Hypocretins: integrators of physiological functions
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2005
|
Schlagworte: | |
Online-Zugang: | UBR01 Volltext Inhaltsverzeichnis |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9780387250007 9780387254463 |
DOI: | 10.1007/b107412 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV022484663 | ||
003 | DE-604 | ||
005 | 20160126 | ||
007 | cr|uuu---uuuuu | ||
008 | 070628s2005 gw |||| o||u| ||||||eng d | ||
015 | |a 06,N02,1270 |2 dnb | ||
016 | 7 | |a 977483649 |2 DE-101 | |
020 | |a 9780387250007 |9 978-0-387-25000-7 | ||
020 | |a 9780387254463 |c Online |9 978-0-387-25446-3 | ||
024 | 7 | |a 10.1007/b107412 |2 doi | |
024 | 3 | |a 9780387250007 | |
035 | |a (OCoLC)762184765 | ||
035 | |a (DE-599)BVBBV022484663 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-355 | ||
084 | |a 610 |2 sdnb | ||
245 | 1 | 0 | |a Hypocretins |b integrators of physiological functions |c ed. by Luis de Lecea ... |
264 | 1 | |a New York, NY |b Springer |c 2005 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 0 | 7 | |a Neuropeptide |0 (DE-588)4041895-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Narkolepsie |0 (DE-588)4200507-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Narkolepsie |0 (DE-588)4200507-3 |D s |
689 | 0 | 1 | |a Neuropeptide |0 (DE-588)4041895-9 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Lecea, Luis de |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 0-387-25000-X |
856 | 4 | 0 | |u https://doi.org/10.1007/b107412 |x Verlag |3 Volltext |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015691968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ZDB-2-SBL | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015691968 | ||
966 | e | |u https://doi.org/10.1007/b107412 |l UBR01 |p ZDB-2-SBL |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804136577271595008 |
---|---|
adam_text | CONTENTS
DISCOVERY OF THE HYPOCRETINS/OREXINS AND THEIR RECEPTORS
1. THE DISCOVERY OF THE HYPOCRETINS: New Hypothalamic Peptides 3
Luis de Lecea and J. Gregor Sutcliffe
1. CLONES OF HYPOTHALAMUS ENRICHED mRNAS 3
2. THE CLONE 35 SEQUENCE 6
3. DETECTING THE PROTEIN 7
4. ARE THE PEPTIDES NEUROTRANSMITTERS? 8
5. GOING PUBLIC: A VOTE ON NOMENCLATURE 9
6. INDEPENDENT DISCOVERY 10
7. FUNCTIONS GALORE 10
8. REFERENCES 11
2. OREXIN AND OREXIN RECEPTORS 13
Takeshi Sakurai
1. INTRODUCTION 13
2. IDENTIFICATION OF HYPOCRETIN AND OREXIN 13
3. PREPRO OREXIN GENE, STRUCTURE AND REGULATION OF
EXPRESSION 15
4. STRUCTURES AND PHARMACOLOGY OF OREXIN RECEPTORS 16
5. GENETICS OF OREXIN RECEPTORS 17
6. HOW MANY OREXIN RECEPTOR GENES? 18
7. SIGNAL TRANSDUCTION SYSTEMS OF OREXIN RECEPTORS 18
