Smart sensor systems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Chichester
Wiley
2008
|
Ausgabe: | 1. publ. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVII, 385 S. zahlr. Ill. und graph. Darst. |
ISBN: | 9780470866917 |
Internformat
MARC
LEADER | 00000nam a22000002c 4500 | ||
---|---|---|---|
001 | BV022496951 | ||
003 | DE-604 | ||
005 | 20140723 | ||
007 | t | ||
008 | 070705s2008 ad|| |||| 00||| eng d | ||
020 | |a 9780470866917 |9 978-0-470-86691-7 | ||
035 | |a (OCoLC)226038228 | ||
035 | |a (DE-599)BSZ253454484 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-703 |a DE-29T |a DE-573 | ||
050 | 0 | |a TA165 | |
082 | 0 | |a 681/.25 |2 22 | |
084 | |a ZQ 3120 |0 (DE-625)158040: |2 rvk | ||
100 | 1 | |a Meijer, Gerard C. M. |e Verfasser |0 (DE-588)137039921 |4 aut | |
245 | 1 | 0 | |a Smart sensor systems |c ed. by Gerard C. M. Meijer |
250 | |a 1. publ. | ||
264 | 1 | |a Chichester |b Wiley |c 2008 | |
300 | |a XVII, 385 S. |b zahlr. Ill. und graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Detectors |x Design and construction | |
650 | 4 | |a Detectors |x Industrial applications | |
650 | 4 | |a Microcontrollers | |
650 | 0 | 7 | |a Intelligenter Sensor |0 (DE-588)4293453-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sensortechnik |0 (DE-588)4121663-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Sensortechnik |0 (DE-588)4121663-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Intelligenter Sensor |0 (DE-588)4293453-9 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704065&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015704065 |
Datensatz im Suchindex
_version_ | 1804136594316197888 |
---|---|
adam_text | Contents
Preface
xiii
About the Authors
xv
1
Smart Sensor Systems: Why? Where? How?
1
Johan
H.
Huijsing
1.1
Third Industrial Revolution
1
1.2
Definitions for Several Kinds of Sensors
3
1.2.1
Definition of Sensors
3
1.2.2
Definition of Smart Sensors
9
1.2.3
Definition of Integrated Smart Sensors
9
1.2.4
Definition of Integrated Smart Sensor Systems
11
1.3
Automated Production Machines
12
1.4
Automated Consumer Products
16
1.4.1
Smart Cars
16
1.4.2
Smart Homes
16
1.4.3
Smart Domestic Appliances
17
1.4.4
Smart Toys
19
1.5
Conclusion
21
References
21
2
Interface Electronics and Measurement Techniques for Smart
Sensor Systems
23
Gerard CM.
Meijer
2.1
Introduction
23
2.2
Object-oriented Design of Sensor Systems
24
2.3
Sensing Elements and Their Parasitic Effects
25
23.1
Compatibility of Packaging
25
2.3.2
Effect of Cable and Wire Impedances
26
2.33
Parasitic and Cross-effects in Sensing Elements
27
23.4
Excitation Signals for Sensing Elements
29
2.4
Analog-to-digital Conversion
30
2.5
High Accuracy Over a Wide Dynamic Range
33
25.1
Systematic, Random and Multi-path Errors
33
2.5.2
Advanced Chopping Techniques
34
2.53
Autocalibration
36
vi
Contents
2.5.4
Dynamic
Amplification
37
2.5.5
Dynamic Division and Other Dynamic Signal-processing Techniques
40
2.6
A Universal Transducer Interface
41
2.6.7
Description of the Interface Chip and the Applied Measurement Techniques
41
2.6.2
Realization and Experimental Results
47
2.7
Summary and Future Trends
50
2.7.1
Summary
50
2.7.2
Future Trends
51
Problems
51
References
54
3
Silicon Sensors: An Introduction
55
Paddy J. French
3.1
Introduction
55
3.2
Measurement and Control Systems
55
3.3
Transducers
57
3.3.1
Form of Signal-carrying Energy
57
3.3.2
Signal Conversion in Transducers
