Morphology 127
3.4.3.9. Organization of Bifurcating Axonal Collaterals 128 ,
3.5. Efferent Connections of Monoamine Containing Neurons 128 ix
3.5.1. Norepinephrinergic Systems 128
3.5.2. Serotonergic Systems 130 contents
3.5.3. Dopaminergic Systems 132
3.5.4. Histaminergic Systems 133
3.6. Efferent Connections of Basal Forebrain Nuclei 133
3.6.1. Cortical Projections 133
3.6.2. Thalamic Projections 134
3.6.3. Posterior Hypothalamic Projections 137
Chapter 4
Neuronal Circuits in the Thalamus, Neocortex, and Hippocampus,
Targets of Diffuse Modulatory Systems 139
4.1. Thalamus 141
4.2. Neocortex 145
4.3. Hippocampus and Related Systems 153
Chapter 5
Intrinsic Electrophysiological Properties of Brainstem and
Forebrain Neurons 155
5.1. Medial Pontine Reticular Formation Neurons 156
5.1.1. Neuronal Classes of the Medial PRF: Overview 156
5.1.2. Low and High Threshold Ca2+ Spikes 159
5.1.3. Role of mPRF Neuron Membrane Potential in
Controlling Repetitive Firing Properties and
Implications for Behavior 167
5.2. Pedunculopontine and Laterodorsal Tegmental Nuclei 167
5.3. Neurons of the Locus Coeruleus and the Dorsal Raphe Nucleus 171
5.3.1. Locus Coeruleus Neurons 171
5.3.2. Dorsal Raphe Neurons 175
5.4 Basal Forebrain and Medial Septum Neurons 179
5.5 Thalamic Neurons 179
5.5.1. Thalamocortical Neurons 181
5.5.1.1. The Low Threshold Ca2+ Current 181
5.5.1.2. High Voltage Ca2+ Currents 185
5.5.1.3. Hyperpolarization Activated Cation Current 187
5.5.1.4. Persistent (Noninactivating) Na+ Current 189
5.5.1.5. Voltage and Ca2+ DependentK+
Conductances 189
5.5.1.6. Effects of Synaptic Activities on Some
Intrinsic Properties 191
5.5.2. Local Circuit Inhibitory Cells 191
5.5.3 Thalamic Reticular GABAergic Neurons 194
5.6. Neocortical Neurons 197
5.6.1. Characteristics of Firing Patterns in Four Neuronal
TENTS Types and Underlying Ionic Currents 197
5.6.2. Changes in Firing Patterns During Synaptic Activities
and Shifts in Behavioral State 199
5.7. Entorhinal Cortex, Amygdala, and Hippocampal Neurons 208
5.7.1. Entorhinal Cortex Neurons 208
5.7.2. Amygdala Neurons 208
5.7.3. Hippocampal Neurons 209
Chapter 6
Neurotransmitter Modulated Currents of Brainstem Neurons and
Some of Their Forebrain Targets 211
6.1. Acetylcholine 212
6.1.1. Brainstem 212
6.1.1.1. Medial Pontine Reticular Formation 212
6.1.1.2. Pedunculopontine Tegmental Cholinergic
Neurons 219
6.1.1.3. Locus Coeruleus 219
6.1.2. Basal Forebrain 223
6.1.3. Thalamus 223
6.1.3.1. Thalamocortical Neurons 223
6.1.3.2. Thalamic Reticular Neurons 226
6.1.3.3. Local Interneurons 229
6.1.4. Neocortex 231
6.1.5. Hippocampus 234
6.2. Norepinephrine 236
6.2.1. Brainstem 236
6.2.1.1. Locus Coeruleus 236
6.2.1.2. Dorsal Raphe 243
6.2.1.3. Pontine Reticular Formation 243
6.2.2. Basal Forebrain 244
6.2.3. Thalamus 245
6.2.4. Neocortex and Hippocampus 245
6.3. Serotonin 246
6.3.1. Brainstem 247
6.3.1.1. Dorsal Raphe 247
6.3.1.2. Pontine Reticular Formation and
Facial Motoneurons 248
6.3.1.3. Mesopontine Cholinergic Nuclei 249
6.3.2. Thalamus and Cerebral Cortex 250
6.4. Excitatory Amino Acids 250
6.4.1. Summary of Excitatory Amino Acid Receptor Types 250
6.4.2. Brainstem 253
6.4.2.1. Mesopontine and Bulbar Reticular Formation 253
6.4.2.2. Locus Coeruleus 254 [
6.4.3. Thalamus and Neocortex 254 j
Chapter 7 ^
Synchronized Brain Oscillations Leading to Neuronal Plasticity contents
during Waking and Sleep States 255
7.1. Rhythms during Brain Active States of Waking and REM Sleep 256
7.1.1. Alpha 256
7.1.2. Oscillations during Waking Immobility: The
Sensorimotor Rhythm 257
7.1.3. Theta 259
7.1.4. Fast (Beta/Gamma) and Ultrafast (Ripple) Rhythms 262
7.2. Low Frequency Rhythms during Non REM Sleep 276
7.2.1. Spindles 277
7.2.1.1. Chronology of Spindles and Other
NREM Sleep Rhythms 277
7.2.1.2. Cellular Basis of Spindles 279
7.2.1.3. The Pacemaking Role of Thalamic Reticular
Neurons in Spindle Genesis 284
7.2.1.4. The Role of Neocortex in Synchronizing
and Terminating Spindle Sequences 290
7.2.1.5. Blockage of Spindles by Brainstem
Activating Influxes 295
7.2.2. Two (Thalamic and Neocortical) Components of
Delta Waves 300
7.2.2.1. Clock like Thalamic Delta Rhythm:
Generation, Synchronization, and Suppression.... 300
7.2.2.2. Cortical Delta Waves 304
7.2.3. The Neocortical Slow Oscillation: Its Role in Grouping
NREM Sleep and FastRhythms 305
7.2.3.1. Cellular Basis of the Slow Oscillation 306
7.2.3.2. Intracellular Recording of the Slow
Oscillation during Natural NREM Sleep 310
7.2.3.3. Intracortical Synchronization of Slow Oscillation .. 311
7.2.3.4. Synaptic Reflection of the Slow Oscillation in
Thalamus and Other Structures 314
7.2.3.5. Grouping of Delta, Spindles, and Fast
Oscillations by the Slow Oscillation 318
7.3. Abnormal Oscillations during Non REM Sleep 325
7.3.1. Electrical Seizures Developing from NREM
Sleep Oscillations 325
7.3.2. Burst Suppression 327
7.4. Plastic Changes in Thalamocortical Systems during
Sleep and Waking Oscillations 329
7.4.1. Augmenting or Incremental Responses 330
7.4.2. Plasticity Following Spindles and Their Experimental Model,
Augmenting Responses 335
7.4.3. Potentiation of Cortical Responses Following
Fast Oscillations 343
7.4.4. Concluding Remarks 343
