Physico-chemical phenomena in thin films and at solid surfaces:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier
2007
|
Ausgabe: | 1. ed. |
Schriftenreihe: | Thin films and nanostructures
34 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XV, 783 S. graph. Darst. |
ISBN: | 9780123725233 0123725232 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022498442 | ||
003 | DE-604 | ||
005 | 20071119 | ||
007 | t | ||
008 | 070706s2007 d||| |||| 00||| eng d | ||
015 | |a GBA725826 |2 dnb | ||
020 | |a 9780123725233 |9 978-0-12-372523-3 | ||
020 | |a 0123725232 |c (hbk.) : £115.00 |9 0-12-372523-2 | ||
035 | |a (OCoLC)255583140 | ||
035 | |a (DE-599)HBZHT015209171 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-634 |a DE-11 | ||
082 | 0 | |a 530.4275 | |
084 | |a UP 7990 |0 (DE-625)146446: |2 rvk | ||
245 | 1 | 0 | |a Physico-chemical phenomena in thin films and at solid surfaces |c Leonid Trakhtenberg ... |
250 | |a 1. ed. | ||
264 | 1 | |a Amsterdam [u.a.] |b Elsevier |c 2007 | |
300 | |a XV, 783 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Thin films and nanostructures |v 34 | |
650 | 4 | |a Thin films | |
650 | 4 | |a Solids |x Surfaces | |
650 | 4 | |a Nanostructures | |
650 | 0 | 7 | |a Nanostruktur |0 (DE-588)4204530-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Festkörperoberfläche |0 (DE-588)4127823-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dünne Schicht |0 (DE-588)4136925-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Dünne Schicht |0 (DE-588)4136925-7 |D s |
689 | 0 | 1 | |a Festkörperoberfläche |0 (DE-588)4127823-9 |D s |
689 | 0 | 2 | |a Nanostruktur |0 (DE-588)4204530-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Trachtenberg, Leonid I. |e Sonstige |4 oth | |
830 | 0 | |a Thin films and nanostructures |v 34 |w (DE-604)BV022753676 |9 34 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015705537&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015705537 |
Datensatz im Suchindex
_version_ | 1804136596485701632 |
---|---|
adam_text | Contents
Chapter 1. Introduction
L.I. Trakhtenbery, S.H. Lin, and O.J. Ileyhusi.
Part 1. Theoretical Approaches to the Study of the Processes in
Films and on Surfaces
Chapter 2. Conventional Theory of Multi-Phonon Electron Transitions
M.A. Kozhuslmer
1. Introduction.........................................9
2. Born-Oppenheimer s Adiabatic Approach..................11
3. General Expression for Transition Probability in Unit of Time. ... 13
4. Influence of Changes of Equilibrium Positions and Frequencies ... 15
5. Calculation of Multi-Phonon Transition Probability in Unit
of Time...........................................18
6. Local Vibrations. Method of Density Matrix................24
7. Electron Transfer in Polar Medium.......................28
8. Adiabatic Transitions.................................30
9. Conclusions........................................33
References............................................34
Chapter 3. Contemporary Theory of Electrons Tunneling in Condensed
Matter
M.A. Kozhuslmer
1. Introduction........................................37
2. Amplitude of Electron Tunneling Transfer..................38
3. Influence of Crystal Medium on Electron Tunneling...........44
4. Multiple Tunneling Scattering and Bridge Effect..............48
5. Violation of Born-Oppenheimer s Approach in Electron
Tunneling Transfer...................................54
6. Conclusions........................................63
References............................................64
vi Contents
Chapter 4. Ab Initio Calculations of Electronic Transitions and
Photoabsorption and Photoluminescence Spectra of
Silica and Germania Nanoparticles
A.M. Mebel, A.S. Zyubin, M. Hayashi, and S.H. Lin
1. Introduction........................................68
2. Theoretical Approach and Methods.......................72
2.1. Model Clusters and Geometry Optimization.............72
2.2. Calculations of Excitation Energies...................75
2.3. Calculations of Vibronic Spectra.....................81
3. Photoluminescence Properties of Point Defects in SiO2.........83
3.1. Red and Near Infrared Photoluminescence Bands in Silica
Nanostructures.................................83
3.2. PL Properties of the Silanone and Dioxasilyrane
Point Defects...................................89
3.3. Photoabsorption and Photoluminescence of the [A1O4]°
Defect in SiO2..................................95
4. Optical Properties of Point Defects in GeO2.................99
4.1. Photoluminescence of Oxygen-Containing Surface Defects in
Germanium Oxides..............................99
4.1.1. NBO or -O-Ge= Defect.....................99
4.1.2. Peroxy Radical or -O-O-Ge= Defect...........103
4.1.3. O2Ge = Defect...........................104
4.1.4. O = Ge = Defect..........................107
4.2. Photoluminescence of Oxygen-Deficient Defects in
Germanium Oxides.............................108
4.2.1. Surface E -Center, or -Ge= Defect.............109
4.2.2. Combination of the -Ge= Defect with an Oxygen
Vacancy, E -OV..........................112
5. Summary and Outlook...............................113
6. Discussion Topics and Questions on Concepts..............115
References...........................................116
Chapter 5. Density Matrix Treatments of Ultrafast Radiationless
Transitions
S.H. Lin, K.K. Liang, M. Hayashi, and A.M. Mebel
1. Introduction.......................................122
2. Density Matrix and Liouville Equation...................123
2.1. Definition of Density Matrix.......................123
2.2. Dynamics of Isolated Systems......................126
Contents vii
3. Dynamics of a System Embedded in Heat Bath.............132
3.1. Reduced Density Matrix and its Equation of Motion..... 134
3.2. Generalized Master Equations..................... 136
3.3. Ultrafast Non-Adiabatic Dynamics of Molecular Systems. . 138
3.4. Single-Vibronic-Level and Thermal Average Rate
Constant.....................................142
4. Density Matrix Method and Spectroscopies................147
4.1. Steady State Spectroscopy........................147
4.2. Pump-Probe Experiments.........................151
5. An Example — Interfacial Electron Transfer in Organic Solar
Cells............................................156
5.1. Experimental Results and Theoretical Analysis..........157
