Nanobiotechnology: 2 More concepts and applications
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVI, 432 S. Ill., graph. Darst. |
ISBN: | 9783527316731 3527316736 |
Internformat
MARC
LEADER | 00000nam a2200000 cc4500 | ||
---|---|---|---|
001 | BV022501037 | ||
003 | DE-604 | ||
005 | 20090421 | ||
007 | t | ||
008 | 070709s2007 gw ad|| |||| 00||| eng d | ||
020 | |a 9783527316731 |9 978-3-527-31673-1 | ||
020 | |a 3527316736 |9 3-527-31673-6 | ||
035 | |a (OCoLC)180121234 | ||
035 | |a (DE-599)BVBBV022501037 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-19 |a DE-703 |a DE-29T |a DE-1043 |a DE-11 | ||
082 | 0 | |a 660.6 | |
084 | |a WD 2200 |0 (DE-625)148163: |2 rvk | ||
084 | |a WF 9720 |0 (DE-625)148461: |2 rvk | ||
245 | 1 | 0 | |a Nanobiotechnology |n 2 |p More concepts and applications |c ed. by Christof M. Niemeyer ; Chad A. Mirkin |
264 | 1 | |a Weinheim |b Wiley-VCH |c 2007 | |
300 | |a XXVI, 432 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Biotechnologie |0 (DE-588)4069491-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nanotechnologie |0 (DE-588)4327470-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nanotechnologie |0 (DE-588)4327470-5 |D s |
689 | 0 | 1 | |a Biotechnologie |0 (DE-588)4069491-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Mirkin, Chad A. |e Sonstige |4 oth | |
700 | 1 | |a Niemeyer, Christof M. |d 1962- |e Sonstige |0 (DE-588)1022599380 |4 oth | |
700 | 1 | |a Mirkin, Chad A. |e Sonstige |4 oth | |
773 | 0 | 8 | |w (DE-604)BV022500964 |g 2 |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015708091&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015708091 |
Datensatz im Suchindex
_version_ | 1804136600086511616 |
---|---|
adam_text | Contents
Preface XV
List of Contributors XXI
I Self Assembly and Nanoparticles: Novel Principles 1
1 Self Assembled Artificial Transmembrane Ion Channels 3
Mary 5. Cin, Emily C. Schmidt, and Pinaki Talukdar
1.1 Overview 3
1.1.1 Non Gated Channels 3
1.1.1.1 Aggregates 4
1.1.1.2 Half Channel Dimers 5
1.1.1.3 Monomolecular Channels 5
1.1.2 Gated Channels 6
1.1.2.1 Light Gated Channels 7
1.1.2.2 Voltage Gated Channels 7
1.1.2.3 Ligand Gated Channels 9
1.2 Methods 10
1.2.1 Planar Bilayers JO
1.2.2 Vesicles 11
1.2.2.1 23NaNMR 11
1.2.2.2 pH Stat 13
1.2.2.3 Fluorescence 12
1.2.2A Ion Selective Electrodes 12
1.3 Outlook 12
References 12
2 Self Assembling Nanostructures from Coiled Coil Peptides 17
Maxim G. Ryadnov and Derek N. Woolfson
2.1 Background and Overview 17
2.1.1 Introduction: Peptides in Self Assembly 17
2.1.2 Coiled Coil Peptides as Building Blocks in Supramolecular Design 18
2.1.3 Coiled Coil Design in General 20
Nanobiotechnology II. Edited by Chad A. Mirkin and Christof M. Niemeyer
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978 3 527 31673 1
VI I Contents
2.2 Methods and Examples 20
2.2.1 Ternary Coiled Coil Assemblies and Nanoscale Linker Systems 20
2.2.2 Fibers Assembled Using Linear Peptides 22
2.2.3 Fibers Assembled Using Protein Fragments and Nonlinear Peptide
Building Blocks 26
2.2.4 Summary: Pros and Cons of Peptide Based Assembly of
Nanofibers 27
2.2.5 Assembling More Complex Matrices Using Peptide Assemblies as
Linker Struts 30
2.2.5.1 Programmed Matrices Assembled Exclusively from Coiled Coil
Building Blocks 30
2.2.5.2 Synthetic Polymer Coiled Coil Hybrids 31
2.2.6 Key Techniques 33
2.3 Conclusions and Perspectives 34
References 35
3 Synthesis and Assembly of Nanoparticles and Nanostructures Using
Bio Derived Templates 39
Erik Dujardin and Stephen Mann
3.1 Introduction: Elegant Complexity 39
3.2 Polysaccharides, Synthetic Peptides, and DNA 40
3.3 Proteins 44
3.4 Viruses 48
3.5 Microorganisms 54