59
3.3.3
Smart Silicon Sensors
60
3.3.4
Self-generating and Modulating Transducers
63
3.4
Transducer Technologies
63
3.4.1
Introduction
63
3.4.2
Generic Nonsilicon Technologies
64
3.4.3
Silicon
66
3.5
Examples of Silicon Sensors
68
3.5.1
Radiation Domain
68
3.5.2
Mechanical Domain
70
3.5.3
Thermal Domain
70
3.5.4
Magnetic Domain
72
3.5.5
Chemical Domain
74
3.6
Summary and Future Trends
75
3.6.1
Summary
75
3.6.2
Future Trends
75
References
76
4
Optical Sensors Based on Photon Detection
79
ReinoudF. Wolffenbuttel
4.1
Introduction
79
4.2
Photon Absorption in Silicon
81
4.3
The Interface: Photon Transmission Into Silicon
84
4.4
Photon Detection in Silicon Photoconductors
87
4.4.1
Photoconductors in Silicon: Operation and Static Performance
89
4.4.2
Photoconductors in Silicon: Dynamic Performance
93
4.5
Photon Detection in Silicon pn Junctions
93
4.5.1
Defining the Depletion Layer at a pn Junction
94
4.5.2
Electron-hole Collection in the Depletion Layer
97
Contents
vii
4.5.3
Electron-hole Collection in the Substrate
97
4.5.4
Electron-hole Collection Close to the Surface
99
4.5.5
Backside-illuminated Pin
Photodiode
100
4.5.6
Electron-hole Collection in Two Stackedpn Junctions
102
4.6
Detection Limit
103
4.6.1
Noise in the Optical Signal
104
4.6.2
Photon Detector Noise
105
4.6.3
Photon Detector Readout
106
4.7
Photon Detectors with Gain
108
4.7.1
The
Phototransistor
108
4.7.2
The Avalanche
Photodiode
109
4.7.3
Time Integration of Photon-generated Charge
112
4.8
Application Examples
113
4.8.1
Color Sensor in CMOS
113
4.8.2
Optical Microspectrometer in CMOS
115
4.9
Summary and Future Trends
117
4.9.1
Summary
117
4.9.2
Future Trends
118
Problems
119
References
119
5
Physical Chemosensors
121
Michael J. Vellekoop
5.1
Introduction
121
5.7.7
Thin-film Chemical Interfaces
122
5.7.2
Total Analysis Systems
122
5.2
Physical Chemosensing
123
5.3
Energy Domains
124
5.4
Examples and Applications
126
5.5
Examples of in situ Applications
127
5.5.7
Blood Oximeter
127
5.5.2
Thermal Conductivity Detector
127
5.5.3
Engine Oil Monitoring System
129
5.5.4
Oil-condition Sensor Based on Infrared Measurements
130
5.5.5
Electronic Nose
130
5.6
Microfluidics Devices
131
5.6.7
Projection Cytometer
135
5.6.2
Coulter Counter
138
5.6.3
Dielectrophoresis-based Devices
140
5.6.4
High-throughput Screening Arrays
144
5.6.5
Contactless Conductivity Detection in
CE
145
5.7
Conclusions
146
Problems
147
References
147
Contents
б
Thermal Sensors
151
Sander
(A.W.)
van
Herwaarden
6.1
The Functional Principle of Thermal Sensors
151
6.1.1
Self-generating Thermal-power Sensors
151
6.1.2
Modulating Thermal-conductance Sensors
152
6.2
Heat Transfer Mechanisms
153
6.3
Thermal Structures
155
6.3.1
Modeling
155
6.3.2
Floating Membranes
160
6.3.3
Cantilever Beams and Bridges
161
6.3.4
Closed Membranes
163
6.4
Temperature-Difference Sensing Elements
165
6.4.1
Introduction
165
6.4.2
Thermocouples
165
6.4.3
Other Elements
168
6.5
Sensors Based on Thermal Measurements
168
6.5.1
Microcalorimeter
169
6.5.2
Psychrometer
170
6.5.3
Infrared Sensor
171
6.5.4
RMS Converter
172
6.5.5
EM Field Sensor
173
6.5.6
F/otv Sensor
174
6-5.7
Vacuum Sensor
174
6.5.S Thermal Conductivity Gauge
176
6.5.9
Acceleration Sensors
177
6.5.70
Nanocalorimeter
177
6.6
Summary and Future Trends
179
6.6.7
Summary
179
6.6.2
Future Trends
179
Problems
180
References
182
7
Smart Temperature Sensors and Temperature-Sensor Systems
185
Gerard CM.