8. DISTRIBUTION OF OREXIN RECEPTORS 21
9. STRUCTURE ACTIVITY RELATIONSHIPS 21
10. REFERENCES 22
xii CONTENTS
ANIMAL MODELS IN THE STUDY OF THE HYPOCRETINERGIC SYSTEM
3. RODENT MODELS OF HUMAN NARCOLEPSY CATAPLEXY 27
Takeshi Sakurai, Michihiro Mieda, and Masashi Yanagisawa
1. DISCOVERY OF MOUSE NARCOLEPSY 27
2. REM SLEEP RELATED SYMPTOMS 30
3. NON REM SLEEP RELATED SYMPTOMS 30
4. DIFFERENTIAL REGULATION OF SLEEP/WAKE STATES BY OX1R
ANDOX2R 33
5. RODENT MODELS OF PATHOPHYSIOLOGY OF HUMAN
NARCOLEPSY 34
6. MORE THAN SLEEP/WAKE ABNORMALITIES 36
7. CONCLUSIONS 37
8. REFERENCES 37
4. THE CANINE MODEL OF NARCOLEPSY 39
Seiji Nishino
1. INTRODUCTION 39
2. SYMPTOMS OF CANINE NARCOLEPSY 40
3. INHERITANCE OF NARCOLEPSY IN CANINES 40
4. DOG LEUKOCYTE ANTIGEN (DLA) AND CANINE NARCOLEPSY 43
5. DISCOVERY OF CANINE NARCOLEPY GENE (Canarc 1) 43
6. HYPOCRETIN LIGAND DEFICIENT SPORADIC NARCOLEPTIC
CANINES 45
7. PHARMACOLOGICAL CONTROL OF CATAPLEXY AND EDS 45
7.1. REM Sleep/Cataplexy and Narcolepsy 45
7.2. Monoaminergic and Cholinergic Interactions and Cataplexy 46
7.3. Dopamineregic Transmission and EEG Arousal 49
8. HISTAMINERGIC SYSTEM AND NARCOLEPSY 51
9. HYPOCRETIN REPLACEMENT THERAPY 53
10. HYPOCRETIN DEFICIENCY AND NARCOLEPTIC PHENOTYPE 54
11. CONCLUSION 54
12. ACKNOWELDGEMENTS 54
13. REFERENCES 55
DETAILED ANATOMY OF THE HYPOCRETINERGIC SYSTEM AND
RELATED HYPOTHALAMIC CIRCUITS
5. ANATOMY OF THE HYPOCRETIN SYSTEM 61
Teresa L. Steininger and Thomas S. Kilduff
1. INTRODUCTION 61
CONTENTS xiii
2. DISTRIBUTION AND MORPHOLOGY OF HCRT NEURONS 61
3. COLOCALIZATION OF NEUROCHEMICALS IN HCRT NEURONS 62
4. DEVELOPMENT OF HCRT NEURONS 63
5. COMPARATIVE STUDIES 63
6. DISTRIBUTION OF HCRT AND RECEPTORS IN NON NEURAL
TISSUES 64
7. DISTRIBUTION OF HCRT EFFERENT AXONS 65
8. LOCALIZATION OF HCRT RECEPTORS 67
9. AFFERENT CONNECTIONS OF HCRT NEURONS 69
10. CONCLUSIONS AND PERSPECTIVE 70
11. ACKNOWLEDGEMENTS 70
12. REFERENCES 70
6. THE ANATOMY OF HYPOCRETIN NEURONS 77
Tamas L. Horvath
1. INTRODUCTION 77
2. HCRT PERIKARYA 77
2.1. Light Microscopy 77
2.2. Electron Microscopy 79
3. AFFERENT INPUT TO THE HCRT NEURONS 81
3.1. Light Microscopy 81
3.2. Electron Microscopy 82
4. HCRT EFFERENTS 87
4.1. Light Microscopy 87
4.2. Electron Microscopy 89
5. SUMMARY 91
6. REFERENCES 91
7. TRANSMITTER IDENTIFIED NEURONS AND AFFERENT
INNERVATION OF THE LATERAL HYPOTHALAMIC AREA:
Focus on Hypocretin and Melanin concentrating Hormone 95
Christian Broberger and Tomas Hokfelt
1. INTRODUCTION 95
2. MELANIN CONCENTRATING HORMONE AND HYPOCRETIN
DEFINE TWO SEPARATE NEURONAL POPULATIONS IN THE LHA.... 96
3. COEXISTENCE WITH OTHER SIGNALLING MOLECULES 97
