Elements of asymptotic geometry:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
European Mathematical Society
2007
|
Schriftenreihe: | EMS monographs in mathematics
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XII, 200 S. graph. Darst. |
ISBN: | 9783037190364 3037190361 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022497181 | ||
003 | DE-604 | ||
005 | 20170816 | ||
007 | t | ||
008 | 070705s2007 d||| |||| 00||| eng d | ||
016 | 7 | |a 984454357 |2 DE-101 | |
020 | |a 9783037190364 |c Gb. : EUR 58.00 (freier Pr.) |9 978-3-03719-036-4 | ||
020 | |a 3037190361 |c Gb. : EUR 58.00 (freier Pr.) |9 3-03719-036-1 | ||
024 | 3 | |a 9783037190364 | |
035 | |a (OCoLC)163094423 | ||
035 | |a (DE-599)DNB984454357 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-19 |a DE-355 |a DE-188 |a DE-83 |a DE-29T | ||
050 | 0 | |a QA685 | |
082 | 0 | |a 516.9 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 55M10 |2 msc | ||
084 | |a 53C23 |2 msc | ||
084 | |a 51F99 |2 msc | ||
100 | 1 | |a Buyalo, Serguei |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elements of asymptotic geometry |c Sergei Buyalo ; Viktor Schroeder |
264 | 1 | |a Zürich |b European Mathematical Society |c 2007 | |
300 | |a XII, 200 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a EMS monographs in mathematics | |
650 | 4 | |a Espaces hyperboliques | |
650 | 4 | |a Géométrie hyperbolique | |
650 | 4 | |a Geometry, Hyperbolic | |
650 | 4 | |a Hyperbolic spaces | |
650 | 0 | 7 | |a Metrischer Raum |0 (DE-588)4169745-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Metrischer Raum |0 (DE-588)4169745-5 |D s |
689 | 0 | 1 | |a Globale Differentialgeometrie |0 (DE-588)4021286-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Schroeder, Viktor |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |a Buyalo, Serguei |t Elements of asymptotic geometry |n Online-Ausgabe |z 978-3-03719-536-9 |w (DE-604)BV036705926 |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2968985&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |q text/html |u http://www.ems-ph.org/book.php?proj_nr=58&searchterm= |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704292&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015704292 |
Datensatz im Suchindex
_version_ | 1805089140208828416 |
---|---|
adam_text |
Contents
Preface
xi
1
Hyperbolic geodesic spaces
1
1.1
Geodesic metric spaces
. 1
1.2
Hyperbolic geodesic spaces
. 2
1.3
Stability of geodesies
. 4
1.4
Supplementary results and remarks
. 6
2
The boundary at infinity
9
2.1
5-inequality and hyperbolic spaces
. 9
2.2
The boundary at infinity of hyperbolic spaces
. 12
2.3
Local self-similarity of the boundary
. 16
2.4
Supplementary results and remarks
. 19
3
Busemann functions on hyperbolic spaces
23
3.1
Busemann functions
. 23
3.2
Gromov products based at infinity
. 26
3.3
Visual metrics based at infinity
. 29
3.4
Supplementary results and remarks
. 30
4
Morphisms of hyperbolic spaces
35
4.1
Morphisms of metric spaces and hyperbolicity
. 36
4.2
Cross-difference triples and cross-differences
. 39
4.3
PQ-isometric maps
. 41
4.4
Quasi-isometric maps of hyperbolic geodesic spaces
. 42
4.5
Supplementary results and remarks
. 44
5 Quasi-Möbius
and quasi-symmetric maps
49
5.1
Cross-ratios
. 49
5.2 Quasi-Möbius
and quasi-symmetric maps
. 50
5.3
Supplementary results and remarks
. 56
5.4
Summary
. 63
viii Contents
6
Hyperbolic approximation of metric spaces
69
6.1
Construction
. 69
6.2
Geodesies in a hyperbolic approximation
. 70
6.3
The boundary at infinity of a hyperbolic approximation
. 74
6.4
Supplementary results and remarks
. 77
7
Extension theorems
81
7.1
Extension theorem for bilipschitz maps
. 81
7.2
Extension theorem for quasi-symmetric maps
. 84
7.3
Extension theorem for
quasi-Möbius
maps
. 87
7.4
Supplementary results and remarks
. 95
8
Embedding theorems
97
8.1
Assouad embedding theorem
. 97
8.2
Bonk-Schramm embedding theorem
. 100
8.3
Supplementary results and remarks
. 102
9
Basics of dimension theory
107
9.1
Various dimensions
. 107
9.2
Constructions
.