Meijer
7.1
Introduction
185
7.2
Application-related Requirements and Problems of Temperature Sensors
188
7.2.7
Accuracy
189
7.2.2
Short-term and Long-term Stability
189
7.2.3
Noise and Resolution
190
7.2.4
Self-heating
192
7.2.5
Heat Leakage along the Connecting Wires
194
7.2.6
Dynamic Behavior
194
7.3
Resistive Temperature-sensing Elements
196
7J.7 Practical Mathematical Models
196
7.3.2
Linearity and Linearization
198
Contents
7.4
Temperature-sensor
Features
of
Transistors 200
7.4.1 General
Considerations
200
7.4.2
Physical and Mathematical
Models 201
7.4.3
PTAT
Temperature Sensors
203
7.4.4
Temperature Sensors with an Intrinsic Voltage Reference
207
7.4.5
Calibration and Trimming of Transistor Temperature Sensors
208
7.5
Smart Temperature Sensors and Systems
208
7.5.1
A Smart Temperature Sensor with a Duty-cycle-modulated Output Signal
209
7.5.2
Smart Temperature-sensor Systems with Discrete Elements
212
7.6
Case Studies of Smart-sensor Applications
212
7.6.1
Thermal Detection of Micro-organisms with Smart Sensors
213
7.6.2
Control of Substrate Temperature
217
7.7
Summary and Future Trends
220
7.7.1
Summary
220
7.7.2
Future Trends
221
Problems
222
References
223
8
Capacitive
Sensors
225
Xiujun Li and Gerard CM.
Meijer
8.1
Introduction
225
8.2
Basics of
Capacitive
Sensors
226
8.2.1
Principles
226
8.2.2
Precision of
Capacitive
Sensors
226
8.3
Examples of
Capacitive
Sensors
227
8.3.1
Angular Encoders
228
8.3.2
Humidity Sensors
229
8.3.3
Liquid-level Gauges
230
8.4
The Design of Electrode Configurations
231
8.4.1
EMI Effects
231
8.4.2
Electric-field-bending Effects
232
8.4.3
Active-guard Electrodes
232
8.4.4
Floating Electrodes
233
8.4.5
Contamination and Condensation
234
8.5
Reduction of Field-bending Effects: Segmentation
234
5.5.7
Three-layered Electrode Structures
235
8.5.2
A Model for the Electrostatic Field in Electrode Structures
236
85.3
Influence of the Electric-field-bending Effects on Linearity
237
8.6
Selectivity for Electrical Signals and Electrical Parameters
237
8.6.1
Selective Detection of Band-limited Frequencies
238
8.6.2
Selective Detection of a Selected Parameter
239
8.6
J
Measurement Techniques to Reduce the Effects of Shunting Conductances
240
8.7
Summary and Future Trends
246
Problems 246
References 247
x
Contents
9
Integrated Hall Magnetic Sensors
249
Radivoje S.
Popović
and Pavel Kejik
9.1
Introduction
249
9.2
Hall Effect and Hall Elements
250
9.2.1
The Hall Effect
250
9.2.2
Hall Elements
253
9.2.3
Characteristics of Hall Elements
253
9.2.4
Integrated Horizontal Hall Plates
256
9.2.5
Integrated Vertical Hall Plates
258
9.3
Integrated Hall Sensor Systems
259
9.3.1
Biasing a Hall Device
260
9.3.2
Reducing Offset and
1
If noise
260
9.3.3
Amplifying the Hall Voltage
262
9.3.4
Integrating Magnetic Functions
265
9.4
Examples of Integrated Hall Magnetic Sensors
267
9.4.1
Magnetic Angular Position Sensor
267
9.4.2
Fully Integrated Three-axis Hall Probe
269
9.4.3
Integrated Hall Probe for Magnetic Microscopy
271
Problems
276
References
276
10
Universal Asynchronous Sensor Interfaces
279
Gerard CM.
