DPSM for modeling engineering problems:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Hoboken, NJ
Wiley-Interscience
2007
|
Schlagworte: | |
Online-Zugang: | Table of contents only Inhaltsverzeichnis |
Beschreibung: | XIX, 372 S. |
ISBN: | 0471733148 9780471733140 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022505027 | ||
003 | DE-604 | ||
005 | 20140618 | ||
007 | t | ||
008 | 070711s2007 xxu |||| 00||| eng d | ||
010 | |a 2006038735 | ||
020 | |a 0471733148 |c cloth |9 0-471-73314-8 | ||
020 | |a 9780471733140 |9 978-0-471-73314-0 | ||
035 | |a (OCoLC)76871398 | ||
035 | |a (DE-599)BVBBV022505027 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-634 | ||
050 | 0 | |a TA347.D57 | |
082 | 0 | |a 620.001/51 | |
084 | |a ZG 9120 |0 (DE-625)156026: |2 rvk | ||
245 | 1 | 0 | |a DPSM for modeling engineering problems |c ed. by Dominique Placko ... |
264 | 1 | |a Hoboken, NJ |b Wiley-Interscience |c 2007 | |
300 | |a XIX, 372 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 7 | |a Dispositifs électromagnétiques - Conception et construction - Mathématiques |2 ram | |
650 | 7 | |a Magnétisme - Modèles mathématiques |2 ram | |
650 | 7 | |a Mathématiques de l'ingénieur |2 ram | |
650 | 7 | |a Électromagnétisme - Modèles mathématiques |2 ram | |
650 | 7 | |a Électrostatique - Mathématiques |2 ram | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Mathematisches Modell | |
650 | 4 | |a Distributed point source method (Numerical analysis) | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Ultrasonic waves |x Mathematical models | |
650 | 4 | |a Electromagnetic devices |x Design and construction |x Mathematics | |
650 | 4 | |a Electrostatics |x Mathematics | |
650 | 4 | |a Electromagnetism |x Mathematical models | |
650 | 4 | |a Magnetism |x Mathematical models | |
700 | 1 | |a Placko, Dominique |e Sonstige |4 oth | |
856 | 4 | |u http://www.loc.gov/catdir/toc/ecip075/2006038735.html |3 Table of contents only | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015712031 | ||
344 | |h Ill., graph. Darst. |
Datensatz im Suchindex
_version_ | 1804136605555884032 |
---|---|
adam_text | DPSM FOR MODELING ENGINEERING PROBLEMS EDITED BY DOMINIQUE PLACKO AND
TRIBIKRAM KUNDU 3ICENTENNIAL. 1 8 O 7 WILEY 2 O O 7 BICENTENNIAL
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
PREFACE CONTRIBUTORS CHAPTER 1 - BASIC THEORY OF DISTRIBUTED POINT
SOURCE METHOD (DPSM) AND ITS APPLICATION TO SOME SIMPLE PROBLEMS D.
PLACKO AND T. KUNDU 1.1 INTRODUCTION AND HISTORICAL DEVELOPMENT OF DPSM,
1 1.2 BASIC PRINCIPLES OF DPSM MODELING, 3 1.2.1 THE FUNDAMENTAL IDEA, 3
1.2.1.1 BASIC EQUATIONS, 6 1.2.1.2 BOUNDARY CONDITIONS, 8 1.2.2 EXAMPLE
IN THE CASE OF A MAGNETIC OPEN CORE SENSOR, 9 1.2.2.1 GOVERNING
EQUATIONS AND SOLUTION, 9 1.2.2.2 SOLUTION OF COUPLING EQUATIONS, 11
1.2.2.3 RESULTS AND DISCUSSION, 13 1.3 EXAMPLES FROM ULTRASONIC
TRANSDUCER MODELING, 16 1.3.1 JUSTIFICATION OF MODELING A FINITE PLANE
SOURCE BY A DISTRIBUTION OF POINT SOURCES, 17 1.3.2 PLANAR PISTON
TRANSDUCER IN A FLUID, 18 1.3.2.1 CONVENTIONAL SURFACE INTEGRAL
TECHNIQUE, 18 1.3.2.2 ALTERNATIVE DPSM FOR COMPUTING THE ULTRASONIC
FIELD, 20 1.3.2.3 RESTRICTIONS ON R S FOR POINT SOURCE DISTRIBUTION, 29
1.3.3 FOCUSED TRANSDUCER IN A HOMOGENEOUS FLUID, 31 VLLL CONTENTS 1.3.4
ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID IN THE PRESENCE OF AN
INTERFACE, 32 1.3.4.1 PRESSURE FIELD COMPUTATION IN FLUID 1 AT POINT P,
33 1.3.4.2 PRESSURE FIELD COMPUTATION IN FLUID 2 AT POINT Q, 35 1.3.5
DPSM TECHNIQUE FOR ULTRASONIC FIELD MODELING IN NONHOMOGENEOUS FLUID, 38
1.3.5.1 FIELD COMPUTATION IN FLUID 1, 38 1.3.5.2 FIELD IN FLUID 2, 42
1.3.6 ULTRASONIC FIELD IN THE PRESENCE OF A SCATTERER, 43 1.3.7
NUMERICAL RESULTS, 45 1.3.7.1 ULTRASONIC FIELD IN A HOMOGENEOUS FLUID,
45 1.3.7.2 ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID-DPSM TECHNIQUE, 50
1.3.7.3 ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID - SURFACE INTEGRAL
METHOD, 52 1.3.7.4 ULTRASONIC FIELD IN THE PRESENCE OF A FINITE-SIZE
SCATTERER, 53 REFERENCES, 57 CHAPTER 2-ADVANCED THEORY OF DPSM*MODELING
MULTILAYERED MEDIUM AND INCLUSIONS OF ARBITRARY SHAPE 59 T. KUNDU AND D.