Chapter 8
ENTS Brainstem and State dependency of Thalamocortical Systems 345
8.1. Thalamocortical Neurons 346
8.1.1. Two Modes of Spontaneous Firing During NREM
Sleep and Brain Active States 346
8.1.2. Evoked Potential Studies 347
8.1.3. Extracellular Recordings 351
8.1.4. Intracellular Studies 352
8.1.4.1. Excitatory Responses 352
8.1.4.2. Differential Brainstem Reticular Effects on
Three Phases of Inhibitory Responses 361
8.2. Thalamic Reticular Neurons: Dual Types of Responses 363
8.3. Selective Increase in Cortical Excitability During
Attentional Tasks 371
8.3.1. Event Related Potentials in Humans 373
8.3.2. Neuronal Recordings During Set Dependent «
Tasks in Monkeys 375
8.3.3. Differential Alterations in Two Phases of Inhibitory
Responses During Brain Activation 378
Chapter 9
Neuronal Activities in Brainstem and Basal Forebrain Structures
Controlling Waking and Sleep States 381
9.1. Brainstem Thalamic Neurons Implicated in J
Tonic Electrical Activation of the Cerebrum 382 |
9.1.1. Midbrain Reticular Noncholinergic Neurons 384
9.1.2. Bulbar Reticular Noncholinergic Neurons 384
9.1.3. Mesopontine Cholinergic Neurons 388
9.2. Basal Forebrain Neurons Implicated in Tonic Cortical Activation .. 391
9.3. Brainstem Neurons and the Genesis of
Pontogeniculo(thalamo) cortical Potentials 394
9.3.1. Brainstem Genesis of PGO Waves 395 |
9.3.2. Cellular Mechanisms of Thalamic PGO Waves 402 ,
9.3.3. PGO Related Thalamic Neuronal Activities )
During Natural Sleep 409
Chapter 10
Motor Systems 417
10.1. Saccadic Eye Movements 417
10.1.1. Physiological Properties of Oculomotor Neurons 418
10.1.2. Afferents to Oculomotor Neurons: Lesion Studies 419 i
10.1.3. Efferent Projections of Abducens Neurons 420
f
10.2. Burst Neurons 420 xjji
10.2.1. Burst Neuron Physiology 420
10.2.2. Anatomical Connectivity of Burst Neurons 424 CONTENTS
10.2.2.1. Anatomy of Pontobulbar Reticular
Projections to Abducens 424
10.2.2.2. Nonreticular Brainstem Projections
to Abducens 424
10.2.2.3. Superior Colliculus and Frontal Eye
Field Projections to Reticular Formation 426
10.3. Omnipause Neurons 426
10.4. Tonic Neurons 429
10.5. Saccade Generation: Interaction of Neurons in the Circuit 432
10.5.1. Role of Superior Colliculus in Saccades 433
10.5.2. Saccade Trajectories: Mutable or Immutable? 434
10.5.3. Models of the Saccade Generator 435
10.6. Gaze Control 437
10.7. State Dependent Alterations in Oculomotor System Function 439
10.7.1. Waking to Synchronized Sleep Transitions 439
10.7.2. Activity During REM Sleep 441
10.8. Mechanisms of the Muscle Atonia of REM Sleep: Motoneurons ... 444
10.8.1. Inhibition and Diminished Excitability of
Trigeminal Jaw Closer Motoneurons During
REM Sleep 444
10.8.2. Spinal Alpha Motoneurons During the
Sleep Wake Cycle 446
10.8.2.1. Changes in Membrane Potential of
Alpha Lumbar Motoneurons During
Waking and Sleep 446
10.8.2.2. Hyperpolarizing PSPs in Alpha Lumbar
Motoneurons During Waking and Sleep 447
10.8.2.3. Excitatory Activity in Alpha Lumbar
Motoneurons During Waking and Sleep 450
10.8.2.4. Sources of REM Sleep IPSPs and EPSPs 451
10.9. Central Mechanisms of REM^Sleep Muscle Atonia 452
10.9.1. Lesion Data and REM Without Atonia 452
10.9.2. Electrophysiological Data and REM Muscle Atonia 454
10.9.3. Role of Other Pontine Structures and the
Pharmacology of REM Sleep Muscle Atonia 458
Chapter 11
Neuronal Control of REM Sleep 461
11.1. Introduction and Overview 461
11.2. Brainstem Reticular Neuronal Activity over the
REM Sleep Cycle 462
11.2.1. The View from Extracellular Recordings 464
11.2.2. The View from Intracellular Recordings 467
11.2.2.1. Synchronized Sleep 467
11.2.2.2. Pre REM Sleep Changes: The Transition
Period to REM Sleep, T 468
ENTS 11.2.2.3. REM Sleep 469
11.2.2.4. Wakefulness: The REM Sleep Wake
Transition, and Motor Activity in
Wakefulness 469
11.2.2.5. State Dependent Alterations in
Reticular Excitability 470
11.2.2.6. Summary of Behavioral State Alterations
in the mPRF 470
11.2.3. Sleep Wake Control as Resulting from Modulation
of Excitability in Neuronal Pools 470
11.2.3.1. The Concept 470
11.2.3.2. Experimental Evidence for Modulation
of Excitability in Neuronal Pools 473
11.2.3.2.1. Brainstem Reticular Formation ... 473
11.2.3.2.2. Peripheral Motoneurons 474
11.2.3.2.3. Sensory System Neurons 474
11.2.3.3. Summary of Orchestration of REM Sleep
Components 475
11.2.3.3.1. Rapid Eye Movements 475
11.2.3.3.2. Muscle Atonia 475
11.2.3.3.3. EEG Desynchronization 476
11.2.3.3.4. PGO Waves 476
11.2.3.3.5. Other Components of
REM Sleep 476
11.2.3.4. Approach to Factors Producing
Modulations of Excitability 478
11.2.3.5. Recruitment through Reticuloreticular
Excitatory Connections 478
11.2.3.5.1. Intracellular Evidence on
Recruitment Within the
Reticular Pool 480
11.3. Criteria for Neuromodulation in REM Sleep 480
11.4. Cholinergic Influences on REM Sleep 482
11.4.1. Cholinergic Induction of REM Sleep Like
Phenomena 482
11.4.2. Cholinergic LDT Stimulation Produces
Scopolamine Sensitive EPSPs in mPRF Neurons 485
11.4.3. Cholinergic Unit Activity During Sleep and
Wakefulness 485
11.5. Monoaminergic Influences—REM Off Neurons 488
11.5.1. Raphe Nuclei 488
11.5.2. Locus Coeruleus 490