3.6 Outlook 56
Acknowledgments 58
References 58
4 Proteins and Nanoparticles: Covalent and Noncovalent Conjugates 65
Rochelle R. Atvizo, Mrinmoy De, and Vincent M. Rotello
4.1 Overview 65
4.1.1 Covalent Protein Nanoparticle Conjugates 66
4.1.2 Noncovalent Protein NP Conjugation 69
4.2 Methods 72
4.2.1 General Methods for Noncovalent Protein NP Conjugation 72
4.2.2 General Methods for Covalent Protein NP Conjugation 74
4.3 Outlook 75
References 75
5 Self Assembling DNA Nanostructures for Patterned Molecular
Assembly 79
Thomas H. LaBean, Kurt V. Cothetf, and John H. Reif
Abstract 79
5.1 Introduction 79
5.2 Overview of DNA Nanostructures 80
Contents I VII
5.3 Three Dimensional (3 D) DNA Nanostructures 84
5.4 Programmed Patterning of DNA Nanostructures 84
5.5 DNA Programmed Assembly of Biomolecules 87
5.6 DNA Programmed Assembly of Materials 89
5.7 Laboratory Methods 91
5.7.1 Annealing for DNA Assembly 92
5.7.2 AFM Imaging 93
5.8 Conclusions 93
Acknowledgments 94
References 94
6 Biocatalytic Growth of Nanoparticles for Sensors and Circuitry 99
Ronan Baron, Bilha Willner, and Itamar Willner
6.1 Overview 99
6.1.1 Enzyme Stimulated Synthesis of Metal Nanoparticles 100
6.1.2 Enzyme Stimulated Synthesis of Cupric Ferrocyanide
Nanoparticles 107
6.1.3 Cofactor Induced Synthesis of Metallic NPs 107
6.1.4 Enzyme Metal NP Hybrid Systems as Inks for the Synthesis of
Metallic Nanowires 113
6.2 Methods 115
6.2.1 Physical Tools to Characterize the Growth of Nanoparticles and
Nanowires 115
6.2.2 General Procedure for Monitoring the Biocatalytic Enlargement of
Metal NPs in Solutions 116
6.2.3 Modification of Surfaces with Metal NPs and their Biocatalytic Growth
for Sensing 116
6.2.4 Modification of Enzymes with NPs and their Use as Biocatalytic
Templates for Metallic Nanocircuitry 117
6.3 Outlook 117
References 118
II Nanostructures for Analytics 123
7 Nanoparticles for Electrochemical Bioassays 125
Joseph Wang
7.1 Overview 125
7.1.1 Particle Based Bioassays 125
7.1.2 Electrochemical Bioaffinity Assays 125
7.1.3 NP Based Electrochemical Bioaffinity Assays 126
7.1.3.1 Gold and Silver Metal Tags for Electrochemical Detection of DNA and
Proteins 126
7.1.3.2 NP Induced Conductivity Detection 129
7.1.3.3 Inorganic Nanocrystal Tags: Towards Electrical Coding 130
7.1.3.4 Use of Magnetic Beads 133
VIII I Contents
7.1.3.5 Ultrasensitive Particle Based Assays Based on Multiple Amplification
Schemes 134
7.2 Methods 136
7.3 Outlook 137
Acknowledgments 138
References 138
8 Luminescent Semiconductor Quantum Dots in Biology 141
Thomas Pons, Aaron R. Clapp, Igor L Medintz, and Hedi Mattoussi
8.1 Overview 141
8.1.1 QD Bioconjugates in Cell and Tissue Imaging 142
8.1.2 Quantum Dots in Immuno and FRET Based Assays 146
8.2 Methods 150
8.2.1 Synthesis, Characterization, and Capping Strategies 150
8.2.2 Water Solubilization Strategies 151
8.2.3 Conjugation Strategies 151
8.3 Future Outlook 152
Acknowledgments 153
References 153
9 Nanoscale Localized Surface Plasmon Resonance Biosensors 159
Katherine A. Willets, W. Paige Hall, LeifJ. Sherry, Xiaoyu Zhang, Jing Zhao, and
Richard P. Van Duyne
9.1 Overview 159
9.2 Methods 162
9.2.1 Nanofabrication of Materials for LSPR Spectroscopy and Sensing 162
9.2.1.1 Film Over Nanowells 163
9.2.1.2 Solution Phase NSL Fabricated Nanotriangles 164
9.2.1.3 Silver Nanocubes 166
9.2.2 Biosensing 167
9.3 Outlook 168
Acknowledgments 169
References 169
10 Cantilever Array Sensors for Bioanalysis and Diagnostics 175
Hans Peter Lang, Martin Hegner, and Christoph Cerber
10.1 Overview 175
10.1.1 Cantilevers as Sensors 176
10.1.2 Measurement Principle 177
10.1.3 Cantilevers: Application Fields 179
10.2 Methods 180
10.2.1 Measurement Modes 180