PLACKO 2.1 INTRODUCTION, 59 2.2 THEORY OF MULTILAYERED MEDIUM MODELING,
60 2.2.1 TRANSDUCER FACES NOT COINCIDING WITH ANY INTERFACE, 60 2.2.1.1
SOURCE STRENGTH DETERMINATION FROM BOUNDARY AND INTERFACE CONDITIONS, 62
2.2.2 TRANSDUCER FACES COINCIDING WITH THE INTERFACE - CASE 1:
TRANSDUCER FACES MODELED SEPARATELY, 64 2.2.2.1 SOURCE STRENGTH
DETERMINATION FROM INTERFACE AND BOUNDARY CONDITIONS, 65 2.2.2.2
COUNTING NUMBER OF EQUATIONS AND NUMBER OFUNKNOWNS, 68 2.2.3 TRANSDUCER
FACES COINCIDING WITH THE INTERFACE - CASE 2: TRANSDUCER FACES ARE PART
OF THE INTERFACE, 68 2.2.3.1 SOURCE STRENGTH DETERMINATION FROM
INTERFACE AND BOUNDARY CONDITIONS, 69 2.2.4 SPECIAL CASE INVOLVING ONE
INTERFACE AND ONE TRANSDUCER ONLY, 71 2.3 THEORY FOR MULTILAYERED MEDIUM
CONSIDERING THE INTERACTION EFFECT ON THE TRANSDUCER SURFACE, 76 2.3.1
SOURCE STRENGTH DETERMINATION FROM INTERFACE CONDITIONS, 78 2.3.2
COUNTING NUMBER OF EQUATIONS AND NUMBER OF UNKNOWNS, 80 2.4 INTERFERENCE
BETWEEN TWO TRANSDUCERS: STEP-BY-STEP ANALYSIS OF MULTIPLE REFLECTION,
80 2.5 SCATTERING BY AN INCLUSION OF ARBITRARY SHAPE, 83 CONTENTS 2.6
SCATTERING BY AN INCLUSION OF ARBITRARY SHAPE - AN ALTERNATIVE APPROACH,
85 2.7 ELECTRIC FIELD IN A MULTILAYERED MEDIUM, 87 2.8 ULTRASONIC FIELD
IN A MULTILAYERED FLUID MEDIUM, 91 2.8.1 ULTRASONIC FIELD DEVELOPED IN A
THREE-LAYERED MEDIUM, 93 2.8.2 ULTRASONIC FIELD DEVELOPED IN A
FOUR-LAYERED FLUID MEDIUM, 94 REFERENCE, 96 CHAPTER 3 - ULTRASONIC
MODELING IN FLUID MEDIA T. KUNDU, R. AHMAD, N. ALNAUAIMI, AND D. PLACKO
3.1 INTRODUCTION, 97 3.2 PRIMARY (ACTIVE) AND SECONDARY (PASSIVE)
SOURCES, 100 3.3 MODELING ULTRASONIC TRANSDUCERS OF FINITE DIMENSION
IMMERSED IN A HOMOGENEOUS FLUID, 100 3.3.1 NUMERICAL RESULTS*ULTRASONIC
TRANSDUCERS OF FINITE DIMENSION IMMERSED IN FLUID, 107 3.4 MODELING
ULTRASONIC TRANSDUCERS OF FINITE DIMENSION IMMERSED IN A NONHOMOGENEOUS
FLUID, 111 3.4.1 OBTAINING THE STRENGTHS OF ACTIVE AND PASSIVE SOURCE
LAYERS, 112 3.4.1.1 COMPUTATION OF THE SOURCE STRENGTH VECTORS WHEN
MULTIPLE REFLECTIONS BETWEEN THE TRANSDUCER AND THE INTERFACE ARE
IGNORED, 113 3.4.1.2 COMPUTATION OF THE SOURCE STRENGTH VECTORS
CONSIDERING THE INTERACTION EFFECTS BETWEEN THE TRANSDUCER AND THE
INTERFACE, 114 3.4.2 NUMERICAL RESULTS*ULTRASONIC TRANSDUCER IMMERSED IN
NONHOMOGENEOUS FLUID, 116 3.5 REFLECTION AT A FLUID-SOLID
INTERFACE*IGNORING MULTIPLE REFLECTIONS BETWEEN THE TRANSDUCER SURFACE
AND THE INTERFACE, 117 3.5.1 NUMERICAL RESULTS FOR FLUID-SOLID
INTERFACE, 118 3.6 MODELING ULTRASONIC FIELD IN PRESENCE OF A THIN
SCATTERER OF FINITE DIMENSION, 118 3.7 MODELING ULTRASONIC FIELD INSIDE
A MULTILAYERED FLUID MEDIUM, 120 3.8 MODELING PHASED ARRAY TRANSDUCERS
IMMERSED IN A FLUID, 121 3.8.1 DESCRIPTION AND USE OF PHASED ARRAY
TRANSDUCERS, 121 3.8.2 THEORY OF PHASED ARRAY TRANSDUCER MODELING, 122
3.8.3 DYNAMIC FOCUSING AND TIME LAG DETERMINATION, 124 3.8.4 INTERACTION
BETWEEN TWO TRANSDUCERS IN A HOMOGENEOUS FLUID, 125 3.8.5 NUMERICAL
RESULTS FOR PHASED ARRAY TRANSDUCER MODELING, 126 3.8.5.1 DYNAMIC
STEERING AND FOCUSING, 127 3.8.5.2 INTERACTION BETWEEN TWO PHASED ARRAY
TRANSDUCERS PLACED FACE TO FACE, 129 3.9 SUMMARY, 140 REFERENCE, 141 X
CHAPTER 4 - ADVANCED APPLICATIONS OF DISTRIBUTED POINT SOURCE METHOD -
ULTRASONIC FIELD MODELING IN SOLID MEDIA SOURAV BANERJEE AND TRIBIKRAM
KUNDU 4.1 INTRODUCTION, 143 4.2 CALCULATION OF DISPLACEMENT AND STRESS
GREEN S FUNCTIONS IN SOLIDS, 144 4.2.1 POINT SOURCE EXCITATION IN A
SOLID, 145 4.2.2 CALCULATION OF DISPLACEMENT GREEN S FUNCTION, 147 4.2.3