5.2. Remarks.....................................172
6. Summary.........................................172
Appendix A. GV/(t) for Displaced-Distorted Oscillator............173
Appendix B. Derivation of the TCF for the Band-Shape Function ... 177
References...........................................180
Chapter 6. Ultrafast Radiationless Transitions
M. Hayashi, A.M. Mebel, and S.H. Lin
1. Introduction.......................................184
2. Theoretical Approach and Methods......................185
2.1. Non-Adiabatic Processes.........................186
2.2. Rate Constants................................190
2.3. Radiationless Transitions.........................193
2.3.1. Internal Conversion (IC)....................194
2.3.2. Intersystem Crossing (ISC)...................195
3. Photo-Induced Electronic Transfer and Photo-Induced
Energy Transfer....................................199
3.1. General Consideration...........................199
3.2. Photo-Induced Electron Transfer....................200
3.3. Photo-Induced Energy Transfer.....................201
4. Applications.......................................204
4.1. Pump-Probe Time-Resolved Stimulated Emission Spectra. . 204
4.1.1. Relaxation and Coherence Dynamics...........205
4.1.2. A Model of Vibrational Relaxation and Dephasing . 206
4.1.3. A Single Harmonic Displaced Oscillator Mode
System.................................208
4.2. Bacterial Photosynthetic RCs......................211
4.2.1. Vibrational Coherence and Relaxation in
Photosynthetic Reaction Centers...............212
viii Contents
4.2.2. Rapid Electron Transfer in Photosynthetic
Reaction Centers..........................214
4.2.3. Vibronic Coherence in Photosynthetic Reaction
Center.................................215
5. Summary.........................................219
References...........................................222
Part 2. Physico-Chemical Processes at the Surface of Solids
Chapter 7. Point Defects on the Silica Surface: Structure and Reactivity
V.A. Radzig
1. Introduction.......................................233
2. Methods for Creation of Defects on Silica Surface...........236
2.1. Preparation of the Thermo-Activated Silica (TSi) Samples. . 236
2.2. Preparation of the Mechano-Activated Silica Samples (MSi) 237
2.3. Preparation of the Reactive Silica (RSi) Samples.......238
2.4. Structure and Concentration of Paramagnetic and
Diamagnetic Point Defects on Activated Silica Surface .... 239
3. Quantum-Chemical Calculations........................240
4. Chemical Modification of the Surface Defects...............243
4.1. Preparation of =Si-O* Radicals: The System (sSi* + N2O) . 244
4.2. Mutual Transformations of the (=Si-O)2Si: (SC) and
(=Si-O)2Si = O (SG) Groups......................248
4.3. Si = O Bond Strength in the (=Si-O)2Si = O Group......248
4.4. Microcalorimetry of the Processes at the SiO2 and GeO2
Surfaces.....................................252
5. Interrelation Between the EPR Parameters of the
Silicon-Centered Paramagnetic Sites and Their Spatial
Structure: Results of Quantum-Chemical Calculations.........253
6. Silicon-Centered Paramagnetic Centers (PCs) in SiO2.........260
6.1. PC (=Sip-O)3Si* on the Surface and in the Bulk of Silica . . 260
6.2. PC (=Sip-O)2Si;-r, Where r = H(D), OH(OD), NH2, and
CH3(CD3)....................................264
6.3. Stretching Vibration Frequencies of the Si-H Bonds in the
Hydrogenation Products of Silicon-Centered PCs........269
6.4. Optical Characteristics of the Silicon-Centered PCs.......270
7. Paramagnetic Centers =Si-O* on the Silica Surface (Non-Bridging
Oxygen Center)....................................275
8. The (=Si-O)3Si-O-O* Radicals: Structure and Reactivity.......279
9. Diamagnetic Point Defects on Silica Surface................281
Contents ix
9.1. (=Si-O-)2Si O2 Si(-O-Si=)2 Groups
(Strained Rings, SRs) on the Silica Surface............282
9.2. Diamagnetic Sites Containing Two-fold Coordinated Silicon
Atoms (=Si-O-)2Si: (SC): Identification of SC Structure ... 285
9.2.1. Identification of the Site Structure.............285
9.3. Products of High-Temperature Hydration of RSi Samples. . 288
9.4. Optical Parameters of SC.........................290
9.5. The Mechanism of Singlet-Triplet Conversion of SC.....291
9.6. Silanone Groups (=Si-O)2Si = O on Silica Surface.......292
9.7. Dioxasilyrane Groups ((=Si-O)2Si O2)...............296
9.8. Reactivity of the Si O2 Groups Toward the Polar X-H
(X = OH, NH2, OCH3) Molecules...................305
10. Inhomogenity of Physico-Chemical Properties of Surface Defects . 309
11. Impurity Centers in Quartz Glass: Carbon in the Silica Structure .314
11.1. =Si-*CH2, (=Si-)*CH, and (=Si-)3C* Radicals..........314
11.2. Reactivity of the (=Si-)3C* Radicals Toward H2 Molecules .317
11.3. Increase in the Concentration of Paramagnetic Centers
Upon the Thermo Oxidizing Treatment of the RSi Samples. 317
12. Nitrogen in Silica...................................319
12.1. PCs (EESi-O)2Si*(NH2), (=Si-O)2Si*-N(Si=)2, (=Si-O)2(HO)
Si-N*H, and =Si-N*-Si=.........................320
12.2. Reactions of =Si-N*-H and =Si-N*-Si= PC with H2 (D2) . 324
12.3. On the Strengths of Si-O and Si-N Bonds in Vitreous Silica 328
13. Surface and Near-Surface Defects in Silica.................329
14. Design of Intermediates with Desired Structure on Silica
Surface..........................................330
15. Conclusions.......................................335
16. Questionnaire......................................339
References...........................................340
Chapter 8. Atomic-Molecular Kinetic Theory of Physico-Chemical
Processes in Condensed Phase and Interfaces
Y.K. Tovbin
1. Introduction.......................................349
2. Gas-Solid Processes.................................352
2.1. Gas-Solid Interface.............................352
2.1.1. Gas Phase...............................352
2.1.2. Solid..................................353
2.1.3. Subsurface Region of a Solid.................354
2.1.4. Adsorption..............................354
X Contents
2.1.5. Effect of Adsorbed Particles on the State of a
Surface.................................356
2.1.6. Absorption..............................356
2.1.7. Particle Mobility..........................357
2.2. Lattice-Gas Model and Elementary Processes...........357