10.2.2 Cantilever Functionalization 181
10.2.3 Experimental Procedure 384
10.3 Outlook 186
Contents IX
10.3.1 Recent Literature 186
10.3.2 Challenges 188
Acknowledgments 189
References 190
11 Shear Force Controlled Scanning Ion Conductance Microscopy 197
Tilman E. Schaffer, Boris Anczykotvski, Matthias Booker, and Harald Fuchs
11.1 Overview 197
11.2 Methods 202
11.2.1 Shear Force Detection 202
11.2.2 Ion Current Measurement 204
11.2.3 Shear Force Controlled Imaging 205
11.3 Outlook 207
Acknowledgments 209
References 209
12 Label Free Nanowire and Nanotube Biomolecular Sensors for In Vitro
Diagnosis of Cancer and other Diseases 213
James R. Heath
12.1 Overview 213
12.2 Background 213
12.3 Methods and Current State of the Art 216
12.3.1 Mechanisms of Sensing 216
12.3.2 The Role of the Sensing Environment 218
12.3.3 Nanosensor Measured Antigen Analyte On/Off Binding Rates 219
12.3.4 The Nanosensor/Microfluidic Environment 222
12.3.5 Nanosensor Fabrication 223
12.3.6 Biofunctionalizing NW and NT Nanosensors 226
12.4 Outlook 227
Acknowledgments 227
References 228
13 Bionanoarrays 233
Rafael A. Vega, Khalid Salaita, Joseph J. Kakkassery, and Chad A. Mirkin
13.1 Overview 233
13.2 Methods 234
13.2.1 Atomic Force Microscope Based Methods 234
13.2.2 Nanopipet Deposition 237
13.2.3 Beam Based Methods 238
13.2.4 Contact Printing 240
13.2.5 Assembly Based Patterning 241
13.3 Protein Nanoarrays 242
13.3.1 Strategies for Immobilizing Proteins on Nanopatterns 243
13.3.2 Bio Analytical Applications 244
13.3.3 Dynamic and Motile Nanoarrays 246
X Contents
13.3.4 Cell Surface Interactions 246
13.4 DNA Nanoarrays 249
13.4.1 Strategies for Preparing DNA Nanoarrays 249
13.4.2 DNA Based Schemes for Biodetection 250
13.4.3 Applications of Rationally Designed, Self Assembled 2 D DNA
Nanoarrays 253
13.5 Virus Nanoarrays 253
13.6 Outlook 254
References 254
III Nanostructures for Medicinal Applications 261
14 Biological Barriers to Nanocarrier Mediated Delivery of Therapeutic and
Imaging Agents 263
Rudy Juliano
14.1 Overview: Nanocarriers for Delivery of Therapeutic and Imaging
Agents 263
14.2 Basic Characteristics of the Vasculature and Mononuclear Phagocyte
System 263
14.2.1 Possible Interactions of Nanocarriers Within the Bloodstream 264
14.2.2 Transendothelial Permeability in Various Tissues and Tumors 264
14.2.3 Mononuclear Cells and Particle Clearance 267
14.3 Cellular Targeting and Subcellular Delivery 268
14.3.1 Targeting, Entry, and Trafficking in Cells 268
14.3.2 Biological and Chemical Reagents for Cell Specific Targeting 271
14.3.3 Reagents that Promote Cell Entry 272
14.4 Crafting NPs for Delivery: Lessons from Liposomes 273
14.4.1 Loading 273
14.4.2 Release Rates 273
14.4.3 Size and Charge 274
14.4.4 PEG and the Passivation of Surfaces 274
14.4.5 Decoration with Ligands 275
14.5 Biodistribution of Liposomes, Dendrimers, and NPs 276
14.6 The Toxicology of Nanocarriers 277
14.7 Summary 278
References 278
15 Organic Nanoparticles: Adapting Emerging Techniques from the Electronics
Industry for the Generation of Shape Specific, Functionalized Carriers for
Applications in Nanomedicine 285
Larken E. Euliss, Julie A. DuPont, and Joseph M. DeSimone
15.1 Overview 285
15.2 Methods 288
15.2.1 Bottom Up Approaches for the Synthesis of Organic Nanoparticles
288
Contents I XI
15.2.2 Top Down Approaches for the Fabrication of Polymeric
Nanopartides 291
15.2.2.1 Microfluidics 291
15.2.2.2 Photolithography 292
15.2.2.3 Imprint Lithography 294
15.2.2.4 IRINT 295
15.3 Outlook 297
References 299
16 Poly(amidoamine) Dendrimer Based Multifunctional Nanopartides 305
Thommey P. Thomas, Rameshwer Shukla, IstvanJ. Majoros, Andrzej Myc,
and James R. Baker, Jr.