CALCULATION OF STRESS GREEN S FUNCTION, 148 4.3 ELEMENTAL POINT SOURCE
IN A SOLID, 149 4.3.1 DISPLACEMENT AND STRESS GREEN S FUNCTIONS, 150
4.3.2 DIFFERENTIATION OF DISPLACEMENT GREEN S FUNCTION WITH RESPECT
TOXI,X2,X3, 151 4.3.3 COMPUTATION OF DISPLACEMENTS AND STRESSES IN THE
SOLID FOR MULTIPLE POINT SOURCES, 153 4.3.4 MATRIX REPRESENTATION, 155
4.4 CALCULATION OF PRESSURE AND DISPLACEMENT GREEN S FUNCTIONS IN THE
FLUID ADJACENT TO THE SOLID HALF SPACE, 157 4.4.1 DISPLACEMENT AND
POTENTIAL GREEN S FUNCTIONS IN THE FLUID, 158 4.4.2 COMPUTATION OF
DISPLACEMENT AND PRESSURE IN THE FLUID, 159 4.4.3 MATRIX REPRESENTATION,
161 4.5 APPLICATION 1: ULTRASONIC FIELD MODELING NEAR FLUID-SOLID
INTERFACE (BANERJEE ET AL., 2007), 163 4.5.1 MATRIX FORMULATION TO
CALCULATE SOURCE STRENGTHS, 164 4.5.2 BOUNDARY CONDITIONS, 165 4.5.3
SOLUTION, 165 4.5.4 NUMERICAL RESULTS ON ULTRASONIC FIELD MODELING NEAR
FLUID-SOLID INTERFACE, 166 4.6 APPLICATION 2: ULTRASONIC FIELD MODELING
IN A SOLID PLATE (BANERJEE AND KUNDU, 2007), 180 4.6.1 ULTRASONIC FIELD
MODELING IN A HOMOGENEOUS SOLID PLATE, 180 4.6.2 MATRIX FORMULATION TO
CALCULATE SOURCE STRENGTHS, 181 4.6.3 BOUNDARY AND CONTINUITY
CONDITIONS, 183 4.6.4 SOLUTION, 185 4.6.5 NUMERICAL RESULTS ON
ULTRASONIC FIELD MODELING IN SOLID PLATES, 185 4.7 APPLICATION 3:
ULTRASONIC FIELDS IN SOLID PLATES WITH INCLUSION OR HORIZONTAL CRACKS
(BANERJEE AND KUNDU, 2007A, B), 198 4.7.1 PROBLEM GEOMETRY, 198 4.7.2
MATRIX FORMULATION, 200 4.7.3 BOUNDARY AND CONTINUITY CONDITIONS, 201
4.7.4 SOLUTION, 202 4.7.5 NUMERICAL RESULTS ON ULTRASONIC FIELDS IN
SOLID PLATE WITH HORIZONTAL CRACK, 202 4.8 APPLICATION 4: ULTRASONIC
FIELD MODELING IN SINUSOIDALLY CORRUGATED WAVE GUIDES (BANERJEE AND
KUNDU, 2006, 2006A), 204 4.8.1 THEORY, 204 CONTENTS XI 4.8.2 NUMERICAL
RESULTS ON ULTRASONIC FIELDS IN SINUSOIDAL CORRUGATED WAVE GUIDES, 210
4.9 CALCULATION OF GREEN S FUNCTIONS IN TRANSVERSELY ISOTROPIE AND
ANISOTROPIE SOLID, 218 4.9.1 GOVERNING DIFFERENTIAL EQUATION FOR GREEN S
FUNETION CALCULATION, 218 4.9.2 RADON TRANSFORM, 222 4.9.3 BASIC
PROPERTIES OF RADON TRANSFORM, 223 4.9.4 DISPLACEMENT AND STRESS GREEN S
FUNETIONS, 224 REFERENCES, 225 CHAPTER 5 - DPSM FORMULATION FOR BASIC
MAGNETIC PROBLEMS 231 N. LIEBEAUX AND D. PLACKO 5.1 INTRODUCTION, 231
5.2 DPSM FORMULATION FOR MAGNETIC PROBLEMS, 233 5.2.1 THE BIOT-SAVART
LAW AS A DPSM CURRENT SOURCE DEFINITION, 233 5.2.1.1 WIREOF INFINITE
LENGTH, 233 5.2.1.2 CURRENT LOOP, 234 5.2.2 CURRENT LOOPS ABOVE A
SEMI-INFINITE CONDUETIVE TARGET, 235 5.2.3 CURRENT LOOPS ABOVE A
SEMI-INFINITE MAGNETIC TARGET, 236 5.2.4 CURRENT LOOP CIRCLING A
MAGNETIC CORE, 237 5.2.4.1 GEOMETRY, 237 5.2.4.2 DPSM FORMULATION, 238
5.2.4.3 RESULTS, 240 5.2.5 FINITE ELEMENTS SIMULATION*COMPARISONS, 241
5.3 CONCLUSION, 243 REFERENCES, 244 CHAPTER 6 - ADVANCED MAGNETODYNAMIC
AND ELECTROMAGNETIC PROBLEMS 247 D. PLACKO AND N. LIEBEAUX 6.1
INTRODUCTION, 247 6.2 DPSM FORMULATION USING GREEN S SOURCES, 248 6.2.1
GREEN S THEORY, 248 6.2.2 GREEN S FUNETION IN FREE HOMOGENEOUS SPACE,
249 6.3 GREEN S FUNCTIONS AND DPSM FORMULATION, 249 6.3.1 EXPRESSIONS OF
THE MAGNETIC AND ELECTRIC FIELDS, 249 6.3.2 BOUNDARY CONDITIONS, 253 6.4
EXAMPLE OF APPLICATION, 256 6.4.1 TARGET IN ALUMINUM (A = 50MS/M),
FREQUENCY = 1000HZ, 256 6.4.2 TARGET IN ALUMINUM (A = 50 MS/M),
FREQUENCY = 100 HZ, INCLINED EXCITATION LOOP, 260 6.4.3 DIELECTRIC
TARGET (E R = 5), FREQUENCY = 3 GHZ, 10 TILTED EXCITATION LOOP, 263 6.5
CONCLUSION, 270 REFERENCES, 271 XLL CONTENTS CHAPTER 7 - ELECTROSTATIC
MODELING AND BASIC APPLICATIONS 273 G LISSORGUES, A. CRUAU, AND D.