11.5.3. Do REM Off Neurons Play a Permissive, Disinhibitory
Role in REM Sleep Genesis? 490
11.5.3.1. Dorsal Raphe Discharge and REM
Events: An Inverse Association 490
11.5.3.1.1. Raphe System REM Off Neurons
and PGO Waves 491
11.5.3.2. Suppressing Dorsal Raphe Activity xv
Increases REM Sleep 495
11.5.3.3. LDT/PPT REM On Neurons are CONTENTS
Inhibited by a 5 HT1A Agonist 497
11.5.3.4. Locus Coeruleus Lesions and Cooling
Increase REM Sleep 498
11.5.3.4.1. Locus Coeruleus Cooling
Induces REM Sleep 499
11.5.3.4.2. Site (s) of REM Off and
REM On interaction 501
11.6. GABAergic Influences and REM Sleep 501
11.6.1. Dorsal Raphe Nucleus 502
11.6.1.1. Microdialysis 502
11.6.1.2. Microiontophoresis 503
11.6.2. Locus Coeruleus 505
11.6.2.1. Microdialysis 505
11.6.2.2. Microiontophoresis 506
11.6.3. Source of State Related GABAergic Input to
DRN and LC 506
11.6.3.1. Periaqueductal Gray? 506
11.6.3.2. Ventrolateral Preoptic Area (VLPO) 507
11.6.4. GABA and the Pontine Reticular Formation:
Disinhibition and REM Sleep 507
11.6.4.1. Pharmacological Studies in Cats on
the Behavioral State Effects of GABA Agents... 507
11.6.4.2. Pharmacological Studies in Rats on the
Behavioral State Effects of GABA Agents 508
11.6.4.3. Microdialysis Measurements of GABA in the
Pontine Reticular Formation 509
11.6.5. The Pedunculopontine Tegmental (PPT) Nucleus 509
Chapter 12
REM Sleep as a Biological Rhythm: The Phenomenology and a
Structural and Mathematical Model with Application to Depression 513
12.1. Introduction and Overview 513
12.2. A Structural Model of REM Sleep Organization 513
12.2.1. REM On Neurons and Interaction with Other
Elements in the Model 514
12.2.1.1. REM On Neurons and the Postulate of
Self Excitation (Positive Feedback) and
Exponential Growth—Term a in Fig. 12.1 ... 514
12.2.1.2. Reticular Formation and GABAergic
Influences 516
12.2.2. Excitation of REM Off Neurons by REM On
Neurons (Fig. 12.1 term d ) 517
12.2.3. Inhibition of REM On Neurons by REM Off
Neurons (Fig. 12.1 term b ) 517
12.2.4. Inhibitory Feedback of REM Off Neurons
(Fig. 12.1 term c ) 518
TS 12.2.4.1. GABAergic Influences in the LC and
DRN during REM Sleep 518
12.2.4.2. Source of GABAergic Inputs to LC and DRN .. 519
12.3. Characteristics of the REM Sleep Rhythm 520
12.3.1. Phenomenology of the REM Sleep Rhythm 520
12.3.2. Mathematical Characterization of Oscillators 522
12.4. The Reciprocal Interaction Model and the Lotka Volterra
Equations 526
12.4.1. Postulated Steps in Production of a REM Sleep Episode .. 526
12.4.2. Simple Lotka Volterra Equations 528
12.4.3. Limitations of the Simple Lotka Volterra System 530
12.5. The Limit Cycle Model 531
12.5.1. Summary of Changes from the Simple
Lotka Volterra Model 531
12.5.2. Modeling Events at Sleep Onset, Human Sleep
Patterns, and Circadian Variation 532
12.5.2.1. Events at the Onset of Sleep 532
12.5.2.2. Modeling Human Sleep Patterns 532
12.5.2.3. Circadian Variation in the REM Cycle 533
12.6. Details of Simple Lotka Volterra Model 537
12.6.1. Significance of the Terms in the Equations 537
12.6.2. Phase Plane Representation 538
12.7. Details of Limit Cycle Model 539
12.7.1. Use of a(X) 539
12.7.2. Limitations on Growth of Firing Rates, S^X), S^F) 540
12.7.3. Use of b(X) and c 543
12.7.4. Circadian Variation, d(circ) and Entry into
the Limit Cycle 543
12.7.5. Phase Plane Representation of Entry into the
Limit Cycle 545
12.8. Sleep Abnormalities in Depression and Quantitative Modeling.... 546
12.8.1. Monoaminergic Cholinergic Factors in Mood
Disorders and Associated Sleep Abnormalities 550
12.8.1.1. Monoamines 550
12.8.1.2. Cholinergic Abnormalities and the
Sleep of Depressives 552
12.8.2. Quantitative Modeling of the REM Sleep
Abnormalities in Depression 552
12.8.2.1. Modeling the Bimodal Distribution of
REM Sleep Latencies in Depression 555
12.8.2.2. Earlier Quantitative Models of REM
Sleep Latency in Depression 557
12.8.2.3. Modeling the Cholinergically Induced
Hastened Onset of REM Sleep 557
12.8.2.4. Circadian Rhythms in Depression: Decreased
Amplitude Instead of a Phase Advance? 559 {
12.8.3. Deficient Process S and Sleep Abnormalities in J
Depression 560 J
12.8.3.1. REM Sleep 560 xvii
12.8.3.2. Non REM Sleep 560
CONTENTS
Chapter 13
The Role of Active Forebrain and Humoral
Systems in Sleep Control 561
13.1. Adenosine 562
13.1.1. Adenosine as a Mediator of the Sleepiness
Following Prolonged Wakefulness
(Homoeostatic Control of Sleep) 562
13.1.2. Site Specificity and Sources of Adenosine
Increases with Prolonged Wakefulness 565
13.1.3. Neurophysiological Mechanisms of Adenosine Effects ... 570
13.1.4. Receptor Mediation of Adenosine Effects: Al and
A2ASubtypes 571
13.1.4.1. Receptor Mediation of Adenosine
Effects: The Al Subtype 571
13.1.4.2. Receptor Mediation of Adenosine Effects:
The A2A Subtype and the Prostaglandin
D2 System 574
13.1.5. Adenosine Al Receptor Coupled Intracellular Signal
Transduction Cascade and Transcriptional
Modulation 576
13.1.6. Sleep Mediated Alterations in Behavior: Possible
Relationship to Adenosine Induced Changes in the
Basal Forebrain Cholinergic System 583
13.2. Cytokines and Other Humoral Factors 584
13.2.1. Introduction and Overview of the Cytokines:
Interleukin 1 Beta and Tumor Necrosis Factor