Meijer andXiujun
Li
10.1
Introduction
279
10.2
Universal Sensor Interfaces
280
10.3
Asynchronous Converters
283
10
J.I Conversion of Sensor Signals to the Time Domain
284
10.3.2
Wide-range Conversion of Sensor Signals to the Time Domain
for Very Small or Very Large Signals
287
10.3.3
Output Signals
288
10.3.4
Quantization Noise of Sampled Time-modulated Signals
290
10.3
J
A Comparison between Asynchronous Converters and
Sigma-delta
Converters
294
10.4
Dealing with Problems of Low-cost Design of Universal Interface ICs
296
10.5
Front-end Circuits
297
10
J.I Cross-effects and Interaction
297
10.5.2
Interference
298
1053
Optimization of Components, Circuits and Wiring
298
10.6
CaseStudies
299
10.6.1
Front-end Circuits for
Capacitive
Sensors
299
70.6.2
Front-end Circuits for Resistive Bridges
302
10.6.3
A Front-end Circuit for a Thermocouple-voltage Processor
305
10.7
Summary and Future Trends
307
10.7.1
Summary
307
70.7.2
Future Trends
307
Problems
308
References
311
Contents xi
11 Data
Acquisition for Frequency- and Time-domain Sensors
313
Sergey Y. Yurish
11.1
Introduction
313
11.2
DAQ Boards: State of the Art
314
11.3
DAQ Board Design for Quasi-digital Sensors
316
113.1
Advanced Methods for Frequency-to-digital Conversion
316
11.3.2
Examples
322
11.3.3
Methods for Duty-cycle-to-digital Conversion
324
11.3.4
Methods for Phase-shift-to-digital Conversion
326
11.4
Universal Frequency-to-digital Converters (UFDC)
330
11.4.1
ICs for Frequency-to-digital Conversion: State of the Art
332
11.4.2
UFDC
:
Features and Performances
333
11.5
Applications and Examples
335
11.6
Summary and Future Trends
338
Problems
339
References
340
12
Microcontrollers and Digital Signal Processors for Smart Sensor Systems
343
Ratcho
M. Ivanov
12.1
Introduction
343
12.2
MCU and DSP Architectures, Organization, Structures, and Peripherals
344
12.3
Choosing a Low-Power MCU or DSP
347
12.3.1
Average Current Consumption
348
12.3.2
Oscillator and System Clocks
349
12.3.3
Interrupts
350
12.3.4
Peripherals
350
12.3.5
Summary
350
12.4
Timer Modules
351
12.4.1
Introduction to Timer Modules
351
12.4.2
Examples of Timer Module Applications for Various Microcontrollers
355
12.5
Analog Comparators, ADCs, and DACs as Modules of Microcontrollers
370
12.5.1
Introduction
370
12.5.2
Application Examples of Analog Modules
370
12.6
Embedded Networks and LCD Interfacing
373
12.7
Development Tools and Support
374
12.8
Conclusions
374
References Sites
374
Appendix A Material Data
375
Appendix
В
Conversion for non-SI Units
377
Index
379
Solutions to Problems can be found on the Companion website
|
adam_txt |
Contents
Preface
xiii
About the Authors
xv
1
Smart Sensor Systems: Why? Where? How?
1
Johan
H.
Huijsing
1.1
Third Industrial Revolution
1
1.2
Definitions for Several Kinds of Sensors
3
1.2.1
Definition of Sensors
3
1.2.2
Definition of Smart Sensors
9
1.2.3
Definition of Integrated Smart Sensors
9
1.2.4
Definition of Integrated Smart Sensor Systems
11
1.3
Automated Production Machines
12
1.4
Automated Consumer Products
16
1.4.1
Smart Cars
16
1.4.2
Smart Homes
16
1.4.3
Smart Domestic Appliances
17
1.4.4
Smart Toys
19
1.5
Conclusion
21
References
21
2
Interface Electronics and Measurement Techniques for Smart
Sensor Systems
23
Gerard CM.