3.1. Cocaine and Amphetamine Regulated Transcript 98
3.2. Dynorphin 98
3.3. Substance P 99
3.4. Galanin 99
3.5. Neurotensin 99
3.6. Other Neuropeptides 99
3.7. Nitric Oxide 100
xiv CONTENTS
3.8. Amino Acid Transmitters 100
4. LOCAL CONNECTIONS WITHIN THE LHA 102
4.1. Hcrt MCH: Anatomical Interactions 102
4.2. Distribution of Hot and MCH Receptors in the LHA 102
4.3. Hcrt MCH: Functional Interactions 102
4.4. Hcrt Autoregulation 103
5. AFFERENT INNERVATION OF THE LHA 103
6. INPUTS FROM THE ARCUATE NUCLEUS 104
6.1. Role in Feeding Behaviour 104
6.2. Parallel Pathways from the Arcuate Nucleus to the LHA 104
6.3. Functional Role Within the Feeding Circuitry 106
7. OTHER INPUTS FROM THE HYPOTHALAMUS 107
7.1. The Suprachiasmatic Nucleus 107
7.2. Ventrolateral Preoptic Area 108
7.3. Dorsomedial Hypothalamic Nucleus 108
7.4. Ventromedial Hypothalamic Nucleus 108
8. INPUTS FROM OTHER AROUSAL SYSTEMS 109
8.1.Noradrenergic and Adrenergic Innervation 109
8.2. Serotonergic Innervation 109
8.3. Cholinergic Innervation 109
8.4. Histaminergic Innervation 110
9. INPUTS FROM THE BASAL GANGLIA 110
10. CORTICAL INPUTS HI
11. CONCLUDING REMARKS Ill
12. ACKNOWLEDGMENTS 111
13. REFERENCES 111
PHYSIOLOGICAL CONSEQUENCES OF HYPOCRETIN ACTIVATION
8. PHYSIOLOGICAL CHARACTERISTICS OF HYPOCRETIN/OREXIN
NEURONS 123
Anthony N. van den Pol
1. INTRODUCTION 123
2. HYPOCRETIN NEURONS SHOW SPONTANEOUS REGULAR ACTION
POTENTIALS 124
3. SYNAPTIC INPUT TO HYPOCRETIN NEURONS IS MEDIATED BY
GLUTAMATE AND GABA 126
4. INHIBITORY RESPONSE TO NOREPINEPHRINE AND SEROTONIN... 126
5. HYPOCRETIN ACTIVATES HYPOCRETIN NEURONS BY AN
INDIRECT EXCITATION OF GLUTAMATERGIC INTERNEURONS 128
6. GROUP 3 METABOTROPIC GLUTAMATE RECEPTORS INHIBIT
HYPOCRETIN NEURONS 128
CONTENTS xv
7. GLUCAGON LIKE PEPTIDE 1 EXCITES HYPOCRETIN NEURONS 132
8. METABOLIC SIGNALS MODULATE HYPOCRETIN NEURON
ACTIVITY 132
9. HYPOCRETIN CELLS ARE EXCITATORY 132
10. ACKNOWLEDGEMENTS 133
11. REFERENCES 133
9. THE NE SYSTEM AS A TARGET FOR HYPOCRETIN NEURONS:
IMPLICATIONS FOR REGULATION OF AROUSAL 137
Gary Aston Jones, J. Patrick Card, Yan Zhu, Monica Gonzalez, and
Elizabeth Haggerty
1. INTRODUCTION 137
2. EXCITATORY EFFECT OF HCRT ON LC NEURONS 139
3. HCRT INNERVATION OF THE LC 140
4. GABA INTERNEURONS IN THE PERI LC: TARGET FOR HCRT
INPUTS 142
5. A CIRCUIT FROM THE SCN TO THE LC AND CIRCADIAN
REGULATION OF AROUSAL: A POSSIBLE ROLE FOR HCRT? 147
6. ACKNOWLEDGEMENTS 151
7. REFERENCES 151
10. HYPOCRETIN/OREXIN ACTIONS ON MESOPONTINE CHOLINERGIC
SYSTEMS CONTROLING BEHAVIORAL STATE 153
Christopher S. Leonard, Christopher J. Tyler, Sophie Burlet, Shigeo Watanabe, and
Kristi A. Kohlmeier
1. INTRODUCTION 153
2. EXPERIMENTAL 154