2.2.1. Elementary Processes and their Models..........359
2.2.2. Surface Mobility..........................362
2.3. Lateral Interactions.............................363
2.4. Quasi-Particle Description of Elementary Rates.........264
2.4.1. One-Site Reactions........................365
2.4.2. Two-Site Reactions........................368
3. Kinetic Equations for Multistage Processes in Condensed Phase. . 370
3.1. Hamiltonian..................................371
3.2. Master Equation...............................372
3.3. Probabilities of Elementary Reactions................375
3.4. Kinetic Equations..............................378
3.5. Reaction Rates................................380
3.6. Hierarchy of the Kinetic Equations..................382
3.7. Two-Dimensional Model.........................384
3.8. Point-Like Models of a Reaction....................387
3.8.1. Restricted Mobility of the Reactants............388
3.8.2. Rapid Mobility of Reactants.................390
3.9. Different Mobilities of Reactants...................390
4. Surface Processes...................................391
4.1. Physical Adsorption and Chemisorption.............. 392
4.2. Adsorption and Thermodesorption Spectra............ 395
4.3. Multistage Processes............................. 399
4.4. Islands and Two-Dimensional Phases................ 402
4.5. Self-Consistency of the Lattice-Gas model............. 404
4.6. Surface Diffusion............................... 409
5. Solid Phase Processes in Solid-Gas Systems................ 412
5.1. Interface States................................412
5.2. Diffusion Through Solids.........................414
5.3. Phase Transitions and Topochemical Processes..........418
6. Physico-Chemical Mechanics Problems....................419
6.1. Rates of Elementary Stages at Solid Deformations.......419
6.2. Hydrogen-Palladium System.......................421
6.3. Effective Potential..............................422
6.4. Mechanical and Transport Properties of the Pd-H2 System . 423
6.4.1. Effect of Lattice Deformation on the Properties of
Membranes..............................426
CONTHNTS Xi
7. Numerical Dynamics Investigations......................427
7.1. Cellular Automata Technique......................427
7.2. Monte-Carlo Technique..........................429
7.2.1. Adsorption Processes and Surface Reactions......429
7.2.2. Surface Diffusion and Phase Formation.........431
7.2.3. Crystal Growth...........................433
7.2.4. Complex Processes........................434
7.3. Correlation Between Monte-Carlo Simulations and
Kinetic Theory................................435
8. Summary and Perspectives............................438
Appendix A. Equilibrium Distributions of Particles on Heterogeneous
Lattices in Condensed Phases.............................441
Appendix B. Lowering the Dimension of a System of
Equations in the Quasi-Chemical Approximation...............448
Problems............................................451
References...........................................452
Part 3. Formation and Physico-Chemical Properties
of the Films
Chapter 9. Integrated Approach to Dielectric Film Growth Modeling:
Growth Mechanisms and Kinetics
A.A. Bagatur yants, M.A. Deminskii, A.A. Knizhnik,
B. V. Potapkin, and S. Y. Umanskii
1. Introduction.......................................468
2. Quantum-Chemical Modeling..........................470
3. Gas-Surface Reactions Proceeding via a Strongly Adsorbed
Precursor.........................................471
3.1. Description of the Model.........................471
3.2. Master Equation and Macroscopic Rate Constants.......472
3.3. Macroscopic Rate Constant of a Barrierless Adsorption-
Desorption Reaction............................477
4. Simulation Methods.................................479
4.1. Molecular Dynamics............................479
4.1.1. Equation of Motion.......................480
4.1.2. Energy Functional for MD..................481
4.2. Monte Carlo Method............................483
4.3. Kinetic Monte Carlo Method......................483
4.4. Lattice and Dynamic Versions of Kinetic Monte Carlo .... 485
xii Contents
4.5. Kinetic Monte Carlo Method with Dynamic Relaxation
(KMC-DR)...................................486
4.6. Reactor Modeling of Thin-Film Deposition............488
5. Modeling of the Deposition of Thin Dielectric Films..........493
5.1. Molecular Dynamics Modeling of Precursor Interaction
with Surface..................................493
5.2. Kinetic Mechanism of Zirconium and Hafnium Oxide
Film Deposition................................494
5.3. Reduction of the Kinetic Mechanism of Zr(Hf )O2 Film
Growth......................................502
5.4. Kinetic Monte Carlo and Molecular Dynamics Modeling
of ZrO2 Film Roughness in an ALD Process...........503
5.5. Modeling of the ZrO2 Film Composition Using the Monte
Carlo Method.................................508
5.6. Modeling of the Si/ZrO2 Interface Structure Using the
KMC-DR Method..............................512
6. Conclusions and Outlook.............................516
Questions and Problems.................................516
References...........................................517
Chapter 10. Vapor Deposited Composite Films Consisting of Dielectric
Matrix with Metal/Semiconductor Nanoparticles
G. N. Gerasimov, and L. I. Trakhtenberg
1. Introduction.......................................524
2. Features of Metal and Semiconductor Nanoparticles..........526
2.1. Metal Nanocrystals.............................526
2.2. Semiconductor Nanocrystals.......................531
3. Methods of Preparation and Structure of Nanocomposite
Films............................................536
3.1. M/SC Nanoparticle Deposition on a Surface of Dielectric
Substrate......................................537
3.2. Co-Deposition of M/SC and A Dielectric Material.......544
4. Physico-Chemical Properties of Nanocomposite
Films............................................554
4.1. Conductivity and Photoconductivity.................554
4.2. Sensor Properties...............................557
4.3. Dielectric Properties.............................562
4.4. Catalytic Activity...............................566
5. Conclusion........................................571
Acknowledgments.....................................574