Ill
9.3
P-dimensions
. 117
9.4
The
monotonicity
theorem
. 121
9.5
The product theorem
. 122
9.6
The saturation of families
. 122
9.7
The finite union theorem
. 123
9.8
Sperner lemma
. 124
9.9
Supplementary results and remarks
. 126
10
Asymptotic dimension
129
10.1
Estimates from below
. 129
10.2
Estimates from above
. 130
10.3
Embedding of H2 into a product of two trees
. 132
10.4
Supplementary results and remarks
. 134
11
Linearly controlled metric dimension: Basic properties
137
11.1
Separated sequences of colored coverings
. 138
11.2
Quasi-symmetry
invariance
of ^-dim
. 141
11.3
Supplementary results and remarks
. 145
12
Linearly controlled metric dimension: Applications
147
12.1
Embedding into the product of trees
. 147
12.2
¿-dimension of locally self-similar spaces
. 154
12.3
Applications to hyperbolic spaces
. 156
Contents ix
12.4
Supplementary results and remarks
. 157
13
Hyperbolic dimension
159
13.1
Large scale doubling sets
. 159
13.2
Definition of the hyperbolic dimension
. 160
13.3
Hyperbolic dimension of hyperbolic spaces
. 162
13.4
Applications to nonembedding results
. 164
13.5
Supplementary results and remarks
. 166
14
Hyperbolic rank and subexponential corank
167
14.1
Hyperbolic rank
. 167
14.2
Subexponential corank
. 169
14.3
Applications to nonembedding results
. 175
14.4
Subexponential corank versus hyperbolic dimension
. 175
14.5
Supplementary results and remarks
. 177
Appendix. Models of the hyperbolic space H"
181
A.
1
The pseudo-spherical model
. 181
A.2 The unit disc model
. 182
A.3 The upper half-plane model
. 183
A.4 The solvable group model
. 185
A.5 Generalizations to an arbitrary dimension
. 186
A.6
Möbius
transformations
. 187
A.7 Cross-ratio
. 188
Bibliography
193
Index
197 |
adam_txt |
Contents
Preface
xi
1
Hyperbolic geodesic spaces
1
1.1
Geodesic metric spaces
. 1
1.2
Hyperbolic geodesic spaces
. 2
1.3
Stability of geodesies
. 4
1.4
Supplementary results and remarks
. 6
2
The boundary at infinity
9
2.1
5-inequality and hyperbolic spaces
. 9
2.2
The boundary at infinity of hyperbolic spaces
. 12
2.3
Local self-similarity of the boundary
. 16
2.4
Supplementary results and remarks
. 19
3
Busemann functions on hyperbolic spaces
23
3.1
Busemann functions
. 23
3.2
Gromov products based at infinity
. 26
3.3
Visual metrics based at infinity
. 29
3.4
Supplementary results and remarks
. 30
4
Morphisms of hyperbolic spaces
35
4.1
Morphisms of metric spaces and hyperbolicity
. 36
4.2
Cross-difference triples and cross-differences
. 39
4.3
PQ-isometric maps
. 41
4.4
Quasi-isometric maps of hyperbolic geodesic spaces
. 42
4.5
Supplementary results and remarks
. 44
5 Quasi-Möbius
and quasi-symmetric maps
49
5.1
Cross-ratios
. 49
5.2 Quasi-Möbius
and quasi-symmetric maps
. 50
5.3
Supplementary results and remarks
. 56
5.4
Summary
. 63
viii Contents
6
Hyperbolic approximation of metric spaces
69
6.1
Construction
. 69
6.2
Geodesies in a hyperbolic approximation
. 70
6.3
The boundary at infinity of a hyperbolic approximation
. 74
6.4
Supplementary results and remarks
. 77
7
Extension theorems
81
7.1
Extension theorem for bilipschitz maps
. 81
7.2
Extension theorem for quasi-symmetric maps
. 84
7.3
Extension theorem for
quasi-Möbius
maps
. 87
7.4
Supplementary results and remarks
. 95
8
Embedding theorems
97
8.1
Assouad embedding theorem
. 97
8.2
Bonk-Schramm embedding theorem
. 100
8.3
Supplementary results and remarks
. 102
9
Basics of dimension theory
107
9.1
Various dimensions
. 107
9.2
Constructions
.