PLACKO 7.1 INTRODUCTION, 273 7.2 MODELING BY DPSM, 275 7.2.1
DIGITALIZATION OF THE PROBLEM, 275 7.2.2 DPSM MESHING CONSIDERATIONS,
276 7.2.3 MATRIX FORMULATION, 276 7.3 SOLVING THE SYSTEM, 278 7.3.1
SYNTHESIZING ELECTROSTATIC FIELD AND POTENTIAL, 278 7.3.2 CAPACITANCE
CALCULATION, 279 7.4 EXAMPLES BASED ON PARALLEL-PLATE CAPACITORS, 280
7.4.1 DESCRIPTION, 280 7.4.2 EQUATIONS, 281 7.4.3 RESULTS OF SIMULATION,
282 7.4.4 GAP-TUNING VARIABLE CAPACITOR, 288 7.4.5 SURFACE-TUNING
VARIABLE CAPACITOR, 288 7.5 SUMMARY, 293 REFERENCE, 293 CHAPTER 8 -
ADVANCED ELECTROSTATIC PROBLEMS: MULTILAYERED DIELECTRIC MEDIUM AND
MASKING ISSUES 295 G. LISSORGUES, A. CRUAU, AND D. PLACKO 8.1
INTRODUCTION, 295 8.2 MULTILAYERED SYSTEMS, 296 8.3 EXAMPLES OF
MULTIMATERIAL ELECTROSTATIC STRUCTURE, 299 8.3.1 PARALLEL-PLATE
CAPACITOR WITH TWO DIELECTRIC LAYERS, 299 8.3.2 PERMITTIVITY-TUNING
VARACTORS, 301 8.4 MULTICONDUCTOR SYSTEMS: MASKING ISSUES, 302 8.5
EXAMPLE OF MULTICONDUCTOR SYSTEM, 304 REFERENCES, 305 CHAPTER 9 - BASIC
ELECTROMAGNETIC PROBLEMS 307 M. LEMISTRE AND D. PLACKO 9.1 INTRODUCTION,
307 9.2 THEORETICAL CONSIDERATIONS, 308 9.2.1 MAXWELL S EQUATIONS, 308
9.2.2 RADIATION OF DIPOLES, 308 9.2.2.1 ELECTROMAGNETIC FIELD RADIATED
BY A CURRENT DISTRIBUTION, 308 9.2.2.2 ELECTRIC DIPOLE, 309 9.2.2.3
MAGNETIC DIPOLE, 310 9.2.3 THE SURFACE IMPEDANCE, 311 9.2.4 DIFFRACTION
BY A CIRCULAR APERTURE, 314 CONTENTS XIUE 9.2.5 EDDY CURRENTS, 316 9.2.6
POLARIZATION OF DIELECTRICS, 317 9.3 PRINCIPLE OF ELECTROMAGNETIC PROBE
FOR NDE, 319 9.3.1 APPLICATION OF DIELECTRIC MATERIALS, 319 9.3.2
APPLICATION TO CONDUCTIVE MATERIALS, 320 9.3.2.1 MAGNETIC METHOD, 320
9.3.2.2 HYBRID METHOD, 323 9.4 ELECTROMAGNETIC METHOD FOR STRACTURAL
HEALTH MONITORING (SHM) APPLICATIONS, 327 9.4.1 GENERALITIES, 327 9.4.2
HYBRID METHOD, 327 9.4.3 ELECTRIC METHOD, 330 REFERENCES, 331 CHAPTER 10
- ADVANCED ELECTROMAGNETIC PROBLEMS WITH INDUSTRIAL APPLICATIONS 333 M.
LEMISTRE AND D. PLACKO 10.1 INTRODUCTION, 333 10.2 MODELING THE SOURCES,
334 10.2.1 GENERALITIES, 334 10.2.2 PRIMARY SOURCE, 335 10.2.3 BOUNDARY
CONDITIONS, 335 10.3 MODELING A DEFECT INSIDE THE STRUCTURE, 339 10.4
SOLVING THE INVERSE PROBLEM, 345 10.5 CONCLUSION, 347 REFERENCES, 347
CHAPTER 11 - DPSM BETA PROGRAM USER S MANUAL 349 A. CRUAU AND D. PLACKO
11.1 INTRODUCTION, 349 11.2 GLOSSARY, 350 11.2.1 MEDIUM, 350 11.2.2
OBJECT, 350 11.2.3 INTERFACE, 351 11.2.4 BOUNDARY CONDITIONS (BC), 351
11.2.5 FRONTIER, 351 11.2.6 WORKSAPCE, 352 11.2.7 SCALAR AND VECTOR
PHYSICAL VALUES, 352 11.3 MODELING PREPARATION, 352 11.4 PROGRAM STEPS,
352 11.5 CONCLUSION, 368 INDEX 369
|
adam_txt |
DPSM FOR MODELING ENGINEERING PROBLEMS EDITED BY DOMINIQUE PLACKO AND
TRIBIKRAM KUNDU 3ICENTENNIAL. 1 8 O 7 WILEY 2 O O 7 BICENTENNIAL
WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION CONTENTS
PREFACE CONTRIBUTORS CHAPTER 1 - BASIC THEORY OF DISTRIBUTED POINT
SOURCE METHOD (DPSM) AND ITS APPLICATION TO SOME SIMPLE PROBLEMS D.