References...........................................574
Contents xiii
Chapter 11. Transport and Magnetic Properties of Nanogranular Metals
B.A. Aronzon, S.V. Kapelnitsky, and A.S. Lagutin
1. Introduction.......................................582
2. Production of Nanocomposite Films.....................585
3. Structure of Granular Metals (Nanocomposites).............589
4. Magnetic Properties of Granular Magnetic Metals...........595
4.1. General Statements and Magnetization at Low
Temperatures..................................597
4.2. Magnetization at High Temperatures (Paramagnetic
Region)...................................... 599
4.3. Magnetization of Granular Ferromagnetic Metals with
Non-Spherical Granules.......................... 601
4.4. A Relaxation of Magnetization and Nanocomposite as
Cluster Spin Glass............................... 604
5. Magnetotransport Properties of the Granular Metals.......... 607
5.1. Conductivity Dependence on a Metal Granules Fraction:
The Percolation Threshold........................ 608
5.2. Temperature Dependence of Conductivity............. 612
5.3. Magnetoresistance: Field Dependence of the Conductivity. . 614
5.4. Hall Effect................................... 621
6. Quantum-Size Effects in Granular Metals Near the Percolation
Threshold........................................ 627
7. Conclusions....................................... 631
8. Questions for Readers................................632
References...........................................633
Chapter 12. Organized Organic Thin Films: Structure, Phase Transitions
and Chemical Reactions
S. Trakhtenberg
1. Introduction.......................................640
2. Preparation and Structure of Langmuir-Blodgett Films........645
2.1. Langmuir Monolayers...........................646
2.2. Film Transfer.................................648
2.3. Structure of Langmuir-Blodgett Films................649
3. Temperature-Induced Phase Transitions in Langmuir-Blodgett
Films............................................650
3.1. Order-Disorder Transitions.......................651
3.2. Effect of Phase Transitions on the Reactivity of
Langmuir-Blodgett Films.........................652
4. Self-Assembled Films................................654
XIV Contents
4.1. Covalently Bonded Silane Monolayers................655
4.2. Stability of Self-Assembled Silane Films...............656
4.3. Self-Assembled Silane Multilayers...................657
5. Conclusions.......................................659
Acknowledgments.....................................661
References...........................................661
Chapter 13. Non-Catalytic Photo-Induced Immobilization Processes in
Polymer Films
5. Trakhtenberg, A.S. Cannon, and J.C. Warner
1. Introduction.......................................666
2. Photo-Induced Processes in Natural Polymers-DNA..........671
3. Photopolymers and Photoresists Containing DNA Bases.......676
4. Light-Induced Immobilization of Crosslinkable Photoresists.....679
5. Reverse Processes...................................687
6. Conclusions.......................................690
Acknowledgments.....................................691
References...........................................691
Chapter 14. Formation of Unconventional Compounds and Catalysts in
Magnesium-Containing Organic Films
V.V. Smirnov, L.A. Tyurina, and I. P. Beletskaya
1. Introduction: Reactions in the Films Obtained by
Co-Condensation of Metal Vapor with Organic Compounds .... 697
2. Synthesis of Magnesium-Containing Films by Co-Condensation
of Reagents.......................................701
3. Synthesis of RMg4X Compounds in Thin Films of
Co-Condensates....................................703
4. Mechanism of the Processes in Organic Magnesium-Containing
Films and the Nature of the Magic Number Four............705
5. Competition Between the Aggregation of Magnesium Atoms and
the Generation of Radicals in Mg-RX Films...............710
6. Structure and Reactivity of Unconventional Organomagnesium
Compounds Obtained in Co-Condensate Films..............712
7. Catalytic Reactions in Mg-RH Films.....................714
8. Synthesis of Catalysts in Multicomponent Films Containing
Magnesium and a Transition Metal......................717
9. Conclusions.......................................719
References.............................720
Contents XV
Chapter 15. Charge Effects in Catalysis by Nanostructured Metals
S.A. Gurevich, V.M. Kozhevin, I.N. Yassicvich, D.A. Yavsin,
T.N. Rostovshchikova, and V. V. Smirnov
1. Introduction.......................................726
2. Catalyst Fabrication and Structural Properties..............729
2.1. Catalyst Fabrication by Laser Electrodispersion of Metals. . 729
2.2. Structural Properties of the Catalyst Coatings..........732
3. Charge State of Metallic Nanostructures..................735
4. Effect of Nanoparticle Charging on the Catalytic Properties.....741
4.1. Analytical Estimates............................. 742
4.2. Experimental Results and Discussion................. 744
5. Summary......................................... 750
References........................................... 752
Chapter 16. Synthesis of Crystalline C-N Thin Films
H. Song, and O.J. Ilegbusi
1. Introduction.......................................756
2. Synthesis.........................................758
3. Theoretical Models..................................761
3.1. Thermodynamic Models..........................761
3.2. Molecular Dynamics Simulation....................765
3.3. Thermal Spike Model............................766
4. Characterization....................................770
4.1. Microstructure: XRD and TEM....................770
4.2. Chemical State: EELS and XPS....................771
4.3. Composition: AES and RBS.......................773
5. Potential Applications of CN Films......................774
6. Closure..........................................774
Acknowledgment......................................775
Questions...........................................775
References...........................................775
Subject Index.........................................779
Recent Volumes In This Series.............................783
|
adam_txt |
Contents
Chapter 1. Introduction
L.I. Trakhtenbery, S.H. Lin, and O.J. Ileyhusi.