Alpha (IL 1 Beta and TNF Alpha) 585
13.2.2. Interleukin 1 Beta (ILrl Beta) 587
13.2.3. Tumor Necrosis Factor Alpha (TNF Alpha) 589
13.2.4. Other Humoral Systems 590
13.2.4.1. Growth Hormone Releasing
Hormone (GHRH) 590
13.2.4.2. Somatostatin 592
13.3. The Ventrolateral Preoptic Area (VLPO) and Active
Control of Sleep 592
13.3.1. Identification of Sleep Active Neurons in the VLPO 592
13.3.2. Lesions of VLPO and the Extended VLPO and
Effects on Sleep 596
13.3.3. Relationship of VLPO to Other Preoptic Regions
and the Suprachiasmatic Nucleus 598
13.3.4. VLPO and Adenosine 598
13.3.5. Modeling the VLPO Control of Sleep 600
13.4. Orexin/Hypocretin, Narcolepsy, and the Control of
Sleep and Wakefulness 600
iii 13.4.1. Background and Identification of
Orexin/Hypocretin 600
NTENTS 13.4.2. Orexin Neuronal Projections and Orexin Receptors 602
13.4.3. Actions of Orexin at the Cellular Level 603
13.4.4. Orexin and the Control of REM Related Phenomena
and Wakefulness 606
13.4.5. Orexin Release: Linked to Circadian Cycle
and/or to Behavioral State? 606
References 611
Index 691
I
1
|
adam_txt |
Contents
Chapter 1
Changing Concepts of Mechanisms of Waking and Sleep States 1
1.1. Pioneering Steps 2
1.2. Definition of States of Vigilance and Activation 11
1.3. Concepts of Passive and Active Mechanisms Promoting Sleep 20
1.3.1. Theories of Passive Sleep 20
1.3.2. Theories of Active Sleep 24
1.4. "Centers" and Distributed Systems 30
Chapter 2
Methodology of Morphological and Physiological Substrates
Underlying States of Vigilance 35
2.1. Morphological Tools 35
2.1.1. Nissl and Golgi Staining, and Some Recent Developments. 35
2.1.2. Anterograde and Retrograde Tracing Techniques 39
2.1.3. Immunohistochemical Identification of Various
Cell Groups and their Projections 44
2.2. Electrophysiological Methods 48
2.3. Noninvasive Techniques 54
Chapter 3
Afferent and Efferent Connections of Brainstem and
Forebrain Modulatory Systems 55
3.1. Afferents to Brainstem Cholinergic Nuclei and Classical
Reticular Formation Fields 56
3.1.1. Systematization of Cholinergic Nuclei and Nuclei
with Unidentified Neurotransmitters 56
vii
3.1.1.1. Brainstem Cholinergic Nuclei 56
3.1.1.2. Brainstem Reticular Nuclei With
NTS Unidentified Transmitters 61
3.1.2. Afferents from Spinal Cord and Sensory Cranial Nerves . 63
3.1.3. Afferents from Diencephalon and Telencephalon 68
3.1.3.1. Thalamic Nuclei 68
3.1.3.2. Hypothalamic Areas 72
3.1.3.3. Basal Forebrain and Related Systems 73
3.1.3.4. Neocortical Areas 76
3.1.3.5. Convergent Inputs Onto Single
Brainstem Reticular Neurons 76
3.1.4. Afferents from Intrabrainstem Sources 78
3.1.4.1. Afferents to the Pontine Reticular Formation 78
3.1.4.2. Afferents to the Midbrain and Bulbar
Reticular Formation 82
3.2. Afferents to Brainstem Monoaminergic Nuclei 85
3.2.1. Locus Coeruleus 85
3.2.2. Raphe Nuclei 87
3.2.3. Ventral Tegmental Area 87
3.2.4. TuberomammillaryArea 88
3.3. Afferents to Basal Forebrain Cholinergic Nuclei 88
3.3.1. Systematization of Basal Forebrain Cholinergic Nuclei 88
3.3.2. Afferents to Basal Forebrain Modulatory Systems 89
3.4. Efferent Connections of Brainstem Cholinergic
Nuclei and Classical Reticular Fields 90
3.4.1. Rostral Projections of Cholinergic and
Noncholinergic Reticular Neurons 91
3.4.1.1. Are There Direct Cortical Projections? 91
3.4.1.2. Thalamic Projections 92
3.4.2. Brainstem and Spinal Cord Projections of Mesopontine
Cholinergic and Pontobulbar Nuclei 106
3.4.2.1. Cholinergic Projections to Pontine FTG 106
3.4.2.2. Bulbar and Spinal Cord Cholinergic Projections. 110
3.4.2.3. Brainstem and Spinal Cord Projections
of the Noncholinergic Pontobulbar
Reticular Formation 112
3.4.3. Intrinsic Cellular Morphology and Projections of
Pontine and Bulbar Gigantocellular Fields 117
3.4.3.1. Cell Size Distribution Within the Pontine and
Bulbar FTG 118
3.4.3.2. Morphology of Pontine FTG Neurons 118
3.4.3.3. Pontine FTG Neurons Sending Axons in the
Ipsilateral MLF 119
3.4.3.4. Pontine FTG Neurons Sending Axons
Directly to Bulbar Reticular Formation 119
3.4.3.5. Dendrites 123
3.4.3.6. Morphology of Bulbar FTG Neurons 124
3.4.3.7. Bulbar FTG Neurons Sending Axons into
the Ipsilateral Bulbar Reticular Core 125 '
3.4.3.8. General Comments on Morphology 127
3.4.3.9. Organization of Bifurcating Axonal Collaterals 128 ,
3.5. Efferent Connections of Monoamine Containing Neurons 128 ix
3.5.1. Norepinephrinergic Systems 128
3.5.2. Serotonergic Systems 130 contents
3.5.3. Dopaminergic Systems 132
3.5.4. Histaminergic Systems 133
3.6. Efferent Connections of Basal Forebrain Nuclei 133
3.6.1. Cortical Projections 133
3.6.2. Thalamic Projections 134
3.6.3. Posterior Hypothalamic Projections 137
Chapter 4
Neuronal Circuits in the Thalamus, Neocortex, and Hippocampus,
Targets of Diffuse Modulatory Systems 139
4.1. Thalamus 141
4.2. Neocortex 145
4.3. Hippocampus and Related Systems 153
Chapter 5
Intrinsic Electrophysiological Properties of Brainstem and
Forebrain Neurons 155
5.1. Medial Pontine Reticular Formation Neurons 156
5.1.1. Neuronal Classes of the Medial PRF: Overview 156
5.1.2. Low and High Threshold Ca2+ Spikes 159
5.1.3. Role of mPRF Neuron Membrane Potential in