16.1 Overview 305
16.1.1 PAMAM Dendrimers: Structure and Biological Properties 306
16.1.2 PAMAM Dendrimers as a Vehicle for Molecular Delivery into
Cells 308
16.1.2.1 PAMAM Dendrimers as Encapsulation Complexes 308
16.1.2.2 Multifunctional Covalent PAMAM Dendrimer Conjugates 308
16.1.2.3 PAMAM Dendrimers as MRI Contrast Agents 312
16.1.2.4 Application of Multifunctional Clusters of PAMAM Dendrimer 312
16.2 Methods 313
16.2.1 Synthesis and Characterization of PAMAM Dendrimers 313
16.2.2 PAMAM Dendrimer: Determination of Physical Parameters 315
16.2.3 Quantification of Fluorescence of Targeted PAMAM Conjugates 335
16.3 Outlook 316
References 316
17 Nanoparticle Contrast Agents for Molecular Magnetic Resonance
Imaging 321
Young wook Jun, Jae Hyun Lee, andJinwoo Cheon
17.1 Introduction 321
17.2 NP Assisted MRI 322
17.2.1 Magnetic NP Contrast Agents 323
17.2.1.1 Silica or Dextran Coated Iron Oxide Contrast Agents 325
17.2.1.2 Magnetoferritin 327
17.2.1.3 Magnetodendrimers and Magnetoliposomes 327
17.2.1.4 Non Hydrolytically Synthesized High Quality Iron Oxide NPs:
A New Type of Contrast Agent 328
17.2.2 Iron Oxide NPs in Molecular MR Imaging 331
17.2.2.1 Infarction and Inflammation 332
17 .2.2.2 Angiogenesis 333
17.2.2.3 Apoptosis 334
17.2.2.4 Gene Expression 335
17.2.2.5 Cancer Imaging 337
17.3 Outlook 340
XII Contents
Acknowledgments 342
References 342
18 Micro and Nanoscale Control of Cellular Environment for Tissue
Engineering 347
Ali Khademhosseini, Yibo Ling, Jeffrey M. Karp, and Robert Longer
18.1 Overview 347
18.1.1 Cell Substrate Interactions 347
18.1.2 Cell Shape 350
18.1.3 Cell Cell Interactions 351
18.1.4 Cell Soluble Factor Interactions 352
18.1.5 3 D Scaffolds 352
18.2 Methods 354
18.2.1 Soft Lithography 354
18.2.2 Self Assembled Monolayers 356
18.2.3 Electrospinning 357
18.2.4 Nanotopography Generation 358
18.2.5 Layer by Layer Deposition 358
18.2.6 3D Printing 358
18.3 Outlook 359
References 359
19 Diagnostic and Therapeutic Targeted Perfluorocarbon Nanoparticles 365
Patrick M. Winter, Shelton D. Caruthers, Gregory M. Lanza, and
Samuel A. Wickline
19.1 Overview 365
19.2 Methods 367
19.2.1 Diagnostic Imaging 367
19.2.2 Targeted Therapeutics 371
19.2.3 Other Imaging Modalities 373
19.3 Outlook 374
Acknowledgments 376
References 376
IV Nanomotors 381
20 Biological Nanomotors 383
Manfred Schliwa
20.1 Overview 383
20.2 The Architecture of the Motor Domain 388
20.3 Initial Events in Force Generation 388
20.4 Stepping, Hopping, and Slithering 390
20.5 Directionality 393
20.6 Forces 394
20.7 Motor Interactions 395
Contents I XIII
20.8 Outlook 396
Acknowledgments 396
References 396
21 Biologically Inspired Hybrid Nanodevices 401
David Wendell, Eric Dy, Jordan Patti, and Carlo D. Montemagno
21.1 Introduction 401
21.2 An Overview 402
21.2.1 A Look in the Literature 402
21.2.2 Membrane Proteins and their Native Condition 403
21.3 The Protein Toolbox 404
21.3.1 FoFi ATPase and Bacteriorhodopsin 404
21.3.2 Ion Channels and Connexin 406
21.4 Harvesting Energy 48
21.5 Methods 409
21.5.1 Muscle Power 409
21.5.2 ATPase and BR Devices 411
21.5.3 Excitable Vesicles 414
21.6 Outlook 414
Acknowledgments 416
References 416
Index 419
|
adam_txt |
Contents
Preface XV
List of Contributors XXI
I Self Assembly and Nanoparticles: Novel Principles 1
1 Self Assembled Artificial Transmembrane Ion Channels 3
Mary 5. Cin, Emily C. Schmidt, and Pinaki Talukdar
1.1 Overview 3
1.1.1 Non Gated Channels 3
1.1.1.1 Aggregates 4
1.1.1.2 Half Channel Dimers 5
1.1.1.3 Monomolecular Channels 5
1.1.2 Gated Channels 6
1.1.2.1 Light Gated Channels 7
1.1.2.2 Voltage Gated Channels 7
1.1.2.3 Ligand Gated Channels 9
1.2 Methods 10
1.2.1 Planar Bilayers JO
1.2.2 Vesicles 11
1.2.2.1 23NaNMR 11
1.2.2.2 pH Stat 13
1.2.2.3 Fluorescence 12
1.2.2A Ion Selective Electrodes 12
1.3 Outlook 12
References 12
2 Self Assembling Nanostructures from Coiled Coil Peptides 17
Maxim G. Ryadnov and Derek N. Woolfson
2.1 Background and Overview 17
2.1.1 Introduction: Peptides in Self Assembly 17
2.1.2 Coiled Coil Peptides as Building Blocks in Supramolecular Design 18