Part 1. Theoretical Approaches to the Study of the Processes in
Films and on Surfaces
Chapter 2. Conventional Theory of Multi-Phonon Electron Transitions
M.A. Kozhuslmer
1. Introduction.9
2. Born-Oppenheimer's Adiabatic Approach.11
3. General Expression for Transition Probability in Unit of Time. . 13
4. Influence of Changes of Equilibrium Positions and Frequencies . 15
5. Calculation of Multi-Phonon Transition Probability in Unit
of Time.18
6. Local Vibrations. Method of Density Matrix.24
7. Electron Transfer in Polar Medium.28
8. Adiabatic Transitions.30
9. Conclusions.33
References.34
Chapter 3. Contemporary Theory of Electrons Tunneling in Condensed
Matter
M.A. Kozhuslmer
1. Introduction.37
2. Amplitude of Electron Tunneling Transfer.38
3. Influence of Crystal Medium on Electron Tunneling.44
4. Multiple Tunneling Scattering and Bridge Effect.48
5. Violation of Born-Oppenheimer's Approach in Electron
Tunneling Transfer.54
6. Conclusions.63
References.64
vi Contents
Chapter 4. Ab Initio Calculations of Electronic Transitions and
Photoabsorption and Photoluminescence Spectra of
Silica and Germania Nanoparticles
A.M. Mebel, A.S. Zyubin, M. Hayashi, and S.H. Lin
1. Introduction.68
2. Theoretical Approach and Methods.72
2.1. Model Clusters and Geometry Optimization.72
2.2. Calculations of Excitation Energies.75
2.3. Calculations of Vibronic Spectra.81
3. Photoluminescence Properties of Point Defects in SiO2.83
3.1. Red and Near Infrared Photoluminescence Bands in Silica
Nanostructures.83
3.2. PL Properties of the Silanone and Dioxasilyrane
Point Defects.89
3.3. Photoabsorption and Photoluminescence of the [A1O4]°
Defect in SiO2.95
4. Optical Properties of Point Defects in GeO2.99
4.1. Photoluminescence of Oxygen-Containing Surface Defects in
Germanium Oxides.99
4.1.1. NBO or -O-Ge= Defect.99
4.1.2. Peroxy Radical or -O-O-Ge= Defect.103
4.1.3. O2Ge = Defect.104
4.1.4. O = Ge = Defect.107
4.2. Photoluminescence of Oxygen-Deficient Defects in
Germanium Oxides.108
4.2.1. Surface E'-Center, or -Ge= Defect.109
4.2.2. Combination of the -Ge= Defect with an Oxygen
Vacancy, E'-OV.112
5. Summary and Outlook.113
6. Discussion Topics and Questions on Concepts.115
References.116
Chapter 5. Density Matrix Treatments of Ultrafast Radiationless
Transitions
S.H. Lin, K.K. Liang, M. Hayashi, and A.M. Mebel
1. Introduction.122
2. Density Matrix and Liouville Equation.123
2.1. Definition of Density Matrix.123
2.2. Dynamics of Isolated Systems.126
Contents vii
3. Dynamics of a System Embedded in Heat Bath.132
3.1. Reduced Density Matrix and its Equation of Motion. 134
3.2. Generalized Master Equations. 136
3.3. Ultrafast Non-Adiabatic Dynamics of Molecular Systems. . 138
3.4. Single-Vibronic-Level and Thermal Average Rate
Constant.142
4. Density Matrix Method and Spectroscopies.147
4.1. Steady State Spectroscopy.147
4.2. Pump-Probe Experiments.151
5. An Example — Interfacial Electron Transfer in Organic Solar
Cells.156
5.1. Experimental Results and Theoretical Analysis.157
5.2. Remarks.172
6. Summary.172
Appendix A. GV/(t) for Displaced-Distorted Oscillator.173
Appendix B. Derivation of the TCF for the Band-Shape Function . 177
References.180
Chapter 6. Ultrafast Radiationless Transitions
M. Hayashi, A.M. Mebel, and S.H. Lin
1. Introduction.184
2. Theoretical Approach and Methods.185
2.1. Non-Adiabatic Processes.186
2.2. Rate Constants.190
2.3. Radiationless Transitions.193
2.3.1. Internal Conversion (IC).194
2.3.2. Intersystem Crossing (ISC).195
3. Photo-Induced Electronic Transfer and Photo-Induced
Energy Transfer.199
3.1. General Consideration.199
3.2. Photo-Induced Electron Transfer.200
3.3. Photo-Induced Energy Transfer.201
4. Applications.204
4.1. Pump-Probe Time-Resolved Stimulated Emission Spectra. . 204
4.1.1. Relaxation and Coherence Dynamics.205
4.1.2. A Model of Vibrational Relaxation and Dephasing . 206
4.1.3. A Single Harmonic Displaced Oscillator Mode
System.208
4.2. Bacterial Photosynthetic RCs.211
4.2.1. Vibrational Coherence and Relaxation in
Photosynthetic Reaction Centers.212
viii Contents
4.2.2. Rapid Electron Transfer in Photosynthetic
Reaction Centers.214
4.2.3. Vibronic Coherence in Photosynthetic Reaction
Center.215
5. Summary.219
References.222
Part 2. Physico-Chemical Processes at the Surface of Solids
Chapter 7. Point Defects on the Silica Surface: Structure and Reactivity
V.A. Radzig
1. Introduction.233
2. Methods for Creation of Defects on Silica Surface.236
2.1. Preparation of the Thermo-Activated Silica (TSi) Samples. . 236
2.2. Preparation of the Mechano-Activated Silica Samples (MSi) 237
2.3. Preparation of the "Reactive Silica" (RSi) Samples.238
2.4. Structure and Concentration of Paramagnetic and
Diamagnetic Point Defects on Activated Silica Surface . 239
3. Quantum-Chemical Calculations.240
4. Chemical Modification of the Surface Defects.243
4.1. Preparation of =Si-O* Radicals: The System (sSi* + N2O) . 244
4.2. Mutual Transformations of the (=Si-O)2Si: (SC) and
(=Si-O)2Si = O (SG) Groups.248
4.3. Si = O Bond Strength in the (=Si-O)2Si = O Group.248
4.4. Microcalorimetry of the Processes at the SiO2 and GeO2
Surfaces.252
5. Interrelation Between the EPR Parameters of the
Silicon-Centered Paramagnetic Sites and Their Spatial
Structure: Results of Quantum-Chemical Calculations.253
6. Silicon-Centered Paramagnetic Centers (PCs) in SiO2.260
6.1. PC (=Sip-O)3Si* on the Surface and in the Bulk of Silica . . 260
6.2. PC (=Sip-O)2Si;-r, Where r = H(D), OH(OD), NH2, and
CH3(CD3).264