Ill
9.3
P-dimensions
. 117
9.4
The
monotonicity
theorem
. 121
9.5
The product theorem
. 122
9.6
The saturation of families
. 122
9.7
The finite union theorem
. 123
9.8
Sperner lemma
. 124
9.9
Supplementary results and remarks
. 126
10
Asymptotic dimension
129
10.1
Estimates from below
. 129
10.2
Estimates from above
. 130
10.3
Embedding of H2 into a product of two trees
. 132
10.4
Supplementary results and remarks
. 134
11
Linearly controlled metric dimension: Basic properties
137
11.1
Separated sequences of colored coverings
. 138
11.2
Quasi-symmetry
invariance
of ^-dim
. 141
11.3
Supplementary results and remarks
. 145
12
Linearly controlled metric dimension: Applications
147
12.1
Embedding into the product of trees
. 147
12.2
¿-dimension of locally self-similar spaces
. 154
12.3
Applications to hyperbolic spaces
. 156
Contents ix
12.4
Supplementary results and remarks
. 157
13
Hyperbolic dimension
159
13.1
Large scale doubling sets
. 159
13.2
Definition of the hyperbolic dimension
. 160
13.3
Hyperbolic dimension of hyperbolic spaces
. 162
13.4
Applications to nonembedding results
. 164
13.5
Supplementary results and remarks
. 166
14
Hyperbolic rank and subexponential corank
167
14.1
Hyperbolic rank
. 167
14.2
Subexponential corank
. 169
14.3
Applications to nonembedding results
. 175
14.4
Subexponential corank versus hyperbolic dimension
. 175
14.5
Supplementary results and remarks
. 177
Appendix. Models of the hyperbolic space H"
181
A.
1
The pseudo-spherical model
. 181
A.2 The unit disc model
. 182
A.3 The upper half-plane model
. 183
A.4 The solvable group model
. 185
A.5 Generalizations to an arbitrary dimension
. 186
A.6
Möbius
transformations
. 187
A.7 Cross-ratio
. 188
Bibliography
193
Index
197 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Buyalo, Serguei Schroeder, Viktor |
author_facet | Buyalo, Serguei Schroeder, Viktor |
author_role | aut aut |
author_sort | Buyalo, Serguei |
author_variant | s b sb v s vs |
building | Verbundindex |
bvnumber | BV022497181 |
callnumber-first | Q - Science |
callnumber-label | QA685 |
callnumber-raw | QA685 |
callnumber-search | QA685 |
callnumber-sort | QA 3685 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)163094423 (DE-599)DNB984454357 |
dewey-full | 516.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.9 |
dewey-search | 516.9 |
dewey-sort | 3516.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022497181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170816</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070705s2007 d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">984454357</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190364</subfield><subfield code="c">Gb. : EUR 58.00 (freier Pr.)</subfield><subfield code="9">978-3-03719-036-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037190361</subfield><subfield code="c">Gb. : EUR 58.00 (freier Pr.)</subfield><subfield code="9">3-03719-036-1</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783037190364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)163094423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB984454357</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA685</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.9</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">55M10</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C23</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">51F99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Buyalo, Serguei</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elements of asymptotic geometry</subfield><subfield code="c">Sergei Buyalo ; Viktor Schroeder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 200 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EMS monographs in mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Espaces hyperboliques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie hyperbolique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Hyperbolic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperbolic spaces</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Metrischer Raum</subfield><subfield code="0">(DE-588)4169745-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Globale Differentialgeometrie</subfield><subfield code="0">(DE-588)4021286-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schroeder, Viktor</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Buyalo, Serguei</subfield><subfield code="t">Elements of asymptotic geometry</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-03719-536-9</subfield><subfield code="w">(DE-604)BV036705926</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2968985&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://www.ems-ph.org/book.php?proj_nr=58&searchterm=</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704292&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015704292</subfield></datafield></record></collection> |
id | DE-604.BV022497181 |
illustrated | Illustrated |
index_date | 2024-07-02T17:53:52Z |
indexdate | 2024-07-20T09:19:10Z |
institution | BVB |
isbn | 9783037190364 3037190361 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015704292 |
oclc_num | 163094423 |
open_access_boolean | |
owner | DE-824 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-83 DE-29T |
owner_facet | DE-824 DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-188 DE-83 DE-29T |
physical | XII, 200 S. graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | European Mathematical Society |
record_format | marc |
series2 | EMS monographs in mathematics |
spelling | Buyalo, Serguei Verfasser aut Elements of asymptotic geometry Sergei Buyalo ; Viktor Schroeder Zürich European Mathematical Society 2007 XII, 200 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier EMS monographs in mathematics Espaces hyperboliques Géométrie hyperbolique Geometry, Hyperbolic Hyperbolic spaces Metrischer Raum (DE-588)4169745-5 gnd rswk-swf Globale Differentialgeometrie (DE-588)4021286-5 gnd rswk-swf Metrischer Raum (DE-588)4169745-5 s Globale Differentialgeometrie (DE-588)4021286-5 s DE-604 Schroeder, Viktor Verfasser aut Erscheint auch als Buyalo, Serguei Elements of asymptotic geometry Online-Ausgabe 978-3-03719-536-9 (DE-604)BV036705926 text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2968985&prov=M&dok_var=1&dok_ext=htm Inhaltstext text/html http://www.ems-ph.org/book.php?proj_nr=58&searchterm= Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704292&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Buyalo, Serguei Schroeder, Viktor Elements of asymptotic geometry Espaces hyperboliques Géométrie hyperbolique Geometry, Hyperbolic Hyperbolic spaces Metrischer Raum (DE-588)4169745-5 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
subject_GND | (DE-588)4169745-5 (DE-588)4021286-5 |
title | Elements of asymptotic geometry |
title_auth | Elements of asymptotic geometry |
title_exact_search | Elements of asymptotic geometry |
title_exact_search_txtP | Elements of asymptotic geometry |
title_full | Elements of asymptotic geometry Sergei Buyalo ; Viktor Schroeder |
title_fullStr | Elements of asymptotic geometry Sergei Buyalo ; Viktor Schroeder |
title_full_unstemmed | Elements of asymptotic geometry Sergei Buyalo ; Viktor Schroeder |
title_short | Elements of asymptotic geometry |
title_sort | elements of asymptotic geometry |
topic | Espaces hyperboliques Géométrie hyperbolique Geometry, Hyperbolic Hyperbolic spaces Metrischer Raum (DE-588)4169745-5 gnd Globale Differentialgeometrie (DE-588)4021286-5 gnd |
topic_facet | Espaces hyperboliques Géométrie hyperbolique Geometry, Hyperbolic Hyperbolic spaces Metrischer Raum Globale Differentialgeometrie |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2968985&prov=M&dok_var=1&dok_ext=htm http://www.ems-ph.org/book.php?proj_nr=58&searchterm= http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704292&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT buyaloserguei elementsofasymptoticgeometry AT schroederviktor elementsofasymptoticgeometry |