Meijer
2.1
Introduction
23
2.2
Object-oriented Design of Sensor Systems
24
2.3
Sensing Elements and Their Parasitic Effects
25
23.1
Compatibility of Packaging
25
2.3.2
Effect of Cable and Wire Impedances
26
2.33
Parasitic and Cross-effects in Sensing Elements
27
23.4
Excitation Signals for Sensing Elements
29
2.4
Analog-to-digital Conversion
30
2.5
High Accuracy Over a Wide Dynamic Range
33
25.1
Systematic, Random and Multi-path Errors
33
2.5.2
Advanced Chopping Techniques
34
2.53
Autocalibration
36
vi
Contents
2.5.4
Dynamic
Amplification
37
2.5.5
Dynamic Division and Other Dynamic Signal-processing Techniques
40
2.6
A Universal Transducer Interface
41
2.6.7
Description of the Interface Chip and the Applied Measurement Techniques
41
2.6.2
Realization and Experimental Results
47
2.7
Summary and Future Trends
50
2.7.1
Summary
50
2.7.2
Future Trends
51
Problems
51
References
54
3
Silicon Sensors: An Introduction
55
Paddy J. French
3.1
Introduction
55
3.2
Measurement and Control Systems
55
3.3
Transducers
57
3.3.1
Form of Signal-carrying Energy
57
3.3.2
Signal Conversion in Transducers
59
3.3.3
Smart Silicon Sensors
60
3.3.4
Self-generating and Modulating Transducers
63
3.4
Transducer Technologies
63
3.4.1
Introduction
63
3.4.2
Generic Nonsilicon Technologies
64
3.4.3
Silicon
66
3.5
Examples of Silicon Sensors
68
3.5.1
Radiation Domain
68
3.5.2
Mechanical Domain
70
3.5.3
Thermal Domain
70
3.5.4
Magnetic Domain
72
3.5.5
Chemical Domain
74
3.6
Summary and Future Trends
75
3.6.1
Summary
75
3.6.2
Future Trends
75
References
76
4
Optical Sensors Based on Photon Detection
79
ReinoudF. Wolffenbuttel
4.1
Introduction
79
4.2
Photon Absorption in Silicon
81
4.3
The Interface: Photon Transmission Into Silicon
84
4.4
Photon Detection in Silicon Photoconductors
87
4.4.1
Photoconductors in Silicon: Operation and Static Performance
89
4.4.2
Photoconductors in Silicon: Dynamic Performance
93
4.5
Photon Detection in Silicon pn Junctions
93
4.5.1
Defining the Depletion Layer at a pn Junction
94
4.5.2
Electron-hole Collection in the Depletion Layer
97
Contents
vii
4.5.3
Electron-hole Collection in the Substrate
97
4.5.4
Electron-hole Collection Close to the Surface
99
4.5.5
Backside-illuminated Pin
Photodiode
100
4.5.6
Electron-hole Collection in Two Stackedpn Junctions
102
4.6
Detection Limit
103
4.6.1
Noise in the Optical Signal
104
4.6.2
Photon Detector Noise
105
4.6.3
Photon Detector Readout
106
4.7
Photon Detectors with Gain
108
4.7.1
The
Phototransistor
108
4.7.2
The Avalanche
Photodiode
109
4.7.3
Time Integration of Photon-generated Charge
112
4.8
Application Examples
113
4.8.1
Color Sensor in CMOS
113
4.8.2
Optical Microspectrometer in CMOS
115
4.9
Summary and Future Trends
117
4.9.1
Summary
117
4.9.2
Future Trends
118
Problems
119
References
119
5
Physical Chemosensors
121
Michael J. Vellekoop
5.1
Introduction
121
5.7.7
Thin-film Chemical Interfaces
122
5.7.2
Total Analysis Systems
122
5.2
Physical Chemosensing
123
5.3
Energy Domains
124
5.4
Examples and Applications
126
5.5
Examples of in situ Applications
127
5.5.7
Blood Oximeter
127
5.5.2
Thermal Conductivity Detector
127
5.5.3
Engine Oil Monitoring System
129
5.5.4
Oil-condition Sensor Based on Infrared Measurements
130
5.5.5
Electronic Nose
130
5.6
Microfluidics Devices
131
5.6.7
Projection Cytometer
135
5.6.2
Coulter Counter
138
5.6.3
Dielectrophoresis-based Devices
140
5.6.4
High-throughput Screening Arrays
144
5.6.5
Contactless Conductivity Detection in
CE
145
5.7
Conclusions
146
Problems
147
References
147
Contents
б
Thermal Sensors
151
Sander
(A.W.)