6.3. Stretching Vibration Frequencies of the Si-H Bonds in the
Hydrogenation Products of Silicon-Centered PCs.269
6.4. Optical Characteristics of the Silicon-Centered PCs.270
7. Paramagnetic Centers =Si-O* on the Silica Surface (Non-Bridging
Oxygen Center).275
8. The (=Si-O)3Si-O-O* Radicals: Structure and Reactivity.279
9. Diamagnetic Point Defects on Silica Surface.281
Contents ix
9.1. (=Si-O-)2Si O2 Si(-O-Si=)2 Groups
(Strained Rings, SRs) on the Silica Surface.282
9.2. Diamagnetic Sites Containing Two-fold Coordinated Silicon
Atoms (=Si-O-)2Si: (SC): Identification of SC Structure . 285
9.2.1. Identification of the Site Structure.285
9.3. Products of High-Temperature Hydration of RSi Samples. . 288
9.4. Optical Parameters of SC.290
9.5. The Mechanism of Singlet-Triplet Conversion of SC.291
9.6. Silanone Groups (=Si-O)2Si = O on Silica Surface.292
9.7. Dioxasilyrane Groups ((=Si-O)2Si O2).296
9.8. Reactivity of the Si O2 Groups Toward the Polar X-H
(X = OH, NH2, OCH3) Molecules.305
10. Inhomogenity of Physico-Chemical Properties of Surface Defects . 309
11. Impurity Centers in Quartz Glass: Carbon in the Silica Structure .314
11.1. =Si-*CH2, (=Si-)*CH, and (=Si-)3C* Radicals.314
11.2. Reactivity of the (=Si-)3C* Radicals Toward H2 Molecules .317
11.3. Increase in the Concentration of Paramagnetic Centers
Upon the Thermo Oxidizing Treatment of the RSi Samples. 317
12. Nitrogen in Silica.319
12.1. PCs (EESi-O)2Si*(NH2), (=Si-O)2Si*-N(Si=)2, (=Si-O)2(HO)
Si-N*H, and =Si-N*-Si=.320
12.2. Reactions of =Si-N*-H and =Si-N*-Si= PC with H2 (D2) . 324
12.3. On the Strengths of Si-O and Si-N Bonds in Vitreous Silica 328
13. Surface and Near-Surface Defects in Silica.329
14. Design of Intermediates with Desired Structure on Silica
Surface.330
15. Conclusions.335
16. Questionnaire.339
References.340
Chapter 8. Atomic-Molecular Kinetic Theory of Physico-Chemical
Processes in Condensed Phase and Interfaces
Y.K. Tovbin
1. Introduction.349
2. Gas-Solid Processes.352
2.1. Gas-Solid Interface.352
2.1.1. Gas Phase.352
2.1.2. Solid.353
2.1.3. Subsurface Region of a Solid.354
2.1.4. Adsorption.354
X Contents
2.1.5. Effect of Adsorbed Particles on the State of a
Surface.356
2.1.6. Absorption.356
2.1.7. Particle Mobility.357
2.2. Lattice-Gas Model and Elementary Processes.357
2.2.1. Elementary Processes and their Models.359
2.2.2. Surface Mobility.362
2.3. Lateral Interactions.363
2.4. Quasi-Particle Description of Elementary Rates.264
2.4.1. One-Site Reactions.365
2.4.2. Two-Site Reactions.368
3. Kinetic Equations for Multistage Processes in Condensed Phase. . 370
3.1. Hamiltonian.371
3.2. Master Equation.372
3.3. Probabilities of Elementary Reactions.375
3.4. Kinetic Equations.378
3.5. Reaction Rates.380
3.6. Hierarchy of the Kinetic Equations.382
3.7. Two-Dimensional Model.384
3.8. Point-Like Models of a Reaction.387
3.8.1. Restricted Mobility of the Reactants.388
3.8.2. Rapid Mobility of Reactants.390
3.9. Different Mobilities of Reactants.390
4. Surface Processes.391
4.1. Physical Adsorption and Chemisorption. 392
4.2. Adsorption and Thermodesorption Spectra. 395
4.3. Multistage Processes. 399
4.4. Islands and Two-Dimensional Phases. 402
4.5. Self-Consistency of the Lattice-Gas model. 404
4.6. Surface Diffusion. 409
5. Solid Phase Processes in Solid-Gas Systems. 412
5.1. Interface States.412
5.2. Diffusion Through Solids.414
5.3. Phase Transitions and Topochemical Processes.418
6. Physico-Chemical Mechanics Problems.419
6.1. Rates of Elementary Stages at Solid Deformations.419
6.2. Hydrogen-Palladium System.421
6.3. Effective Potential.422
6.4. Mechanical and Transport Properties of the Pd-H2 System . 423
6.4.1. Effect of Lattice Deformation on the Properties of
Membranes.426
CONTHNTS Xi
7. Numerical Dynamics Investigations.427
7.1. Cellular Automata Technique.427
7.2. Monte-Carlo Technique.429
7.2.1. Adsorption Processes and Surface Reactions.429
7.2.2. Surface Diffusion and Phase Formation.431
7.2.3. Crystal Growth.433
7.2.4. Complex Processes.434
7.3. Correlation Between Monte-Carlo Simulations and
Kinetic Theory.435
8. Summary and Perspectives.438
Appendix A. Equilibrium Distributions of Particles on Heterogeneous
Lattices in Condensed Phases.441
Appendix B. Lowering the Dimension of a System of
Equations in the Quasi-Chemical Approximation.448
Problems.451
References.452
Part 3. Formation and Physico-Chemical Properties
of the Films
Chapter 9. Integrated Approach to Dielectric Film Growth Modeling:
Growth Mechanisms and Kinetics
A.A. Bagatur'yants, M.A. Deminskii, A.A. Knizhnik,
B. V. Potapkin, and S. Y. Umanskii
1. Introduction.468
2. Quantum-Chemical Modeling.470
3. Gas-Surface Reactions Proceeding via a Strongly Adsorbed
Precursor.471
3.1. Description of the Model.471
3.2. Master Equation and Macroscopic Rate Constants.472
3.3. Macroscopic Rate Constant of a Barrierless Adsorption-
Desorption Reaction.477
4. Simulation Methods.479
4.1. Molecular Dynamics.479
4.1.1. Equation of Motion.480
4.1.2. Energy Functional for MD.481
4.2. Monte Carlo Method.483
4.3. Kinetic Monte Carlo Method.483
4.4. Lattice and Dynamic Versions of Kinetic Monte Carlo . 485
xii Contents
4.5. Kinetic Monte Carlo Method with Dynamic Relaxation
(KMC-DR).486
4.6. Reactor Modeling of Thin-Film Deposition.488
5. Modeling of the Deposition of Thin Dielectric Films.493
5.1. Molecular Dynamics Modeling of Precursor Interaction
with Surface.493
5.2. Kinetic Mechanism of Zirconium and Hafnium Oxide
Film Deposition.494