Controlling Repetitive Firing Properties and
Implications for Behavior 167
5.2. Pedunculopontine and Laterodorsal Tegmental Nuclei 167
5.3. Neurons of the Locus Coeruleus and the Dorsal Raphe Nucleus 171
5.3.1. Locus Coeruleus Neurons 171
5.3.2. Dorsal Raphe Neurons 175
5.4 Basal Forebrain and Medial Septum Neurons 179
5.5 Thalamic Neurons 179
5.5.1. Thalamocortical Neurons 181
5.5.1.1. The Low Threshold Ca2+ Current 181
5.5.1.2. High Voltage Ca2+ Currents 185
5.5.1.3. Hyperpolarization Activated Cation Current 187
5.5.1.4. Persistent (Noninactivating) Na+ Current 189
5.5.1.5. Voltage and Ca2+ DependentK+
Conductances 189
5.5.1.6. Effects of Synaptic Activities on Some
Intrinsic Properties 191
5.5.2. Local Circuit Inhibitory Cells 191
5.5.3 Thalamic Reticular GABAergic Neurons 194
5.6. Neocortical Neurons 197
5.6.1. Characteristics of Firing Patterns in Four Neuronal
TENTS Types and Underlying Ionic Currents 197
5.6.2. Changes in Firing Patterns During Synaptic Activities
and Shifts in Behavioral State 199
5.7. Entorhinal Cortex, Amygdala, and Hippocampal Neurons 208
5.7.1. Entorhinal Cortex Neurons 208
5.7.2. Amygdala Neurons 208
5.7.3. Hippocampal Neurons 209
Chapter 6
Neurotransmitter Modulated Currents of Brainstem Neurons and
Some of Their Forebrain Targets 211
6.1. Acetylcholine 212
6.1.1. Brainstem 212
6.1.1.1. Medial Pontine Reticular Formation 212
6.1.1.2. Pedunculopontine Tegmental Cholinergic
Neurons 219
6.1.1.3. Locus Coeruleus 219
6.1.2. Basal Forebrain 223
6.1.3. Thalamus 223
6.1.3.1. Thalamocortical Neurons 223
6.1.3.2. Thalamic Reticular Neurons 226
6.1.3.3. Local Interneurons 229
6.1.4. Neocortex 231
6.1.5. Hippocampus 234
6.2. Norepinephrine 236
6.2.1. Brainstem 236
6.2.1.1. Locus Coeruleus 236
6.2.1.2. Dorsal Raphe 243
6.2.1.3. Pontine Reticular Formation 243
6.2.2. Basal Forebrain 244
6.2.3. Thalamus 245
6.2.4. Neocortex and Hippocampus 245
6.3. Serotonin 246
6.3.1. Brainstem 247
6.3.1.1. Dorsal Raphe 247
6.3.1.2. Pontine Reticular Formation and
Facial Motoneurons 248
6.3.1.3. Mesopontine Cholinergic Nuclei 249
6.3.2. Thalamus and Cerebral Cortex 250
6.4. Excitatory Amino Acids 250
6.4.1. Summary of Excitatory Amino Acid Receptor Types 250
6.4.2. Brainstem 253
6.4.2.1. Mesopontine and Bulbar Reticular Formation 253
6.4.2.2. Locus Coeruleus 254 [
6.4.3. Thalamus and Neocortex 254 j
Chapter 7 ^
Synchronized Brain Oscillations Leading to Neuronal Plasticity contents
during Waking and Sleep States 255
7.1. Rhythms during Brain Active States of Waking and REM Sleep 256
7.1.1. Alpha 256
7.1.2. Oscillations during Waking Immobility: The
Sensorimotor Rhythm 257
7.1.3. Theta 259
7.1.4. Fast (Beta/Gamma) and Ultrafast (Ripple) Rhythms 262
7.2. Low Frequency Rhythms during Non REM Sleep 276
7.2.1. Spindles 277
7.2.1.1. Chronology of Spindles and Other
NREM Sleep Rhythms 277
7.2.1.2. Cellular Basis of Spindles 279
7.2.1.3. The Pacemaking Role of Thalamic Reticular
Neurons in Spindle Genesis 284
7.2.1.4. The Role of Neocortex in Synchronizing
and Terminating Spindle Sequences 290
7.2.1.5. Blockage of Spindles by Brainstem
Activating Influxes 295
7.2.2. Two (Thalamic and Neocortical) Components of
Delta Waves 300
7.2.2.1. Clock like Thalamic Delta Rhythm:
Generation, Synchronization, and Suppression. 300
7.2.2.2. Cortical Delta Waves 304
7.2.3. The Neocortical Slow Oscillation: Its Role in Grouping
NREM Sleep and FastRhythms 305
7.2.3.1. Cellular Basis of the Slow Oscillation 306
7.2.3.2. Intracellular Recording of the Slow
Oscillation during Natural NREM Sleep 310
7.2.3.3. Intracortical Synchronization of Slow Oscillation . 311
7.2.3.4. Synaptic Reflection of the Slow Oscillation in
Thalamus and Other Structures 314
7.2.3.5. Grouping of Delta, Spindles, and Fast
Oscillations by the Slow Oscillation 318
7.3. Abnormal Oscillations during Non REM Sleep 325
7.3.1. Electrical Seizures Developing from NREM
Sleep Oscillations 325
7.3.2. Burst Suppression 327
7.4. Plastic Changes in Thalamocortical Systems during
Sleep and Waking Oscillations 329
7.4.1. Augmenting or Incremental Responses 330
7.4.2. Plasticity Following Spindles and Their Experimental Model,
Augmenting Responses 335
7.4.3. Potentiation of Cortical Responses Following
Fast Oscillations 343
7.4.4. Concluding Remarks 343
Chapter 8
ENTS Brainstem and State dependency of Thalamocortical Systems 345
8.1. Thalamocortical Neurons 346
8.1.1. Two Modes of Spontaneous Firing During NREM
Sleep and Brain Active States 346
8.1.2. Evoked Potential Studies 347
8.1.3. Extracellular Recordings 351
8.1.4. Intracellular Studies 352
8.1.4.1. Excitatory Responses 352
8.1.4.2. Differential Brainstem Reticular Effects on
Three Phases of Inhibitory Responses 361 '
8.2. Thalamic Reticular Neurons: Dual Types of Responses 363
8.3. Selective Increase in Cortical Excitability During
Attentional Tasks 371
8.3.1. Event Related Potentials in Humans 373
8.3.2. Neuronal Recordings During Set Dependent «
Tasks in Monkeys 375
8.3.3. Differential Alterations in Two Phases of Inhibitory
Responses During Brain Activation 378
Chapter 9
Neuronal Activities in Brainstem and Basal Forebrain Structures
Controlling Waking and Sleep States 381
9.1. Brainstem Thalamic Neurons Implicated in J