van
Herwaarden
6.1
The Functional Principle of Thermal Sensors
151
6.1.1
Self-generating Thermal-power Sensors
151
6.1.2
Modulating Thermal-conductance Sensors
152
6.2
Heat Transfer Mechanisms
153
6.3
Thermal Structures
155
6.3.1
Modeling
155
6.3.2
Floating Membranes
160
6.3.3
Cantilever Beams and Bridges
161
6.3.4
Closed Membranes
163
6.4
Temperature-Difference Sensing Elements
165
6.4.1
Introduction
165
6.4.2
Thermocouples
165
6.4.3
Other Elements
168
6.5
Sensors Based on Thermal Measurements
168
6.5.1
Microcalorimeter
169
6.5.2
Psychrometer
170
6.5.3
Infrared Sensor
171
6.5.4
RMS Converter
172
6.5.5
EM Field Sensor
173
6.5.6
F/otv Sensor
174
6-5.7
Vacuum Sensor
174
6.5.S Thermal Conductivity Gauge
176
6.5.9
Acceleration Sensors
177
6.5.70
Nanocalorimeter
177
6.6
Summary and Future Trends
179
6.6.7
Summary
179
6.6.2
Future Trends
179
Problems
180
References
182
7
Smart Temperature Sensors and Temperature-Sensor Systems
185
Gerard CM.
Meijer
7.1
Introduction
185
7.2
Application-related Requirements and Problems of Temperature Sensors
188
7.2.7
Accuracy
189
7.2.2
Short-term and Long-term Stability
189
7.2.3
Noise and Resolution
190
7.2.4
Self-heating
192
7.2.5
Heat Leakage along the Connecting Wires
194
7.2.6
Dynamic Behavior
194
7.3
Resistive Temperature-sensing Elements
196
7J.7 Practical Mathematical Models
196
7.3.2
Linearity and Linearization
198
Contents
7.4
Temperature-sensor
Features
of
Transistors 200
7.4.1 General
Considerations
200
7.4.2
Physical and Mathematical
Models 201
7.4.3
PTAT
Temperature Sensors
203
7.4.4
Temperature Sensors with an Intrinsic Voltage Reference
207
7.4.5
Calibration and Trimming of Transistor Temperature Sensors
208
7.5
Smart Temperature Sensors and Systems
208
7.5.1
A Smart Temperature Sensor with a Duty-cycle-modulated Output Signal
209
7.5.2
Smart Temperature-sensor Systems with Discrete Elements
212
7.6
Case Studies of Smart-sensor Applications
212
7.6.1
Thermal Detection of Micro-organisms with Smart Sensors
213
7.6.2
Control of Substrate Temperature
217
7.7
Summary and Future Trends
220
7.7.1
Summary
220
7.7.2
Future Trends
221
Problems
222
References
223
8
Capacitive
Sensors
225
Xiujun Li and Gerard CM.
Meijer
8.1
Introduction
225
8.2
Basics of
Capacitive
Sensors
226
8.2.1
Principles
226
8.2.2
Precision of
Capacitive
Sensors
226
8.3
Examples of
Capacitive
Sensors
227
8.3.1
Angular Encoders
228
8.3.2
Humidity Sensors
229
8.3.3
Liquid-level Gauges
230
8.4
The Design of Electrode Configurations
231
8.4.1
EMI Effects
231
8.4.2
Electric-field-bending Effects
232
8.4.3
Active-guard Electrodes
232
8.4.4
Floating Electrodes
233
8.4.5
Contamination and Condensation
234
8.5
Reduction of Field-bending Effects: Segmentation
234
5.5.7
Three-layered Electrode Structures
235
8.5.2
A Model for the Electrostatic Field in Electrode Structures
236
85.3
Influence of the Electric-field-bending Effects on Linearity
237
8.6
Selectivity for Electrical Signals and Electrical Parameters
237
8.6.1
Selective Detection of Band-limited Frequencies
238
8.6.2
Selective Detection of a Selected Parameter
239
8.6
J
Measurement Techniques to Reduce the Effects of Shunting Conductances
240
8.7
Summary and Future Trends
246
Problems 246
References 247
x
Contents
9
Integrated Hall Magnetic Sensors
249
Radivoje S.