3. HYPOCRETIN/OREXIN STIMULATES THE FIRING OF LDT
NEURONS 155
4. HYPOCRETIN/OREXIN STIMULATES CHOLINERGIC AND
NON CHOLINERGIC LDT NEURONS BY DIRECT AND
INDIRECT MEANS 155
5. HYPOCRETIN/OREXIN STIMULATES EXCITATORY AFFERENTS
TO LDT 157
6. HYPOCRETIN/OREXIN HAD INCONSISTENT ACTIONS ON
INHIBITORY AFFERENTS TO LDT 159
7. HYPOCRETIN/OREXIN EVOKED A NOISY CATION CURRENT IN
LDT NEURONS 159
8. HYPOCRETIN/OREXIN ELEVATES INTRACELLULAR CALCIUM
IN LDT NEURONS 161
9. CONCLUSIONS 164
10. FUNCTIONAL IMPLICATIONS 164
xvi CONTENTS
11. ACKNOWLEDGEMENTS 165
12. REFERENCES 165
11. THE AMINERGIC SYSTEMS AND THE HYPOCRETINS 169
Oliver Selbach and Helmut L. Haas
1. INTRODUCTION 169
2. THE HYPOCRETIN SYSTEM 169
2.1. Glutamate and GABA 170
3. THE AMINERGIC SYSTEMS 171
3.1. Tuberomamillary Nucleus (Histamine) 172
3.2. Dorsal Raphe (Serotonin) 175
3.3. Ventral Tegmental Area / Substantia Nigra (Dopamine) 178
3.4. Locus Coeruleus (Noradrenaline) 180
3.5. Laterodorsal Tegmentum / Basal Forebrain (Acetylcholine) 180
4. HIPPOCAMPUS AND CORTEX 180
5. CONCLUSION 183
6. REFERENCES 183
12. EFFECTS OF HYPOCRETIN/OREXIN ON THE THALAMOCORTICAL
ACTIVATING SYSTEM 191
Evelyn K. Lambe and George K. Aghajanian
1. INTRODUCTION 191
2. THALAMOCORTICAL ACTIVATING SYSTEM 191
3. SELECTIVE HYPOCRETIN PROJECTIONS 192
4. HYPOCRETIN EXCITES MIDLINE INTRALAMINAR THALAMIC
NEURONS 193
5. HYPOCRETIN EXCITES THALAMOCORTICAL TERMINALS IN
PREFRONTAL CORTEX 195
5.1. Pharmacology and Lesion Studies 195
5.2. Two Photon Calcium Imaging Studies 198
6. AROUSAL AND ATTENTION 199
7. CONCLUSIONS 200
8. REFERENCES 200
PHARMACOLOGY OF THE HYPOCRETINS AND DRUG DESIGN
13. IN VIVO PHARMACOLOGY OF OREXIN (HYPOCRETIN)
RECEPTORS 205
Neil Upton
1. INTRODUCTION 205
CONTENTS xvii
2. PHARMACOLOGICAL TOOLS FOR CHARACTERIZING THE OREXIN
PEPTIDE RECEPTOR SYSTEM IN VIVO 206
2. 1. Orexin Receptor Agonists 206
2.2. Orexin Receptor Antagonists 207
3. IN VIVO PHARMACOLOGY OF OREXIN RECEPTORS 208
3.1. Feeding and Appetite 209
3.2. Arousal and Sleep 210
3.3. Pain Modulation 213
3.4. Other Actions 214
4. CONCLUSIONS AND THERAPEUTIC OPPORTUNITIES FOR THE
FUTURE 216
5. REFERENCES 217
14. INTRACELLULAR SIGNAL PATHWAYS UTILIZED BY THE
HYPOCRETIN/OREXIN RECEPTORS 221
Jyrki P. Kukkonen and Karl E. O. Akerman
1. INTRODUCTION 221
2. CELLULAR SIGNALING PATHWAYS 221
2.1. G proteins 221
2.2. Hypocretin Receptor Signaling in Neurons 223
2.3. Hypocretin Receptor Signaling in Endocrine Systems 225
2.4. Hypocretin Receptor Signaling in Heterologous Expression Systems 226
3. CONCENTRATION RESPONSE RELATIONSHIPS 227
4. RECEPTOR SUBTYPE DIFFERENCES IN SIGNALING? 228
5. FUTURE PERSPECTIVES 228
6. REFERENCES 228
THE HYPOCRETINS IN NARCOLEPSY AND AROUSAL