2.1.3 Coiled Coil Design in General 20
Nanobiotechnology II. Edited by Chad A. Mirkin and Christof M. Niemeyer
Copyright © 2007 WILEY VCH Verlag GmbH Co. KGaA, Weinheim
ISBN: 978 3 527 31673 1
VI I Contents
2.2 Methods and Examples 20
2.2.1 Ternary Coiled Coil Assemblies and Nanoscale Linker Systems 20
2.2.2 Fibers Assembled Using Linear Peptides 22
2.2.3 Fibers Assembled Using Protein Fragments and Nonlinear Peptide
Building Blocks 26
2.2.4 Summary: Pros and Cons of Peptide Based Assembly of
Nanofibers 27
2.2.5 Assembling More Complex Matrices Using Peptide Assemblies as
Linker Struts 30
2.2.5.1 Programmed Matrices Assembled Exclusively from Coiled Coil
Building Blocks 30
2.2.5.2 Synthetic Polymer Coiled Coil Hybrids 31
2.2.6 Key Techniques 33
2.3 Conclusions and Perspectives 34
References 35
3 Synthesis and Assembly of Nanoparticles and Nanostructures Using
Bio Derived Templates 39
Erik Dujardin and Stephen Mann
3.1 Introduction: Elegant Complexity 39
3.2 Polysaccharides, Synthetic Peptides, and DNA 40
3.3 Proteins 44
3.4 Viruses 48
3.5 Microorganisms 54
3.6 Outlook 56
Acknowledgments 58
References 58
4 Proteins and Nanoparticles: Covalent and Noncovalent Conjugates 65
Rochelle R. Atvizo, Mrinmoy De, and Vincent M. Rotello
4.1 Overview 65
4.1.1 Covalent Protein Nanoparticle Conjugates 66
4.1.2 Noncovalent Protein NP Conjugation 69
4.2 Methods 72
4.2.1 General Methods for Noncovalent Protein NP Conjugation 72
4.2.2 General Methods for Covalent Protein NP Conjugation 74
4.3 Outlook 75
References 75
5 Self Assembling DNA Nanostructures for Patterned Molecular
Assembly 79
Thomas H. LaBean, Kurt V. Cothetf, and John H. Reif
Abstract 79
5.1 Introduction 79
5.2 Overview of DNA Nanostructures 80
Contents I VII
5.3 Three Dimensional (3 D) DNA Nanostructures 84
5.4 Programmed Patterning of DNA Nanostructures 84
5.5 DNA Programmed Assembly of Biomolecules 87
5.6 DNA Programmed Assembly of Materials 89
5.7 Laboratory Methods 91
5.7.1 Annealing for DNA Assembly 92
5.7.2 AFM Imaging 93
5.8 Conclusions 93
Acknowledgments 94
References 94
6 Biocatalytic Growth of Nanoparticles for Sensors and Circuitry 99
Ronan Baron, Bilha Willner, and Itamar Willner
6.1 Overview 99
6.1.1 Enzyme Stimulated Synthesis of Metal Nanoparticles 100
6.1.2 Enzyme Stimulated Synthesis of Cupric Ferrocyanide
Nanoparticles 107
6.1.3 Cofactor Induced Synthesis of Metallic NPs 107
6.1.4 Enzyme Metal NP Hybrid Systems as "Inks" for the Synthesis of
Metallic Nanowires 113
6.2 Methods 115
6.2.1 Physical Tools to Characterize the Growth of Nanoparticles and
Nanowires 115
6.2.2 General Procedure for Monitoring the Biocatalytic Enlargement of
Metal NPs in Solutions 116
6.2.3 Modification of Surfaces with Metal NPs and their Biocatalytic Growth
for Sensing 116
6.2.4 Modification of Enzymes with NPs and their Use as Biocatalytic
Templates for Metallic Nanocircuitry 117
6.3 Outlook 117
References 118
II Nanostructures for Analytics 123
7 Nanoparticles for Electrochemical Bioassays 125
Joseph Wang
7.1 Overview 125
7.1.1 Particle Based Bioassays 125
7.1.2 Electrochemical Bioaffinity Assays 125
7.1.3 NP Based Electrochemical Bioaffinity Assays 126
7.1.3.1 Gold and Silver Metal Tags for Electrochemical Detection of DNA and
Proteins 126
7.1.3.2 NP Induced Conductivity Detection 129
7.1.3.3 Inorganic Nanocrystal Tags: Towards Electrical Coding 130
7.1.3.4 Use of Magnetic Beads 133
VIII I Contents
7.1.3.5 Ultrasensitive Particle Based Assays Based on Multiple Amplification
Schemes 134
7.2 Methods 136
7.3 Outlook 137
Acknowledgments 138
References 138
8 Luminescent Semiconductor Quantum Dots in Biology 141
Thomas Pons, Aaron R. Clapp, Igor L Medintz, and Hedi Mattoussi
8.1 Overview 141
8.1.1 QD Bioconjugates in Cell and Tissue Imaging 142
8.1.2 Quantum Dots in Immuno and FRET Based Assays 146
8.2 Methods 150
8.2.1 Synthesis, Characterization, and Capping Strategies 150
8.2.2 Water Solubilization Strategies 151
8.2.3 Conjugation Strategies 151
8.3 Future Outlook 152
Acknowledgments 153
References 153