Tonic Electrical Activation of the Cerebrum 382 |
9.1.1. Midbrain Reticular Noncholinergic Neurons 384
9.1.2. Bulbar Reticular Noncholinergic Neurons 384
9.1.3. Mesopontine Cholinergic Neurons 388
9.2. Basal Forebrain Neurons Implicated in Tonic Cortical Activation . 391
9.3. Brainstem Neurons and the Genesis of
Pontogeniculo(thalamo) cortical Potentials 394 '
9.3.1. Brainstem Genesis of PGO Waves 395 |
9.3.2. Cellular Mechanisms of Thalamic PGO Waves 402 ,
9.3.3. PGO Related Thalamic Neuronal Activities )
During Natural Sleep 409
Chapter 10
Motor Systems 417
10.1. Saccadic Eye Movements 417
10.1.1. Physiological Properties of Oculomotor Neurons 418
10.1.2. Afferents to Oculomotor Neurons: Lesion Studies 419 i
10.1.3. Efferent Projections of Abducens Neurons 420
f
10.2. Burst Neurons 420 xjji
10.2.1. Burst Neuron Physiology 420
10.2.2. Anatomical Connectivity of Burst Neurons 424 CONTENTS
10.2.2.1. Anatomy of Pontobulbar Reticular
Projections to Abducens 424
10.2.2.2. Nonreticular Brainstem Projections
to Abducens 424
10.2.2.3. Superior Colliculus and Frontal Eye
Field Projections to Reticular Formation 426
10.3. Omnipause Neurons 426
10.4. Tonic Neurons 429
10.5. Saccade Generation: Interaction of Neurons in the Circuit 432
10.5.1. Role of Superior Colliculus in Saccades 433
10.5.2. Saccade Trajectories: Mutable or Immutable? 434
10.5.3. Models of the Saccade Generator 435
10.6. Gaze Control 437
10.7. State Dependent Alterations in Oculomotor System Function 439
10.7.1. Waking to Synchronized Sleep Transitions 439
10.7.2. Activity During REM Sleep 441
10.8. Mechanisms of the Muscle Atonia of REM Sleep: Motoneurons . 444
10.8.1. Inhibition and Diminished Excitability of
Trigeminal Jaw Closer Motoneurons During
REM Sleep 444
10.8.2. Spinal Alpha Motoneurons During the
Sleep Wake Cycle 446
10.8.2.1. Changes in Membrane Potential of
Alpha Lumbar Motoneurons During
Waking and Sleep 446
10.8.2.2. Hyperpolarizing PSPs in Alpha Lumbar
Motoneurons During Waking and Sleep 447
10.8.2.3. Excitatory Activity in Alpha Lumbar
Motoneurons During Waking and Sleep 450
10.8.2.4. Sources of REM Sleep IPSPs and EPSPs 451
10.9. Central Mechanisms of REM^Sleep Muscle Atonia 452
10.9.1. Lesion Data and REM Without Atonia 452
10.9.2. Electrophysiological Data and REM Muscle Atonia 454
10.9.3. Role of Other Pontine Structures and the
Pharmacology of REM Sleep Muscle Atonia 458
Chapter 11
Neuronal Control of REM Sleep 461
11.1. Introduction and Overview 461
11.2. Brainstem Reticular Neuronal Activity over the
REM Sleep Cycle 462
11.2.1. The View from Extracellular Recordings 464
11.2.2. The View from Intracellular Recordings 467
11.2.2.1. Synchronized Sleep 467
11.2.2.2. Pre REM Sleep Changes: The Transition
Period to REM Sleep, T 468
ENTS 11.2.2.3. REM Sleep 469
11.2.2.4. Wakefulness: The REM Sleep Wake
Transition, and Motor Activity in
Wakefulness 469
11.2.2.5. State Dependent Alterations in
Reticular Excitability 470
11.2.2.6. Summary of Behavioral State Alterations
in the mPRF 470
11.2.3. Sleep Wake Control as Resulting from Modulation
of Excitability in Neuronal Pools 470
11.2.3.1. The Concept 470
11.2.3.2. Experimental Evidence for Modulation
of Excitability in Neuronal Pools 473
11.2.3.2.1. Brainstem Reticular Formation . 473
11.2.3.2.2. Peripheral Motoneurons 474
11.2.3.2.3. Sensory System Neurons 474
11.2.3.3. Summary of Orchestration of REM Sleep
Components 475
11.2.3.3.1. Rapid Eye Movements 475
11.2.3.3.2. Muscle Atonia 475
11.2.3.3.3. EEG Desynchronization 476
11.2.3.3.4. PGO Waves 476
11.2.3.3.5. Other Components of
REM Sleep 476
11.2.3.4. Approach to Factors Producing
Modulations of Excitability 478
11.2.3.5. Recruitment through Reticuloreticular
Excitatory Connections 478
11.2.3.5.1. Intracellular Evidence on
Recruitment Within the
Reticular Pool 480
11.3. Criteria for Neuromodulation in REM Sleep 480
11.4. Cholinergic Influences on REM Sleep 482
11.4.1. Cholinergic Induction of REM Sleep Like
Phenomena 482
11.4.2. Cholinergic LDT Stimulation Produces
Scopolamine Sensitive EPSPs in mPRF Neurons 485
11.4.3. Cholinergic Unit Activity During Sleep and
Wakefulness 485
11.5. Monoaminergic Influences—REM Off Neurons 488
11.5.1. Raphe Nuclei 488
11.5.2. Locus Coeruleus 490
11.5.3. Do REM Off Neurons Play a Permissive, Disinhibitory
Role in REM Sleep Genesis? 490
11.5.3.1. Dorsal Raphe Discharge and REM
Events: An Inverse Association 490
11.5.3.1.1. Raphe System REM Off Neurons
and PGO Waves 491 \
\
11.5.3.2. Suppressing Dorsal Raphe Activity xv
Increases REM Sleep 495
11.5.3.3. LDT/PPT REM On Neurons are CONTENTS
Inhibited by a 5 HT1A Agonist 497
11.5.3.4. Locus Coeruleus Lesions and Cooling
Increase REM Sleep 498
11.5.3.4.1. Locus Coeruleus Cooling
Induces REM Sleep 499
11.5.3.4.2. Site (s) of REM Off and
REM On interaction 501
11.6. GABAergic Influences and REM Sleep 501
11.6.1. Dorsal Raphe Nucleus 502
11.6.1.1. Microdialysis 502
11.6.1.2. Microiontophoresis 503
11.6.2. Locus Coeruleus 505
11.6.2.1. Microdialysis 505
11.6.2.2. Microiontophoresis 506
11.6.3. Source of State Related GABAergic Input to
DRN and LC 506
11.6.3.1. Periaqueductal Gray? 506
11.6.3.2. Ventrolateral Preoptic Area (VLPO) 507