15. THE HYPOCRETINS AND NARCOLEPSY: Pathophysiology
and Diagnosis 233
Wynne Chen, Jamie M. Zeitzer, and Emmanuel Mignot
1. INTRODUCTION 233
2. CLINICAL ASPECTS OF NARCOLEPSY 234
3. GENETIC ASPECTS OF NARCOLEPSY 237
4. HYPOCRETIN DEFICIENCY IN NARCOLEPSY 240
5. ROLE OF CSF HYPOCRETIN IN THE DIAGNOSIS OF NARCOLEPSY. 242
5.1. Narcolepsy with Definite Cataplexy 244
5.2. Narcolepsy without Cataplexy or with Atypical Cataplexy 244
5.3. Narcolepsy Associated with a Known Physiological Condition 244
6. HYPOCRETIN DEFICIENCY AND PHARMACOLOGIC
CORRELATES 245
xviii CONTENTS
7. FUTURE PROSPECTS 246
8. REFERENCES 248
16. AN APPROACH TO DETERMINING THE FUNCTIONS OF
HYPOCRETIN (OREXIN) 253
Jerome M. Siegel
1. INTRODUCTION 253
2. ARE HYPOCRETIN CELLS HOMOGENEOUS? 254
3. REGULATION OF HYPOCRETIN/OREXIN RELEASE 254
4. ARE HYPOCRETINS ASSOCIATED WITH LOCOMOTOR
ACTIVITY? 256
5. REFERENCES 258
17. HYPOCRETIN IN NEUROPSYCHIATRIC DISORDERS 261
Patrice Bourgin and Yves Dauvilliers
1. INTRODUCTION 261
2. HYPERSOMNIAS (EXCEPT TYPICAL NARCOLEPSY CATAPLEXY) 261
2.1. Atypical Narcolepsy 261
2.2. Idiopathic Hypersomnia 262
2.3. Post Traumatic Hypersomnia 262
2.4. Obstructive Sleep Apnea Syndrome 263
2.5. Hypersomnias: Conclusion 263
3. IMMUNE DISORDERS 263
3.1. Immune Polyneuropathies 263
3.2. Encephalitis and Demyelinating Disorders 264
3.3. Immune Disorders: Conclusion 264
4. OTHER NEUROLOGICAL DISORDERS 265
4.1. Kleine Levin Syndrome (KLS) 265
4.2. Prader Willi Syndrome 265
4.3. Niemann Pick Disease 265
4.4. Myotonic Dystrophy 265
4.5. Hypothalamic Lesions 266
5. MOVEMENT DISORDERS 266
5.1. Parkinson Disease 266
5.2. Restless Legs Syndrome 267
6. DEMENTIA 267
7. PAIN DISORDERS 269
8. PSYCHIATRIC DISORDERS 269
8.1. Depressive Syndrome 270
8.2. Schizophrenia 271 i
9. LIMITATIONS AND PERSPECTIVES 271
10. CONCLUSION 272
11. REFERENCES 273
CONTENTS xix
18. HYPOCRETIN/OREXIN AND SLEEP: Implications for the
Pathophysiology of Human Narcolepsy 277
Gert Jan Lammers and Sebastiaan Overeem
1. INTRODUCTION 277
2. HYPOCRETIN DEFICIENCY IN HUMAN NARCOLEPSY 278
3. ANIMAL MODELS 280
4. THE CAUSE OF HUMAN NARCOLEPSY 281
5. ROLE OF HYPOCRETIN IN SLEEP REGULATION 282
6. ENDOCRINE RHYTHMS, AUTONOMIC TONE AND OBESITY 283
7. REFERENCES 285
19. MODULATION OF CORTICAL ACTIVITY AND SLEEP WAKE
STATES BY HYPOCRETIN/OREXIN 289
Barbara E. Jones and Michel Muhlethaler
1. INTRODUCTION 289
2. MODULATION AND ACTIVITY OF HCRT/ORX NEURONS 291
3. EXCITATORY INFLUENCE OF HCRT/ORX UPON THE DIFFUSE
THALAMO CORTICAL PROJECTION SYSTEM 292
4. EXCITATORY INFLUENCE OF HCRT/ORX UPON THE
CHOLINERGIC BASALO CORTICAL PROJECTION SYSTEM 294
5. EXCITATORY INFLUENCE OF HCRT/ORX UPON CORTICO