9 Nanoscale Localized Surface Plasmon Resonance Biosensors 159
Katherine A. Willets, W. Paige Hall, LeifJ. Sherry, Xiaoyu Zhang, Jing Zhao, and
Richard P. Van Duyne
9.1 Overview 159
9.2 Methods 162
9.2.1 Nanofabrication of Materials for LSPR Spectroscopy and Sensing 162
9.2.1.1 Film Over Nanowells 163
9.2.1.2 Solution Phase NSL Fabricated Nanotriangles 164
9.2.1.3 Silver Nanocubes 166
9.2.2 Biosensing 167
9.3 Outlook 168
Acknowledgments 169
References 169
10 Cantilever Array Sensors for Bioanalysis and Diagnostics 175
Hans Peter Lang, Martin Hegner, and Christoph Cerber
10.1 Overview 175
10.1.1 Cantilevers as Sensors 176
10.1.2 Measurement Principle 177
10.1.3 Cantilevers: Application Fields 179
10.2 Methods 180
10.2.1 Measurement Modes 180
10.2.2 Cantilever Functionalization 181
10.2.3 Experimental Procedure 384
10.3 Outlook 186
Contents IX
10.3.1 Recent Literature 186
10.3.2 Challenges 188
Acknowledgments 189
References 190
11 Shear Force Controlled Scanning Ion Conductance Microscopy 197
Tilman E. Schaffer, Boris Anczykotvski, Matthias Booker, and Harald Fuchs
11.1 Overview 197
11.2 Methods 202
11.2.1 Shear Force Detection 202
11.2.2 Ion Current Measurement 204
11.2.3 Shear Force Controlled Imaging 205
11.3 Outlook 207
Acknowledgments 209
References 209
12 Label Free Nanowire and Nanotube Biomolecular Sensors for In Vitro
Diagnosis of Cancer and other Diseases 213
James R. Heath
12.1 Overview 213
12.2 Background 213
12.3 Methods and Current State of the Art 216
12.3.1 Mechanisms of Sensing 216
12.3.2 The Role of the Sensing Environment 218
12.3.3 Nanosensor Measured Antigen Analyte On/Off Binding Rates 219
12.3.4 The Nanosensor/Microfluidic Environment 222
12.3.5 Nanosensor Fabrication 223
12.3.6 Biofunctionalizing NW and NT Nanosensors 226
12.4 Outlook 227
Acknowledgments 227
References 228
13 Bionanoarrays 233
Rafael A. Vega, Khalid Salaita, Joseph J. Kakkassery, and Chad A. Mirkin
13.1 Overview 233
13.2 Methods 234
13.2.1 Atomic Force Microscope Based Methods 234
13.2.2 Nanopipet Deposition 237
13.2.3 Beam Based Methods 238
13.2.4 Contact Printing 240
13.2.5 Assembly Based Patterning 241
13.3 Protein Nanoarrays 242
13.3.1 Strategies for Immobilizing Proteins on Nanopatterns 243
13.3.2 Bio Analytical Applications 244
13.3.3 Dynamic and Motile Nanoarrays 246
X Contents
13.3.4 Cell Surface Interactions 246
13.4 DNA Nanoarrays 249
13.4.1 Strategies for Preparing DNA Nanoarrays 249
13.4.2 DNA Based Schemes for Biodetection 250
13.4.3 Applications of Rationally Designed, Self Assembled 2 D DNA
Nanoarrays 253
13.5 Virus Nanoarrays 253
13.6 Outlook 254
References 254
III Nanostructures for Medicinal Applications 261
14 Biological Barriers to Nanocarrier Mediated Delivery of Therapeutic and
Imaging Agents 263
Rudy Juliano
14.1 Overview: Nanocarriers for Delivery of Therapeutic and Imaging
Agents 263
14.2 Basic Characteristics of the Vasculature and Mononuclear Phagocyte
System 263
14.2.1 Possible Interactions of Nanocarriers Within the Bloodstream 264
14.2.2 Transendothelial Permeability in Various Tissues and Tumors 264
14.2.3 Mononuclear Cells and Particle Clearance 267
14.3 Cellular Targeting and Subcellular Delivery 268
14.3.1 Targeting, Entry, and Trafficking in Cells 268
14.3.2 Biological and Chemical Reagents for Cell Specific Targeting 271
14.3.3 Reagents that Promote Cell Entry 272
14.4 Crafting NPs for Delivery: Lessons from Liposomes 273
14.4.1 Loading 273
14.4.2 Release Rates 273
14.4.3 Size and Charge 274
14.4.4 PEG and the Passivation of Surfaces 274
14.4.5 Decoration with Ligands 275
14.5 Biodistribution of Liposomes, Dendrimers, and NPs 276
14.6 The Toxicology of Nanocarriers 277
14.7 Summary 278
References 278
15 Organic Nanoparticles: Adapting Emerging Techniques from the Electronics
Industry for the Generation of Shape Specific, Functionalized Carriers for
Applications in Nanomedicine 285
Larken E. Euliss, Julie A. DuPont, and Joseph M. DeSimone
15.1 Overview 285
15.2 Methods 288
15.2.1 Bottom Up Approaches for the Synthesis of Organic Nanoparticles
288
Contents I XI