11.6.4. GABA and the Pontine Reticular Formation:
Disinhibition and REM Sleep 507
11.6.4.1. Pharmacological Studies in Cats on
the Behavioral State Effects of GABA Agents. 507
11.6.4.2. Pharmacological Studies in Rats on the
Behavioral State Effects of GABA Agents 508
11.6.4.3. Microdialysis Measurements of GABA in the
Pontine Reticular Formation 509
11.6.5. The Pedunculopontine Tegmental (PPT) Nucleus 509
Chapter 12
REM Sleep as a Biological Rhythm: The Phenomenology and a
Structural and Mathematical Model with Application to Depression 513
12.1. Introduction and Overview 513
12.2. A Structural Model of REM Sleep Organization 513
12.2.1. REM On Neurons and Interaction with Other
Elements in the Model 514
12.2.1.1. REM On Neurons and the Postulate of
Self Excitation (Positive Feedback) and
Exponential Growth—Term "a" in Fig. 12.1 . 514
12.2.1.2. Reticular Formation and GABAergic
Influences 516
12.2.2. Excitation of REM Off Neurons by REM On
Neurons (Fig. 12.1 term "d") 517
12.2.3. Inhibition of REM On Neurons by REM Off
Neurons (Fig. 12.1 term "b") 517
12.2.4. Inhibitory Feedback of REM Off Neurons
(Fig. 12.1 term "c") 518
"TS 12.2.4.1. GABAergic Influences in the LC and
DRN during REM Sleep 518
12.2.4.2. Source of GABAergic Inputs to LC and DRN . 519
12.3. Characteristics of the REM Sleep Rhythm 520
12.3.1. Phenomenology of the REM Sleep Rhythm 520
12.3.2. Mathematical Characterization of Oscillators 522
12.4. The Reciprocal Interaction Model and the Lotka Volterra
Equations 526
12.4.1. Postulated Steps in Production of a REM Sleep Episode . 526
12.4.2. Simple Lotka Volterra Equations 528
12.4.3. Limitations of the Simple Lotka Volterra System 530
12.5. The Limit Cycle Model 531
12.5.1. Summary of Changes from the Simple
Lotka Volterra Model 531
12.5.2. Modeling Events at Sleep Onset, Human Sleep
Patterns, and Circadian Variation 532
12.5.2.1. Events at the Onset of Sleep 532
12.5.2.2. Modeling Human Sleep Patterns 532
12.5.2.3. Circadian Variation in the REM Cycle 533
12.6. Details of Simple Lotka Volterra Model 537
12.6.1. Significance of the Terms in the Equations 537
12.6.2. Phase Plane Representation 538
12.7. Details of Limit Cycle Model 539
12.7.1. Use of a(X) 539
12.7.2. Limitations on Growth of Firing Rates, S^X), S^F) 540
12.7.3. Use of b(X) and c 543
12.7.4. Circadian Variation, d(circ) and Entry into
the Limit Cycle 543
12.7.5. Phase Plane Representation of Entry into the
Limit Cycle 545
12.8. Sleep Abnormalities in Depression and Quantitative Modeling. 546
12.8.1. Monoaminergic Cholinergic Factors in Mood
Disorders and Associated Sleep Abnormalities 550
12.8.1.1. Monoamines 550
12.8.1.2. Cholinergic Abnormalities and the
Sleep of Depressives 552
12.8.2. Quantitative Modeling of the REM Sleep
Abnormalities in Depression 552
12.8.2.1. Modeling the Bimodal Distribution of
REM Sleep Latencies in Depression 555
12.8.2.2. Earlier Quantitative Models of REM
Sleep Latency in Depression 557
12.8.2.3. Modeling the Cholinergically Induced
Hastened Onset of REM Sleep 557
12.8.2.4. Circadian Rhythms in Depression: Decreased \
Amplitude Instead of a Phase Advance? 559 {
12.8.3. Deficient Process S and Sleep Abnormalities in J
Depression 560 J
12.8.3.1. REM Sleep 560 xvii
12.8.3.2. Non REM Sleep 560
CONTENTS
Chapter 13
The Role of Active Forebrain and Humoral
Systems in Sleep Control 561
13.1. Adenosine 562
13.1.1. Adenosine as a Mediator of the Sleepiness
Following Prolonged Wakefulness
(Homoeostatic Control of Sleep) 562
13.1.2. Site Specificity and Sources of Adenosine
Increases with Prolonged Wakefulness 565
13.1.3. Neurophysiological Mechanisms of Adenosine Effects . 570
13.1.4. Receptor Mediation of Adenosine Effects: Al and
A2ASubtypes 571
13.1.4.1. Receptor Mediation of Adenosine
Effects: The Al Subtype 571
13.1.4.2. Receptor Mediation of Adenosine Effects:
The A2A Subtype and the Prostaglandin
D2 System 574
13.1.5. Adenosine Al Receptor Coupled Intracellular Signal
Transduction Cascade and Transcriptional
Modulation 576
13.1.6. Sleep Mediated Alterations in Behavior: Possible
Relationship to Adenosine Induced Changes in the
Basal Forebrain Cholinergic System 583
13.2. Cytokines and Other Humoral Factors 584
13.2.1. Introduction and Overview of the Cytokines:
Interleukin 1 Beta and Tumor Necrosis Factor
Alpha (IL 1 Beta and TNF Alpha) 585
13.2.2. Interleukin 1 Beta (ILrl Beta) 587
13.2.3. Tumor Necrosis Factor Alpha (TNF Alpha) 589
13.2.4. Other Humoral Systems 590
13.2.4.1. Growth Hormone Releasing
Hormone (GHRH) 590
13.2.4.2. Somatostatin 592
13.3. The Ventrolateral Preoptic Area (VLPO) and Active
Control of Sleep 592
13.3.1. Identification of Sleep Active Neurons in the VLPO 592
13.3.2. Lesions of VLPO and the Extended VLPO and
Effects on Sleep 596
13.3.3. Relationship of VLPO to Other Preoptic Regions
and the Suprachiasmatic Nucleus 598
13.3.4. VLPO and Adenosine 598
13.3.5. Modeling the VLPO Control of Sleep 600
13.4. Orexin/Hypocretin, Narcolepsy, and the Control of
Sleep and Wakefulness 600
iii 13.4.1. Background and Identification of
Orexin/Hypocretin 600
NTENTS 13.4.2. Orexin Neuronal Projections and Orexin Receptors 602
13.4.3. Actions of Orexin at the Cellular Level 603
13.4.4. Orexin and the Control of REM Related Phenomena