CORTICAL PROJECTION NEURONS 295
6. INDIRECT INFLUENCE OF HCRT/ORX UPON SLEEP PROMOTING
NEURONS 297
7. SUMMARY AND CONCLUSIONS 297
8. ACKNOWLEDGMENTS 298
9. REFERENCES 298
THE HYPOCRETINS IN FEEDING AND ENERGY BALANCE
20. REGULATION OF HYPOCRETIN BY METABOLIC SIGNALS 305
Katherine E. Wortley and Sarah F. Leibowitz
1. INTRODUCTION 305
2. REGULATION OF HYPOCRETIN/OREXIN SYSTEM BY METABOLIC
SIGNALS RELATED TO NEGATIVE ENERGY BALANCE 306
3. REGULATION OF HYPOCRETIN/OREXIN SYSTEM BY METABOLIC
SIGNALS RELATED TO POSITIVE ENERGY BALANCE 306
; 4. CONCLUSION 310
j 5. REFERENCES 310
xx CONTENTS
THE HYPOCRETINS IN ADDICTION AND HYPERAROUSAL
21. HYPOCRETIN AND BRAIN REWARD FUNCTION 315
Benjamin Boutrel, Paul J. Kenny, Athina Markou, and George F. Koob
1. INTRODUCTION 315
2. LATERAL HYPOTHALAMIC SELF STIMULATION AND THE
HYPOCRETIN SYSTEM 316
2.1. Lateral Hypothalamic Self Stimulation Paradigm 316
2.2. Lateral Hypothalamic Self Stimulation May Activate Hypocretin
Neurons 316
3. BRAIN REWARD CIRCUITRY AND HYPOCRETIN PROJECTIONS 317
4. HYPOCRETIN AND BRAIN REWARD MODULATION 318
5. HYPOCRETIN AND RELAPSE FOR DRUG SEEKING 319
6. SUMMARY AND PERSPECTIVES 320
7. REFERENCES 321
22. OREXIN/HYPOCRETIN AND OPIOID DEPENDENCE 325
Ralph J. DiLeone
1. INTRODUCTION 325
2. EARLY STUDIES OF THE LH 325
3. THE VIEW OF THE LH IN THE MODERN HYPOTHALAMUS 326
4. NEW LH PEPTIDES 326
5. THE HYPOTHALAMUS AND ADDICTION 327
5.1. The LH and Drugs of Abuse 327
6. ORX/HCRT NEURONS RESPOND TO CHRONIC MORPHINE AND
MORPHINE WITHDRAWAL 327
7. THE ORX/HCRT GENE IS UPREGULATED AFTER PRECIPITATED
MORPHINE WITHDRAWAL 329
8. ORX/HCRT NEURONS EXPRESS THE u OPIOID RECEPTOR 329
9. ORX/HCRT KNOCKOUT MICE SHOW ATTENUATED MORPHINE
WITHDRAWAL 330
10. SUMMARY OF ORX/HCRT DATA 331
11. INTERPRETATION AND IMPLICATIONS FOR ADDICTION
BIOLOGY 331
11.1. Is ORX/HCRT Essential for the Development of Dependence and/or
the Expression of Withdrawal? 331
12. ORX/HCRT RECEPTORS AND NEURAL CIRCUITS RELEVANT TO
ADDICTION 331
12.1. What Brain Regions are the Critical ORX/HCRT Targets? 332
13. REFERENCES 332
j
CONTENTS xxi
23. DOPAMINE HYPOCRETIN/OREXIN INTERACTIONS: The Prefrontal
Cortex and Schizophrenia 337
Ariel Y. Deutch, Jim Fadel, and Michael Bubser
1. INTRODUCTION 337
2. ANATOMICAL BASIS OF DOPAMINE OREXIN INTERACTIONS 338
2.1. Orexin Projections to Midbrain Dopamine Neurons 338
2.2. Overlap of Forebrain Hcrt/Orexin and DA Axons 339
2.3. The Dopaminergic Innervation of the Lateral Hypothalamus and
Orexin 339
3. DOPAMINERGIC REGULATION OF OREXIN NEURONS 340
3.1. Amphetamine and Apomorphine Effects on Fos Expression in Orexin
Cells 341
3.2. Activation of Orexin Neurons by Dl and D2 Agonists 341