5.3. Reduction of the Kinetic Mechanism of Zr(Hf )O2 Film
Growth.502
5.4. Kinetic Monte Carlo and Molecular Dynamics Modeling
of ZrO2 Film Roughness in an ALD Process.503
5.5. Modeling of the ZrO2 Film Composition Using the Monte
Carlo Method.508
5.6. Modeling of the Si/ZrO2 Interface Structure Using the
KMC-DR Method.512
6. Conclusions and Outlook.516
Questions and Problems.516
References.517
Chapter 10. Vapor Deposited Composite Films Consisting of Dielectric
Matrix with Metal/Semiconductor Nanoparticles
G. N. Gerasimov, and L. I. Trakhtenberg
1. Introduction.524
2. Features of Metal and Semiconductor Nanoparticles.526
2.1. Metal Nanocrystals.526
2.2. Semiconductor Nanocrystals.531
3. Methods of Preparation and Structure of Nanocomposite
Films.536
3.1. M/SC Nanoparticle Deposition on a Surface of Dielectric
Substrate.537
3.2. Co-Deposition of M/SC and A Dielectric Material.544
4. Physico-Chemical Properties of Nanocomposite
Films.554
4.1. Conductivity and Photoconductivity.554
4.2. Sensor Properties.557
4.3. Dielectric Properties.562
4.4. Catalytic Activity.566
5. Conclusion.571
Acknowledgments.574
References.574
Contents xiii
Chapter 11. Transport and Magnetic Properties of Nanogranular Metals
B.A. Aronzon, S.V. Kapelnitsky, and A.S. Lagutin
1. Introduction.582
2. Production of Nanocomposite Films.585
3. Structure of Granular Metals (Nanocomposites).589
4. Magnetic Properties of Granular Magnetic Metals.595
4.1. General Statements and Magnetization at Low
Temperatures.597
4.2. Magnetization at High Temperatures (Paramagnetic
Region). 599
4.3. Magnetization of Granular Ferromagnetic Metals with
Non-Spherical Granules. 601
4.4. A Relaxation of Magnetization and Nanocomposite as
Cluster Spin Glass. 604
5. Magnetotransport Properties of the Granular Metals. 607
5.1. Conductivity Dependence on a Metal Granules Fraction:
The Percolation Threshold. 608
5.2. Temperature Dependence of Conductivity. 612
5.3. Magnetoresistance: Field Dependence of the Conductivity. . 614
5.4. Hall Effect. 621
6. Quantum-Size Effects in Granular Metals Near the Percolation
Threshold. 627
7. Conclusions. 631
8. Questions for Readers.632
References.633
Chapter 12. Organized Organic Thin Films: Structure, Phase Transitions
and Chemical Reactions
S. Trakhtenberg
1. Introduction.640
2. Preparation and Structure of Langmuir-Blodgett Films.645
2.1. Langmuir Monolayers.646
2.2. Film Transfer.648
2.3. Structure of Langmuir-Blodgett Films.649
3. Temperature-Induced Phase Transitions in Langmuir-Blodgett
Films.650
3.1. Order-Disorder Transitions.651
3.2. Effect of Phase Transitions on the Reactivity of
Langmuir-Blodgett Films.652
4. Self-Assembled Films.654
XIV Contents
4.1. Covalently Bonded Silane Monolayers.655
4.2. Stability of Self-Assembled Silane Films.656
4.3. Self-Assembled Silane Multilayers.657
5. Conclusions.659
Acknowledgments.661
References.661
Chapter 13. Non-Catalytic Photo-Induced Immobilization Processes in
Polymer Films
5. Trakhtenberg, A.S. Cannon, and J.C. Warner
1. Introduction.666
2. Photo-Induced Processes in Natural Polymers-DNA.671
3. Photopolymers and Photoresists Containing DNA Bases.676
4. Light-Induced Immobilization of Crosslinkable Photoresists.679
5. Reverse Processes.687
6. Conclusions.690
Acknowledgments.691
References.691
Chapter 14. Formation of Unconventional Compounds and Catalysts in
Magnesium-Containing Organic Films
V.V. Smirnov, L.A. Tyurina, and I. P. Beletskaya
1. Introduction: Reactions in the Films Obtained by
Co-Condensation of Metal Vapor with Organic Compounds . 697
2. Synthesis of Magnesium-Containing Films by Co-Condensation
of Reagents.701
3. Synthesis of RMg4X Compounds in Thin Films of
Co-Condensates.703
4. Mechanism of the Processes in Organic Magnesium-Containing
Films and the Nature of the Magic Number Four.705
5. Competition Between the Aggregation of Magnesium Atoms and
the Generation of Radicals in Mg-RX Films.710
6. Structure and Reactivity of Unconventional Organomagnesium
Compounds Obtained in Co-Condensate Films.712
7. Catalytic Reactions in Mg-RH Films.714
8. Synthesis of Catalysts in Multicomponent Films Containing
Magnesium and a Transition Metal.717
9. Conclusions.719
References.720
Contents XV
Chapter 15. Charge Effects in Catalysis by Nanostructured Metals
S.A. Gurevich, V.M. Kozhevin, I.N. Yassicvich, D.A. Yavsin,
T.N. Rostovshchikova, and V. V. Smirnov
1. Introduction.726
2. Catalyst Fabrication and Structural Properties.729
2.1. Catalyst Fabrication by Laser Electrodispersion of Metals. . 729
2.2. Structural Properties of the Catalyst Coatings.732
3. Charge State of Metallic Nanostructures.735
4. Effect of Nanoparticle Charging on the Catalytic Properties.741
4.1. Analytical Estimates. 742
4.2. Experimental Results and Discussion. 744
5. Summary. 750
References. 752
Chapter 16. Synthesis of Crystalline C-N Thin Films
H. Song, and O.J. Ilegbusi
1. Introduction.756
2. Synthesis.758
3. Theoretical Models.761
3.1. Thermodynamic Models.761
3.2. Molecular Dynamics Simulation.765
3.3. Thermal Spike Model.766
4. Characterization.770
4.1. Microstructure: XRD and TEM.770
4.2. Chemical State: EELS and XPS.771
4.3. Composition: AES and RBS.773
5. Potential Applications of CN Films.774
6. Closure.774
Acknowledgment.775
Questions.775
References.775
Subject Index.779
Recent Volumes In This Series.783 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022498442 |
classification_rvk | UP 7990 |
ctrlnum | (OCoLC)255583140 (DE-599)HBZHT015209171 |