PLACKO AND T. KUNDU 1.1 INTRODUCTION AND HISTORICAL DEVELOPMENT OF DPSM,
1 1.2 BASIC PRINCIPLES OF DPSM MODELING, 3 1.2.1 THE FUNDAMENTAL IDEA, 3
1.2.1.1 BASIC EQUATIONS, 6 1.2.1.2 BOUNDARY CONDITIONS, 8 1.2.2 EXAMPLE
IN THE CASE OF A MAGNETIC OPEN CORE SENSOR, 9 1.2.2.1 GOVERNING
EQUATIONS AND SOLUTION, 9 1.2.2.2 SOLUTION OF COUPLING EQUATIONS, 11
1.2.2.3 RESULTS AND DISCUSSION, 13 1.3 EXAMPLES FROM ULTRASONIC
TRANSDUCER MODELING, 16 1.3.1 JUSTIFICATION OF MODELING A FINITE PLANE
SOURCE BY A DISTRIBUTION OF POINT SOURCES, 17 1.3.2 PLANAR PISTON
TRANSDUCER IN A FLUID, 18 1.3.2.1 CONVENTIONAL SURFACE INTEGRAL
TECHNIQUE, 18 1.3.2.2 ALTERNATIVE DPSM FOR COMPUTING THE ULTRASONIC
FIELD, 20 1.3.2.3 RESTRICTIONS ON R S FOR POINT SOURCE DISTRIBUTION, 29
1.3.3 FOCUSED TRANSDUCER IN A HOMOGENEOUS FLUID, 31 VLLL CONTENTS 1.3.4
ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID IN THE PRESENCE OF AN
INTERFACE, 32 1.3.4.1 PRESSURE FIELD COMPUTATION IN FLUID 1 AT POINT P,
33 1.3.4.2 PRESSURE FIELD COMPUTATION IN FLUID 2 AT POINT Q, 35 1.3.5
DPSM TECHNIQUE FOR ULTRASONIC FIELD MODELING IN NONHOMOGENEOUS FLUID, 38
1.3.5.1 FIELD COMPUTATION IN FLUID 1, 38 1.3.5.2 FIELD IN FLUID 2, 42
1.3.6 ULTRASONIC FIELD IN THE PRESENCE OF A SCATTERER, 43 1.3.7
NUMERICAL RESULTS, 45 1.3.7.1 ULTRASONIC FIELD IN A HOMOGENEOUS FLUID,
45 1.3.7.2 ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID-DPSM TECHNIQUE, 50
1.3.7.3 ULTRASONIC FIELD IN A NONHOMOGENEOUS FLUID - SURFACE INTEGRAL
METHOD, 52 1.3.7.4 ULTRASONIC FIELD IN THE PRESENCE OF A FINITE-SIZE
SCATTERER, 53 REFERENCES, 57 CHAPTER 2-ADVANCED THEORY OF DPSM*MODELING
MULTILAYERED MEDIUM AND INCLUSIONS OF ARBITRARY SHAPE 59 T. KUNDU AND D.
PLACKO 2.1 INTRODUCTION, 59 2.2 THEORY OF MULTILAYERED MEDIUM MODELING,
60 2.2.1 TRANSDUCER FACES NOT COINCIDING WITH ANY INTERFACE, 60 2.2.1.1
SOURCE STRENGTH DETERMINATION FROM BOUNDARY AND INTERFACE CONDITIONS, 62
2.2.2 TRANSDUCER FACES COINCIDING WITH THE INTERFACE - CASE 1:
TRANSDUCER FACES MODELED SEPARATELY, 64 2.2.2.1 SOURCE STRENGTH
DETERMINATION FROM INTERFACE AND BOUNDARY CONDITIONS, 65 2.2.2.2
COUNTING NUMBER OF EQUATIONS AND NUMBER OFUNKNOWNS, 68 2.2.3 TRANSDUCER
FACES COINCIDING WITH THE INTERFACE - CASE 2: TRANSDUCER FACES ARE PART
OF THE INTERFACE, 68 2.2.3.1 SOURCE STRENGTH DETERMINATION FROM
INTERFACE AND BOUNDARY CONDITIONS, 69 2.2.4 SPECIAL CASE INVOLVING ONE
INTERFACE AND ONE TRANSDUCER ONLY, 71 2.3 THEORY FOR MULTILAYERED MEDIUM
CONSIDERING THE INTERACTION EFFECT ON THE TRANSDUCER SURFACE, 76 2.3.1
SOURCE STRENGTH DETERMINATION FROM INTERFACE CONDITIONS, 78 2.3.2
COUNTING NUMBER OF EQUATIONS AND NUMBER OF UNKNOWNS, 80 2.4 INTERFERENCE
BETWEEN TWO TRANSDUCERS: STEP-BY-STEP ANALYSIS OF MULTIPLE REFLECTION,
80 2.5 SCATTERING BY AN INCLUSION OF ARBITRARY SHAPE, 83 CONTENTS 2.6
SCATTERING BY AN INCLUSION OF ARBITRARY SHAPE - AN ALTERNATIVE APPROACH,
85 2.7 ELECTRIC FIELD IN A MULTILAYERED MEDIUM, 87 2.8 ULTRASONIC FIELD
IN A MULTILAYERED FLUID MEDIUM, 91 2.8.1 ULTRASONIC FIELD DEVELOPED IN A
THREE-LAYERED MEDIUM, 93 2.8.2 ULTRASONIC FIELD DEVELOPED IN A
FOUR-LAYERED FLUID MEDIUM, 94 REFERENCE, 96 CHAPTER 3 - ULTRASONIC
MODELING IN FLUID MEDIA T. KUNDU, R. AHMAD, N. ALNAUAIMI, AND D. PLACKO
3.1 INTRODUCTION, 97 3.2 PRIMARY (ACTIVE) AND SECONDARY (PASSIVE)
SOURCES, 100 3.3 MODELING ULTRASONIC TRANSDUCERS OF FINITE DIMENSION
IMMERSED IN A HOMOGENEOUS FLUID, 100 3.3.1 NUMERICAL RESULTS*ULTRASONIC
TRANSDUCERS OF FINITE DIMENSION IMMERSED IN FLUID, 107 3.4 MODELING
ULTRASONIC TRANSDUCERS OF FINITE DIMENSION IMMERSED IN A NONHOMOGENEOUS