15.2.2 Top Down Approaches for the Fabrication of Polymeric
Nanopartides 291
15.2.2.1 Microfluidics 291
15.2.2.2 Photolithography 292
15.2.2.3 Imprint Lithography 294
15.2.2.4 IRINT 295
15.3 Outlook 297
References 299
16 Poly(amidoamine) Dendrimer Based Multifunctional Nanopartides 305
Thommey P. Thomas, Rameshwer Shukla, IstvanJ. Majoros, Andrzej Myc,
and James R. Baker, Jr.
16.1 Overview 305
16.1.1 PAMAM Dendrimers: Structure and Biological Properties 306
16.1.2 PAMAM Dendrimers as a Vehicle for Molecular Delivery into
Cells 308
16.1.2.1 PAMAM Dendrimers as Encapsulation Complexes 308
16.1.2.2 Multifunctional Covalent PAMAM Dendrimer Conjugates 308
16.1.2.3 PAMAM Dendrimers as MRI Contrast Agents 312
16.1.2.4 Application of Multifunctional Clusters of PAMAM Dendrimer 312
16.2 Methods 313
16.2.1 Synthesis and Characterization of PAMAM Dendrimers 313
16.2.2 PAMAM Dendrimer: Determination of Physical Parameters 315
16.2.3 Quantification of Fluorescence of Targeted PAMAM Conjugates 335
16.3 Outlook 316
References 316
17 Nanoparticle Contrast Agents for Molecular Magnetic Resonance
Imaging 321
Young wook Jun, Jae Hyun Lee, andJinwoo Cheon
17.1 Introduction 321
17.2 NP Assisted MRI 322
17.2.1 Magnetic NP Contrast Agents 323
17.2.1.1 Silica or Dextran Coated Iron Oxide Contrast Agents 325
17.2.1.2 Magnetoferritin 327
17.2.1.3 Magnetodendrimers and Magnetoliposomes 327
17.2.1.4 Non Hydrolytically Synthesized High Quality Iron Oxide NPs:
A New Type of Contrast Agent 328
17.2.2 Iron Oxide NPs in Molecular MR Imaging 331
17.2.2.1 Infarction and Inflammation 332
17'.2.2.2 Angiogenesis 333
17.2.2.3 Apoptosis 334
17.2.2.4 Gene Expression 335
17.2.2.5 Cancer Imaging 337
17.3 Outlook 340
XII Contents
Acknowledgments 342
References 342
18 Micro and Nanoscale Control of Cellular Environment for Tissue
Engineering 347
Ali Khademhosseini, Yibo Ling, Jeffrey M. Karp, and Robert Longer
18.1 Overview 347
18.1.1 Cell Substrate Interactions 347
18.1.2 Cell Shape 350
18.1.3 Cell Cell Interactions 351
18.1.4 Cell Soluble Factor Interactions 352
18.1.5 3 D Scaffolds 352
18.2 Methods 354
18.2.1 Soft Lithography 354
18.2.2 Self Assembled Monolayers 356
18.2.3 Electrospinning 357
18.2.4 Nanotopography Generation 358
18.2.5 Layer by Layer Deposition 358
18.2.6 3D Printing 358
18.3 Outlook 359
References 359
19 Diagnostic and Therapeutic Targeted Perfluorocarbon Nanoparticles 365
Patrick M. Winter, Shelton D. Caruthers, Gregory M. Lanza, and
Samuel A. Wickline
19.1 Overview 365
19.2 Methods 367
19.2.1 Diagnostic Imaging 367
19.2.2 Targeted Therapeutics 371
19.2.3 Other Imaging Modalities 373
19.3 Outlook 374
Acknowledgments 376
References 376
IV Nanomotors 381
20 Biological Nanomotors 383
Manfred Schliwa
20.1 Overview 383
20.2 The Architecture of the Motor Domain 388
20.3 Initial Events in Force Generation 388
20.4 Stepping, Hopping, and Slithering 390
20.5 Directionality 393
20.6 Forces 394
20.7 Motor Interactions 395
Contents I XIII
20.8 Outlook 396
Acknowledgments 396
References 396
21 Biologically Inspired Hybrid Nanodevices 401
David Wendell, Eric Dy, Jordan Patti, and Carlo D. Montemagno
21.1 Introduction 401
21.2 An Overview 402
21.2.1 A Look in the Literature 402
21.2.2 Membrane Proteins and their Native Condition 403
21.3 The Protein Toolbox 404
21.3.1 FoFi ATPase and Bacteriorhodopsin 404
21.3.2 Ion Channels and Connexin 406
21.4 Harvesting Energy 48
21.5 Methods 409
21.5.1 Muscle Power 409
21.5.2 ATPase and BR Devices 411
21.5.3 Excitable Vesicles 414
21.6 Outlook 414
Acknowledgments 416
References 416
Index 419 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)1022599380 |
building | Verbundindex |
bvnumber | BV022501037 |
classification_rvk | WD 2200 WF 9720 |
ctrlnum | (OCoLC)180121234 (DE-599)BVBBV022501037 |
dewey-full | 660.6 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.6 |
dewey-search | 660.6 |
dewey-sort | 3660.6 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Biologie |