dewey-full | 530.4275 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.4275 |
dewey-search | 530.4275 |
dewey-sort | 3530.4275 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01808nam a2200469 cb4500</leader><controlfield tag="001">BV022498442</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20071119 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070706s2007 d||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">GBA725826</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780123725233</subfield><subfield code="9">978-0-12-372523-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0123725232</subfield><subfield code="c">(hbk.) : £115.00</subfield><subfield code="9">0-12-372523-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255583140</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HBZHT015209171</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.4275</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UP 7990</subfield><subfield code="0">(DE-625)146446:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Physico-chemical phenomena in thin films and at solid surfaces</subfield><subfield code="c">Leonid Trakhtenberg ...</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XV, 783 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Thin films and nanostructures</subfield><subfield code="v">34</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thin films</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solids</subfield><subfield code="x">Surfaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanostructures</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Festkörperoberfläche</subfield><subfield code="0">(DE-588)4127823-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dünne Schicht</subfield><subfield code="0">(DE-588)4136925-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Dünne Schicht</subfield><subfield code="0">(DE-588)4136925-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Festkörperoberfläche</subfield><subfield code="0">(DE-588)4127823-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Nanostruktur</subfield><subfield code="0">(DE-588)4204530-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Trachtenberg, Leonid I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Thin films and nanostructures</subfield><subfield code="v">34</subfield><subfield code="w">(DE-604)BV022753676</subfield><subfield code="9">34</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015705537&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015705537</subfield></datafield></record></collection> |
id | DE-604.BV022498442 |
illustrated | Illustrated |
index_date | 2024-07-02T17:54:32Z |
indexdate | 2024-07-09T20:58:55Z |
institution | BVB |
isbn | 9780123725233 0123725232 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015705537 |
oclc_num | 255583140 |
open_access_boolean | |
owner | DE-703 DE-634 DE-11 |
owner_facet | DE-703 DE-634 DE-11 |
physical | XV, 783 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Elsevier |
record_format | marc |
series | Thin films and nanostructures |
series2 | Thin films and nanostructures |
spelling | Physico-chemical phenomena in thin films and at solid surfaces Leonid Trakhtenberg ... 1. ed. Amsterdam [u.a.] Elsevier 2007 XV, 783 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Thin films and nanostructures 34 Thin films Solids Surfaces Nanostructures Nanostruktur (DE-588)4204530-7 gnd rswk-swf Festkörperoberfläche (DE-588)4127823-9 gnd rswk-swf Dünne Schicht (DE-588)4136925-7 gnd rswk-swf Dünne Schicht (DE-588)4136925-7 s Festkörperoberfläche (DE-588)4127823-9 s Nanostruktur (DE-588)4204530-7 s DE-604 Trachtenberg, Leonid I. Sonstige oth Thin films and nanostructures 34 (DE-604)BV022753676 34 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015705537&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Physico-chemical phenomena in thin films and at solid surfaces Thin films and nanostructures Thin films Solids Surfaces Nanostructures Nanostruktur (DE-588)4204530-7 gnd Festkörperoberfläche (DE-588)4127823-9 gnd Dünne Schicht (DE-588)4136925-7 gnd |
subject_GND | (DE-588)4204530-7 (DE-588)4127823-9 (DE-588)4136925-7 |
title | Physico-chemical phenomena in thin films and at solid surfaces |
title_auth | Physico-chemical phenomena in thin films and at solid surfaces |
title_exact_search | Physico-chemical phenomena in thin films and at solid surfaces |
title_exact_search_txtP | Physico-chemical phenomena in thin films and at solid surfaces |
title_full | Physico-chemical phenomena in thin films and at solid surfaces Leonid Trakhtenberg ... |
title_fullStr | Physico-chemical phenomena in thin films and at solid surfaces Leonid Trakhtenberg ... |
title_full_unstemmed | Physico-chemical phenomena in thin films and at solid surfaces Leonid Trakhtenberg ... |
title_short | Physico-chemical phenomena in thin films and at solid surfaces |
title_sort | physico chemical phenomena in thin films and at solid surfaces |
topic | Thin films Solids Surfaces Nanostructures Nanostruktur (DE-588)4204530-7 gnd Festkörperoberfläche (DE-588)4127823-9 gnd Dünne Schicht (DE-588)4136925-7 gnd |
topic_facet | Thin films Solids Surfaces Nanostructures Nanostruktur Festkörperoberfläche Dünne Schicht |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015705537&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV022753676 |
work_keys_str_mv | AT trachtenbergleonidi physicochemicalphenomenainthinfilmsandatsolidsurfaces |