FLUID, 111 3.4.1 OBTAINING THE STRENGTHS OF ACTIVE AND PASSIVE SOURCE
LAYERS, 112 3.4.1.1 COMPUTATION OF THE SOURCE STRENGTH VECTORS WHEN
MULTIPLE REFLECTIONS BETWEEN THE TRANSDUCER AND THE INTERFACE ARE
IGNORED, 113 3.4.1.2 COMPUTATION OF THE SOURCE STRENGTH VECTORS
CONSIDERING THE INTERACTION EFFECTS BETWEEN THE TRANSDUCER AND THE
INTERFACE, 114 3.4.2 NUMERICAL RESULTS*ULTRASONIC TRANSDUCER IMMERSED IN
NONHOMOGENEOUS FLUID, 116 3.5 REFLECTION AT A FLUID-SOLID
INTERFACE*IGNORING MULTIPLE REFLECTIONS BETWEEN THE TRANSDUCER SURFACE
AND THE INTERFACE, 117 3.5.1 NUMERICAL RESULTS FOR FLUID-SOLID
INTERFACE, 118 3.6 MODELING ULTRASONIC FIELD IN PRESENCE OF A THIN
SCATTERER OF FINITE DIMENSION, 118 3.7 MODELING ULTRASONIC FIELD INSIDE
A MULTILAYERED FLUID MEDIUM, 120 3.8 MODELING PHASED ARRAY TRANSDUCERS
IMMERSED IN A FLUID, 121 3.8.1 DESCRIPTION AND USE OF PHASED ARRAY
TRANSDUCERS, 121 3.8.2 THEORY OF PHASED ARRAY TRANSDUCER MODELING, 122
3.8.3 DYNAMIC FOCUSING AND TIME LAG DETERMINATION, 124 3.8.4 INTERACTION
BETWEEN TWO TRANSDUCERS IN A HOMOGENEOUS FLUID, 125 3.8.5 NUMERICAL
RESULTS FOR PHASED ARRAY TRANSDUCER MODELING, 126 3.8.5.1 DYNAMIC
STEERING AND FOCUSING, 127 3.8.5.2 INTERACTION BETWEEN TWO PHASED ARRAY
TRANSDUCERS PLACED FACE TO FACE, 129 3.9 SUMMARY, 140 REFERENCE, 141 X
CHAPTER 4 - ADVANCED APPLICATIONS OF DISTRIBUTED POINT SOURCE METHOD -
ULTRASONIC FIELD MODELING IN SOLID MEDIA SOURAV BANERJEE AND TRIBIKRAM
KUNDU 4.1 INTRODUCTION, 143 4.2 CALCULATION OF DISPLACEMENT AND STRESS
GREEN'S FUNCTIONS IN SOLIDS, 144 4.2.1 POINT SOURCE EXCITATION IN A
SOLID, 145 4.2.2 CALCULATION OF DISPLACEMENT GREEN'S FUNCTION, 147 4.2.3
CALCULATION OF STRESS GREEN'S FUNCTION, 148 4.3 ELEMENTAL POINT SOURCE
IN A SOLID, 149 4.3.1 DISPLACEMENT AND STRESS GREEN'S FUNCTIONS, 150
4.3.2 DIFFERENTIATION OF DISPLACEMENT GREEN'S FUNCTION WITH RESPECT
TOXI,X2,X3, 151 4.3.3 COMPUTATION OF DISPLACEMENTS AND STRESSES IN THE
SOLID FOR MULTIPLE POINT SOURCES, 153 4.3.4 MATRIX REPRESENTATION, 155
4.4 CALCULATION OF PRESSURE AND DISPLACEMENT GREEN'S FUNCTIONS IN THE
FLUID ADJACENT TO THE SOLID HALF SPACE, 157 4.4.1 DISPLACEMENT AND
POTENTIAL GREEN'S FUNCTIONS IN THE FLUID, 158 4.4.2 COMPUTATION OF
DISPLACEMENT AND PRESSURE IN THE FLUID, 159 4.4.3 MATRIX REPRESENTATION,
161 4.5 APPLICATION 1: ULTRASONIC FIELD MODELING NEAR FLUID-SOLID
INTERFACE (BANERJEE ET AL., 2007), 163 4.5.1 MATRIX FORMULATION TO
CALCULATE SOURCE STRENGTHS, 164 4.5.2 BOUNDARY CONDITIONS, 165 4.5.3
SOLUTION, 165 4.5.4 NUMERICAL RESULTS ON ULTRASONIC FIELD MODELING NEAR
FLUID-SOLID INTERFACE, 166 4.6 APPLICATION 2: ULTRASONIC FIELD MODELING
IN A SOLID PLATE (BANERJEE AND KUNDU, 2007), 180 4.6.1 ULTRASONIC FIELD
MODELING IN A HOMOGENEOUS SOLID PLATE, 180 4.6.2 MATRIX FORMULATION TO
CALCULATE SOURCE STRENGTHS, 181 4.6.3 BOUNDARY AND CONTINUITY
CONDITIONS, 183 4.6.4 SOLUTION, 185 4.6.5 NUMERICAL RESULTS ON
ULTRASONIC FIELD MODELING IN SOLID PLATES, 185 4.7 APPLICATION 3:
ULTRASONIC FIELDS IN SOLID PLATES WITH INCLUSION OR HORIZONTAL CRACKS
(BANERJEE AND KUNDU, 2007A, B), 198 4.7.1 PROBLEM GEOMETRY, 198 4.7.2
MATRIX FORMULATION, 200 4.7.3 BOUNDARY AND CONTINUITY CONDITIONS, 201
4.7.4 SOLUTION, 202 4.7.5 NUMERICAL RESULTS ON ULTRASONIC FIELDS IN
SOLID PLATE WITH HORIZONTAL CRACK, 202 4.8 APPLICATION 4: ULTRASONIC
FIELD MODELING IN SINUSOIDALLY CORRUGATED WAVE GUIDES (BANERJEE AND
KUNDU, 2006, 2006A), 204 4.8.1 THEORY, 204 CONTENTS XI 4.8.2 NUMERICAL
RESULTS ON ULTRASONIC FIELDS IN SINUSOIDAL CORRUGATED WAVE GUIDES, 210
4.9 CALCULATION OF GREEN'S FUNCTIONS IN TRANSVERSELY ISOTROPIE AND