discipline_str_mv | Chemie / Pharmazie Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01644nam a2200421 cc4500</leader><controlfield tag="001">BV022501037</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20090421 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070709s2007 gw ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527316731</subfield><subfield code="9">978-3-527-31673-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527316736</subfield><subfield code="9">3-527-31673-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180121234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022501037</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">660.6</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WD 2200</subfield><subfield code="0">(DE-625)148163:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9720</subfield><subfield code="0">(DE-625)148461:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanobiotechnology</subfield><subfield code="n">2</subfield><subfield code="p">More concepts and applications</subfield><subfield code="c">ed. by Christof M. Niemeyer ; Chad A. Mirkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVI, 432 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanotechnologie</subfield><subfield code="0">(DE-588)4327470-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Biotechnologie</subfield><subfield code="0">(DE-588)4069491-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirkin, Chad A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niemeyer, Christof M.</subfield><subfield code="d">1962-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1022599380</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mirkin, Chad A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="w">(DE-604)BV022500964</subfield><subfield code="g">2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015708091&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015708091</subfield></datafield></record></collection> |
id | DE-604.BV022501037 |
illustrated | Illustrated |
index_date | 2024-07-02T17:55:30Z |
indexdate | 2024-07-09T20:58:58Z |
institution | BVB |
isbn | 9783527316731 3527316736 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015708091 |
oclc_num | 180121234 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-29T DE-1043 DE-11 |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-29T DE-1043 DE-11 |
physical | XXVI, 432 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Nanobiotechnology 2 More concepts and applications ed. by Christof M. Niemeyer ; Chad A. Mirkin Weinheim Wiley-VCH 2007 XXVI, 432 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Biotechnologie (DE-588)4069491-4 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 gnd rswk-swf Nanotechnologie (DE-588)4327470-5 s Biotechnologie (DE-588)4069491-4 s DE-604 Mirkin, Chad A. Sonstige oth Niemeyer, Christof M. 1962- Sonstige (DE-588)1022599380 oth (DE-604)BV022500964 2 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015708091&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Nanobiotechnology Biotechnologie (DE-588)4069491-4 gnd Nanotechnologie (DE-588)4327470-5 gnd |
subject_GND | (DE-588)4069491-4 (DE-588)4327470-5 |
title | Nanobiotechnology |
title_auth | Nanobiotechnology |
title_exact_search | Nanobiotechnology |
title_exact_search_txtP | Nanobiotechnology |
title_full | Nanobiotechnology 2 More concepts and applications ed. by Christof M. Niemeyer ; Chad A. Mirkin |
title_fullStr | Nanobiotechnology 2 More concepts and applications ed. by Christof M. Niemeyer ; Chad A. Mirkin |
title_full_unstemmed | Nanobiotechnology 2 More concepts and applications ed. by Christof M. Niemeyer ; Chad A. Mirkin |
title_short | Nanobiotechnology |
title_sort | nanobiotechnology more concepts and applications |
topic | Biotechnologie (DE-588)4069491-4 gnd Nanotechnologie (DE-588)4327470-5 gnd |
topic_facet | Biotechnologie Nanotechnologie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015708091&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022500964 |
work_keys_str_mv | AT mirkinchada nanobiotechnology2 AT niemeyerchristofm nanobiotechnology2 |