Popović
and Pavel Kejik
9.1
Introduction
249
9.2
Hall Effect and Hall Elements
250
9.2.1
The Hall Effect
250
9.2.2
Hall Elements
253
9.2.3
Characteristics of Hall Elements
253
9.2.4
Integrated Horizontal Hall Plates
256
9.2.5
Integrated Vertical Hall Plates
258
9.3
Integrated Hall Sensor Systems
259
9.3.1
Biasing a Hall Device
260
9.3.2
Reducing Offset and
1
If noise
260
9.3.3
Amplifying the Hall Voltage
262
9.3.4
Integrating Magnetic Functions
265
9.4
Examples of Integrated Hall Magnetic Sensors
267
9.4.1
Magnetic Angular Position Sensor
267
9.4.2
Fully Integrated Three-axis Hall Probe
269
9.4.3
Integrated Hall Probe for Magnetic Microscopy
271
Problems
276
References
276
10
Universal Asynchronous Sensor Interfaces
279
Gerard CM.
Meijer andXiujun
Li
10.1
Introduction
279
10.2
Universal Sensor Interfaces
280
10.3
Asynchronous Converters
283
10
J.I Conversion of Sensor Signals to the Time Domain
284
10.3.2
Wide-range Conversion of Sensor Signals to the Time Domain
for Very Small or Very Large Signals
287
10.3.3
Output Signals
288
10.3.4
Quantization Noise of Sampled Time-modulated Signals
290
10.3
J
A Comparison between Asynchronous Converters and
Sigma-delta
Converters
294
10.4
Dealing with Problems of Low-cost Design of Universal Interface ICs
296
10.5
Front-end Circuits
297
10
J.I Cross-effects and Interaction
297
10.5.2
Interference
298
1053
Optimization of Components, Circuits and Wiring
298
10.6
CaseStudies
299
10.6.1
Front-end Circuits for
Capacitive
Sensors
299
70.6.2
Front-end Circuits for Resistive Bridges
302
10.6.3
A Front-end Circuit for a Thermocouple-voltage Processor
305
10.7
Summary and Future Trends
307
10.7.1
Summary
307
70.7.2
Future Trends
307
Problems
308
References
311
Contents xi
11 Data
Acquisition for Frequency- and Time-domain Sensors
313
Sergey Y. Yurish
11.1
Introduction
313
11.2
DAQ Boards: State of the Art
314
11.3
DAQ Board Design for Quasi-digital Sensors
316
113.1
Advanced Methods for Frequency-to-digital Conversion
316
11.3.2
Examples
322
11.3.3
Methods for Duty-cycle-to-digital Conversion
324
11.3.4
Methods for Phase-shift-to-digital Conversion
326
11.4
Universal Frequency-to-digital Converters (UFDC)
330
11.4.1
ICs for Frequency-to-digital Conversion: State of the Art
332
11.4.2
UFDC
:
Features and Performances
333
11.5
Applications and Examples
335
11.6
Summary and Future Trends
338
Problems
339
References
340
12
Microcontrollers and Digital Signal Processors for Smart Sensor Systems
343
Ratcho
M. Ivanov
12.1
Introduction
343
12.2
MCU and DSP Architectures, Organization, Structures, and Peripherals
344
12.3
Choosing a Low-Power MCU or DSP
347
12.3.1
Average Current Consumption
348
12.3.2
Oscillator and System Clocks
349
12.3.3
Interrupts
350
12.3.4
Peripherals
350
12.3.5
Summary
350
12.4
Timer Modules
351
12.4.1
Introduction to Timer Modules
351
12.4.2
Examples of Timer Module Applications for Various Microcontrollers
355
12.5
Analog Comparators, ADCs, and DACs as Modules of Microcontrollers
370
12.5.1
Introduction
370
12.5.2
Application Examples of Analog Modules
370
12.6
Embedded Networks and LCD Interfacing
373
12.7
Development Tools and Support
374
12.8
Conclusions
374
References Sites
374
Appendix A Material Data
375
Appendix
В
Conversion for non-SI Units
377
Index
379
Solutions to Problems can be found on the Companion website |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Meijer, Gerard C. M. |
author_GND | (DE-588)137039921 |
author_facet | Meijer, Gerard C. M. |
author_role | aut |
author_sort | Meijer, Gerard C. M. |
author_variant | g c m m gcm gcmm |
building | Verbundindex |
bvnumber | BV022496951 |
callnumber-first | T - Technology |
callnumber-label | TA165 |
callnumber-raw | TA165 |
callnumber-search | TA165 |
callnumber-sort | TA 3165 |
callnumber-subject | TA - General and Civil Engineering |
classification_rvk | ZQ 3120 |
ctrlnum | (OCoLC)226038228 (DE-599)BSZ253454484 |
dewey-full | 681/.25 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 681 - Precision instruments and other devices |
dewey-raw | 681/.25 |
dewey-search | 681/.25 |
dewey-sort | 3681 225 |
dewey-tens | 680 - Manufacture of products for specific uses |
discipline | Handwerk und Gewerbe / Verschiedene Technologien Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
discipline_str_mv | Handwerk und Gewerbe / Verschiedene Technologien Mess-/Steuerungs-/Regelungs-/Automatisierungstechnik / Mechatronik |