ANISOTROPIE SOLID, 218 4.9.1 GOVERNING DIFFERENTIAL EQUATION FOR GREEN'S
FUNETION CALCULATION, 218 4.9.2 RADON TRANSFORM, 222 4.9.3 BASIC
PROPERTIES OF RADON TRANSFORM, 223 4.9.4 DISPLACEMENT AND STRESS GREEN'S
FUNETIONS, 224 REFERENCES, 225 CHAPTER 5 - DPSM FORMULATION FOR BASIC
MAGNETIC PROBLEMS 231 N. LIEBEAUX AND D. PLACKO 5.1 INTRODUCTION, 231
5.2 DPSM FORMULATION FOR MAGNETIC PROBLEMS, 233 5.2.1 THE BIOT-SAVART
LAW AS A DPSM CURRENT SOURCE DEFINITION, 233 5.2.1.1 WIREOF INFINITE
LENGTH, 233 5.2.1.2 CURRENT LOOP, 234 5.2.2 CURRENT LOOPS ABOVE A
SEMI-INFINITE CONDUETIVE TARGET, 235 5.2.3 CURRENT LOOPS ABOVE A
SEMI-INFINITE MAGNETIC TARGET, 236 5.2.4 CURRENT LOOP CIRCLING A
MAGNETIC CORE, 237 5.2.4.1 GEOMETRY, 237 5.2.4.2 DPSM FORMULATION, 238
5.2.4.3 RESULTS, 240 5.2.5 FINITE ELEMENTS SIMULATION*COMPARISONS, 241
5.3 CONCLUSION, 243 REFERENCES, 244 CHAPTER 6 - ADVANCED MAGNETODYNAMIC
AND ELECTROMAGNETIC PROBLEMS 247 D. PLACKO AND N. LIEBEAUX 6.1
INTRODUCTION, 247 6.2 DPSM FORMULATION USING GREEN'S SOURCES, 248 6.2.1
GREEN'S THEORY, 248 6.2.2 GREEN'S FUNETION IN FREE HOMOGENEOUS SPACE,
249 6.3 GREEN'S FUNCTIONS AND DPSM FORMULATION, 249 6.3.1 EXPRESSIONS OF
THE MAGNETIC AND ELECTRIC FIELDS, 249 6.3.2 BOUNDARY CONDITIONS, 253 6.4
EXAMPLE OF APPLICATION, 256 6.4.1 TARGET IN ALUMINUM (A = 50MS/M),
FREQUENCY = 1000HZ, 256 6.4.2 TARGET IN ALUMINUM (A = 50 MS/M),
FREQUENCY = 100 HZ, INCLINED EXCITATION LOOP, 260 6.4.3 DIELECTRIC
TARGET (E R = 5), FREQUENCY = 3 GHZ, 10 TILTED EXCITATION LOOP, 263 6.5
CONCLUSION, 270 REFERENCES, 271 XLL CONTENTS CHAPTER 7 - ELECTROSTATIC
MODELING AND BASIC APPLICATIONS 273 G LISSORGUES, A. CRUAU, AND D.
PLACKO 7.1 INTRODUCTION, 273 7.2 MODELING BY DPSM, 275 7.2.1
DIGITALIZATION OF THE PROBLEM, 275 7.2.2 DPSM MESHING CONSIDERATIONS,
276 7.2.3 MATRIX FORMULATION, 276 7.3 SOLVING THE SYSTEM, 278 7.3.1
SYNTHESIZING ELECTROSTATIC FIELD AND POTENTIAL, 278 7.3.2 CAPACITANCE
CALCULATION, 279 7.4 EXAMPLES BASED ON PARALLEL-PLATE CAPACITORS, 280
7.4.1 DESCRIPTION, 280 7.4.2 EQUATIONS, 281 7.4.3 RESULTS OF SIMULATION,
282 7.4.4 GAP-TUNING VARIABLE CAPACITOR, 288 7.4.5 SURFACE-TUNING
VARIABLE CAPACITOR, 288 7.5 SUMMARY, 293 REFERENCE, 293 CHAPTER 8 -
ADVANCED ELECTROSTATIC PROBLEMS: MULTILAYERED DIELECTRIC MEDIUM AND
MASKING ISSUES 295 G. LISSORGUES, A. CRUAU, AND D. PLACKO 8.1
INTRODUCTION, 295 8.2 MULTILAYERED SYSTEMS, 296 8.3 EXAMPLES OF
MULTIMATERIAL ELECTROSTATIC STRUCTURE, 299 8.3.1 PARALLEL-PLATE
CAPACITOR WITH TWO DIELECTRIC LAYERS, 299 8.3.2 PERMITTIVITY-TUNING
VARACTORS, 301 8.4 MULTICONDUCTOR SYSTEMS: MASKING ISSUES, 302 8.5
EXAMPLE OF MULTICONDUCTOR SYSTEM, 304 REFERENCES, 305 CHAPTER 9 - BASIC
ELECTROMAGNETIC PROBLEMS 307 M. LEMISTRE AND D. PLACKO 9.1 INTRODUCTION,
307 9.2 THEORETICAL CONSIDERATIONS, 308 9.2.1 MAXWELL'S EQUATIONS, 308
9.2.2 RADIATION OF DIPOLES, 308 9.2.2.1 ELECTROMAGNETIC FIELD RADIATED
BY A CURRENT DISTRIBUTION, 308 9.2.2.2 ELECTRIC DIPOLE, 309 9.2.2.3
MAGNETIC DIPOLE, 310 9.2.3 THE SURFACE IMPEDANCE, 311 9.2.4 DIFFRACTION
BY A CIRCULAR APERTURE, 314 CONTENTS XIUE 9.2.5 EDDY CURRENTS, 316 9.2.6
POLARIZATION OF DIELECTRICS, 317 9.3 PRINCIPLE OF ELECTROMAGNETIC PROBE
FOR NDE, 319 9.3.1 APPLICATION OF DIELECTRIC MATERIALS, 319 9.3.2
APPLICATION TO CONDUCTIVE MATERIALS, 320 9.3.2.1 MAGNETIC METHOD, 320
9.3.2.2 HYBRID METHOD, 323 9.4 ELECTROMAGNETIC METHOD FOR STRACTURAL
HEALTH MONITORING (SHM) APPLICATIONS, 327 9.4.1 GENERALITIES, 327 9.4.2
HYBRID METHOD, 327 9.4.3 ELECTRIC METHOD, 330 REFERENCES, 331 CHAPTER 10
- ADVANCED ELECTROMAGNETIC PROBLEMS WITH INDUSTRIAL APPLICATIONS 333 M.