and Wakefulness 606
13.4.5. Orexin Release: Linked to Circadian Cycle
and/or to Behavioral State? 606
References 611
Index 691
I
1 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)133940306 |
building | Verbundindex |
bvnumber | BV022505170 |
classification_rvk | WX 3350 |
collection | ZDB-2-SBL |
ctrlnum | (OCoLC)762184685 (DE-599)BVBBV022505170 |
discipline | Biologie Medizin |
discipline_str_mv | Biologie Medizin |
doi_str_mv | 10.1007/b102230 |
edition | 2. ed. |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01944nmm a2200493 c 4500</leader><controlfield tag="001">BV022505170</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160426 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070711s2005 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N02,1380</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977519813</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780306487149</subfield><subfield code="9">978-0-306-48714-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387262703</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-26270-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b102230</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780306487149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)762184685</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022505170</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WX 3350</subfield><subfield code="0">(DE-625)152192:13423</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Brain control of wakefulness and sleep</subfield><subfield code="c">Mircea Steriade and Robert W. McCarley</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Kluwer Acad./Plenum Publ.</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schlaf-Wach-Rhythmus</subfield><subfield code="0">(DE-588)4129651-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zentralnervensystem</subfield><subfield code="0">(DE-588)4067637-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Schlaf-Wach-Rhythmus</subfield><subfield code="0">(DE-588)4129651-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zentralnervensystem</subfield><subfield code="0">(DE-588)4067637-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Steriade, Mircea</subfield><subfield code="d">1924-2006</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133940306</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">McCarley, Robert W.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-306-48714-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b102230</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712169&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015712169</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b102230</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SBL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022505170 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:57:12Z |
indexdate | 2024-07-09T20:59:04Z |
institution | BVB |
isbn | 9780306487149 9780387262703 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015712169 |
oclc_num | 762184685 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource |
psigel | ZDB-2-SBL |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Kluwer Acad./Plenum Publ. |
record_format | marc |
spelling | Brain control of wakefulness and sleep Mircea Steriade and Robert W. McCarley 2. ed. New York, NY Kluwer Acad./Plenum Publ. 2005 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Schlaf-Wach-Rhythmus (DE-588)4129651-5 gnd rswk-swf Zentralnervensystem (DE-588)4067637-7 gnd rswk-swf Schlaf-Wach-Rhythmus (DE-588)4129651-5 s Zentralnervensystem (DE-588)4067637-7 s b DE-604 Steriade, Mircea 1924-2006 Sonstige (DE-588)133940306 oth McCarley, Robert W. Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 0-306-48714-4 https://doi.org/10.1007/b102230 Verlag Volltext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712169&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Brain control of wakefulness and sleep Schlaf-Wach-Rhythmus (DE-588)4129651-5 gnd Zentralnervensystem (DE-588)4067637-7 gnd |
subject_GND | (DE-588)4129651-5 (DE-588)4067637-7 |
title | Brain control of wakefulness and sleep |
title_auth | Brain control of wakefulness and sleep |
title_exact_search | Brain control of wakefulness and sleep |
title_exact_search_txtP | Brain control of wakefulness and sleep |
title_full | Brain control of wakefulness and sleep Mircea Steriade and Robert W. McCarley |
title_fullStr | Brain control of wakefulness and sleep Mircea Steriade and Robert W. McCarley |
title_full_unstemmed | Brain control of wakefulness and sleep Mircea Steriade and Robert W. McCarley |
title_short | Brain control of wakefulness and sleep |
title_sort | brain control of wakefulness and sleep |
topic | Schlaf-Wach-Rhythmus (DE-588)4129651-5 gnd Zentralnervensystem (DE-588)4067637-7 gnd |
topic_facet | Schlaf-Wach-Rhythmus Zentralnervensystem |
url | https://doi.org/10.1007/b102230 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712169&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT steriademircea braincontrolofwakefulnessandsleep AT mccarleyrobertw braincontrolofwakefulnessandsleep |