edition | 1. publ. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01618nam a22004332c 4500</leader><controlfield tag="001">BV022496951</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20140723 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070705s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780470866917</subfield><subfield code="9">978-0-470-86691-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)226038228</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BSZ253454484</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TA165</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681/.25</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZQ 3120</subfield><subfield code="0">(DE-625)158040:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meijer, Gerard C. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)137039921</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart sensor systems</subfield><subfield code="c">ed. by Gerard C. M. Meijer</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester</subfield><subfield code="b">Wiley</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVII, 385 S.</subfield><subfield code="b">zahlr. Ill. und graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield><subfield code="x">Design and construction</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Detectors</subfield><subfield code="x">Industrial applications</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microcontrollers</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intelligenter Sensor</subfield><subfield code="0">(DE-588)4293453-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Sensortechnik</subfield><subfield code="0">(DE-588)4121663-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Intelligenter Sensor</subfield><subfield code="0">(DE-588)4293453-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704065&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015704065</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV022496951 |
illustrated | Illustrated |
index_date | 2024-07-02T17:53:45Z |
indexdate | 2024-07-09T20:58:53Z |
institution | BVB |
isbn | 9780470866917 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015704065 |
oclc_num | 226038228 |
open_access_boolean | |
owner | DE-703 DE-29T DE-573 |
owner_facet | DE-703 DE-29T DE-573 |
physical | XVII, 385 S. zahlr. Ill. und graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Wiley |
record_format | marc |
spelling | Meijer, Gerard C. M. Verfasser (DE-588)137039921 aut Smart sensor systems ed. by Gerard C. M. Meijer 1. publ. Chichester Wiley 2008 XVII, 385 S. zahlr. Ill. und graph. Darst. txt rdacontent n rdamedia nc rdacarrier Detectors Design and construction Detectors Industrial applications Microcontrollers Intelligenter Sensor (DE-588)4293453-9 gnd rswk-swf Sensortechnik (DE-588)4121663-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Sensortechnik (DE-588)4121663-5 s DE-604 Intelligenter Sensor (DE-588)4293453-9 s Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704065&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Meijer, Gerard C. M. Smart sensor systems Detectors Design and construction Detectors Industrial applications Microcontrollers Intelligenter Sensor (DE-588)4293453-9 gnd Sensortechnik (DE-588)4121663-5 gnd |
subject_GND | (DE-588)4293453-9 (DE-588)4121663-5 (DE-588)4143413-4 |
title | Smart sensor systems |
title_auth | Smart sensor systems |
title_exact_search | Smart sensor systems |
title_exact_search_txtP | Smart sensor systems |
title_full | Smart sensor systems ed. by Gerard C. M. Meijer |
title_fullStr | Smart sensor systems ed. by Gerard C. M. Meijer |
title_full_unstemmed | Smart sensor systems ed. by Gerard C. M. Meijer |
title_short | Smart sensor systems |
title_sort | smart sensor systems |
topic | Detectors Design and construction Detectors Industrial applications Microcontrollers Intelligenter Sensor (DE-588)4293453-9 gnd Sensortechnik (DE-588)4121663-5 gnd |
topic_facet | Detectors Design and construction Detectors Industrial applications Microcontrollers Intelligenter Sensor Sensortechnik Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015704065&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT meijergerardcm smartsensorsystems |