LEMISTRE AND D. PLACKO 10.1 INTRODUCTION, 333 10.2 MODELING THE SOURCES,
334 10.2.1 GENERALITIES, 334 10.2.2 PRIMARY SOURCE, 335 10.2.3 BOUNDARY
CONDITIONS, 335 10.3 MODELING A DEFECT INSIDE THE STRUCTURE, 339 10.4
SOLVING THE INVERSE PROBLEM, 345 10.5 CONCLUSION, 347 REFERENCES, 347
CHAPTER 11 - DPSM BETA PROGRAM USER'S MANUAL 349 A. CRUAU AND D. PLACKO
11.1 INTRODUCTION, 349 11.2 GLOSSARY, 350 11.2.1 MEDIUM, 350 11.2.2
OBJECT, 350 11.2.3 INTERFACE, 351 11.2.4 BOUNDARY CONDITIONS (BC), 351
11.2.5 FRONTIER, 351 11.2.6 WORKSAPCE, 352 11.2.7 SCALAR AND VECTOR
PHYSICAL VALUES, 352 11.3 MODELING PREPARATION, 352 11.4 PROGRAM STEPS,
352 11.5 CONCLUSION, 368 INDEX 369 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022505027 |
callnumber-first | T - Technology |
callnumber-label | TA347 |
callnumber-raw | TA347.D57 |
callnumber-search | TA347.D57 |
callnumber-sort | TA 3347 D57 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZG 9120 |
ctrlnum | (OCoLC)76871398 (DE-599)BVBBV022505027 |
dewey-full | 620.001/51 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.001/51 |
dewey-search | 620.001/51 |
dewey-sort | 3620.001 251 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Technik |
discipline_str_mv | Technik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02087nam a2200529zc 4500</leader><controlfield tag="001">BV022505027</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140618 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070711s2007 xxu |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2006038735</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0471733148</subfield><subfield code="c">cloth</subfield><subfield code="9">0-471-73314-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780471733140</subfield><subfield code="9">978-0-471-73314-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)76871398</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022505027</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA347.D57</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.001/51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZG 9120</subfield><subfield code="0">(DE-625)156026:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">DPSM for modeling engineering problems</subfield><subfield code="c">ed. by Dominique Placko ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, NJ</subfield><subfield code="b">Wiley-Interscience</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 372 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dispositifs électromagnétiques - Conception et construction - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Magnétisme - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathématiques de l'ingénieur</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Électromagnétisme - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Électrostatique - Mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distributed point source method (Numerical analysis)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ultrasonic waves</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic devices</subfield><subfield code="x">Design and construction</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrostatics</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetism</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetism</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Placko, Dominique</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/toc/ecip075/2006038735.html</subfield><subfield code="3">Table of contents only</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015712031</subfield></datafield><datafield tag="344" ind1=" " ind2=" "><subfield code="h">Ill., graph. Darst.</subfield></datafield></record></collection> |
id | DE-604.BV022505027 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:57:09Z |
indexdate | 2024-07-09T20:59:03Z |
institution | BVB |
isbn | 0471733148 9780471733140 |
language | English |
lccn | 2006038735 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015712031 |
oclc_num | 76871398 |
open_access_boolean | |
owner | DE-703 DE-634 |
owner_facet | DE-703 DE-634 |
physical | XIX, 372 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-Interscience |
record_format | marc |
spelling | DPSM for modeling engineering problems ed. by Dominique Placko ... Hoboken, NJ Wiley-Interscience 2007 XIX, 372 S. txt rdacontent n rdamedia nc rdacarrier Dispositifs électromagnétiques - Conception et construction - Mathématiques ram Magnétisme - Modèles mathématiques ram Mathématiques de l'ingénieur ram Électromagnétisme - Modèles mathématiques ram Électrostatique - Mathématiques ram Mathematik Mathematisches Modell Distributed point source method (Numerical analysis) Engineering mathematics Ultrasonic waves Mathematical models Electromagnetic devices Design and construction Mathematics Electrostatics Mathematics Electromagnetism Mathematical models Magnetism Mathematical models Placko, Dominique Sonstige oth http://www.loc.gov/catdir/toc/ecip075/2006038735.html Table of contents only GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis Ill., graph. Darst. |
spellingShingle | DPSM for modeling engineering problems Dispositifs électromagnétiques - Conception et construction - Mathématiques ram Magnétisme - Modèles mathématiques ram Mathématiques de l'ingénieur ram Électromagnétisme - Modèles mathématiques ram Électrostatique - Mathématiques ram Mathematik Mathematisches Modell Distributed point source method (Numerical analysis) Engineering mathematics Ultrasonic waves Mathematical models Electromagnetic devices Design and construction Mathematics Electrostatics Mathematics Electromagnetism Mathematical models Magnetism Mathematical models |
title | DPSM for modeling engineering problems |
title_auth | DPSM for modeling engineering problems |
title_exact_search | DPSM for modeling engineering problems |
title_exact_search_txtP | DPSM for modeling engineering problems |
title_full | DPSM for modeling engineering problems ed. by Dominique Placko ... |
title_fullStr | DPSM for modeling engineering problems ed. by Dominique Placko ... |
title_full_unstemmed | DPSM for modeling engineering problems ed. by Dominique Placko ... |
title_short | DPSM for modeling engineering problems |
title_sort | dpsm for modeling engineering problems |
topic | Dispositifs électromagnétiques - Conception et construction - Mathématiques ram Magnétisme - Modèles mathématiques ram Mathématiques de l'ingénieur ram Électromagnétisme - Modèles mathématiques ram Électrostatique - Mathématiques ram Mathematik Mathematisches Modell Distributed point source method (Numerical analysis) Engineering mathematics Ultrasonic waves Mathematical models Electromagnetic devices Design and construction Mathematics Electrostatics Mathematics Electromagnetism Mathematical models Magnetism Mathematical models |
topic_facet | Dispositifs électromagnétiques - Conception et construction - Mathématiques Magnétisme - Modèles mathématiques Mathématiques de l'ingénieur Électromagnétisme - Modèles mathématiques Électrostatique - Mathématiques Mathematik Mathematisches Modell Distributed point source method (Numerical analysis) Engineering mathematics Ultrasonic waves Mathematical models Electromagnetic devices Design and construction Mathematics Electrostatics Mathematics Electromagnetism Mathematical models Magnetism Mathematical models |
url | http://www.loc.gov/catdir/toc/ecip075/2006038735.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015712031&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT plackodominique dpsmformodelingengineeringproblems |