3.3. Mechanisms of Dopamine Agonist Induced Activation of Orexin
Neurons 342
4. ANTIPSYCHOTIC DRUGS AND OREXIN NEURONS 342
4.1. Effects of Typical and Atypical Antipsychotic Drugs on Orexin
Neurons 343
4.2. How Do Both Anorexic and Orexigenic Drugs Both Active Orexin
Cells? 343
5. DOPAMINE, OREXIN, AND SCHIZOPHRENIA 345
6. CONCLUSIONS 346
7. ACKNOWLEDGMENTS 346
8. REFERENCES 346
24. HYPOCRETIN/OREXIN IN STRESS AND AROUSAL 351
Craig W. Berridge and Rodrigo A. Espana
1. INTRODUCTION 351
2. THE NEUROBIOLOGY OF STRESS 351
3. HCRT AND WAKING 353
4. CIRCADIAN INDEPENDENT ACTIONS OF HCRT 355
5. HCRT AND STRESS 358
5.1. Stress Like Physiological and Behavioral Actions of HCRT 358
5.2. Effects of Stress on c Fos Expression in HCRT Synthesizing and
HCRT Receptive Neurons 358
5.3. Activating Actions of HCRT on CRH Neurotransmission 360
6. APPETITIVE HIGH AROUSAL STATES 360
7. REFERENCES 361
xxii CONTENTS
ROLE OF HYPOCRETINS ON PERIPHERAL SYSTEMS
25. THE HYPOCRETINS/OREXINS AND THE HYPOTHALAMO
PITUITARY ADRENAL AXIS 369
Willis K. Samson, Meghan M. Taylor, and Alastair V. Ferguson
1. INTRODUCTION 369
2. THE ANATOMICAL FRAMEWORK 369
3. HYPOCRETIN AND THE CENTRAL ARM OF THE HPA AXIS 371
4. HYPOCRETIN ACTIONS AT THE LEVEL OF THE PITUITARY
GLAND 373
5. HYPOCRETIN ACTIONS IN THE ADRENAL GLAND 375
6. AN INTEGRATIVE VIEW OF THE ACTIONS OF THE
HYPOCRETINS IN THE HYPOTHALAMO PITUITARY ADRENAL
AXIS 376
7. CONCLUDING REMARKS 378
8. REFERENCES 378
26. OREXINS (HYPOCRETINS) IN THE GUT 383
Annette L. Kirchgessner and Erik Naslund
1. INTRODUCTION 383
2. DISTRIBUTION OF HCRT/OREXIN IN THE GASTROINTESTINAL
TRACT 384
2.1. Rodent Gastrointestinal Tract 384
2.2. Human Gastrointestinal Tract 385
3. HCRT/OREXIN EFFECTS ON VAGAL AFFERENT SIGNALING 385
4. FASTING SMALL BOWEL MOTILITY 386
5. GASTRIC EMPTYING 387
6. GASTRIC AND INTESTINAL SECRETIONS 388
7. SUMMARY 389
8. ACKNOWLEDGEMENTS 389
9. REFERENCES 389
27. HYPOCRETINS IN ENDOCRINE REGULATION 393
Miguel Lopez, Manuel Tena Sempere, Tomas Garcia Caballero, Rosa Seftaris, and
Carlos Dieguez
1. INTRODUCTION 393
2. NEUROENDOCRINE ANATOMY OF THE HYPOCRETIN SYSTEM 394
3. THE HYPOCRETIN SYSTEM IN PERIPHERAL ENDOCRINE
TISSUES 395
4. ENDOCRINE ACTIONS OF HYPOCRETINS 396
4.1. Hypocretins and Adrenal Axis 397
CONTENTS xxiii
4.2. Hypocretins and Growth Hormone Axis 398
4.3. Hypocretins and Gonadal Axis 401
4.4. Hypocretins and Lactoprope Axis 404
4.5. Hypocretins and Thyroid Axis 405
4.6. Hypocretins and Pancreatic Function 405
4.7. Endocrine Actions of Hypocretins in the Gastrointestinal Tract 407
4.8. Hypocretins and Drinking Behaviour 407
5. THE ROLE OF HCRT2 408
6. SUMMARY 408
7. ACKNOWLEDGEMENTS 410
8. REFERENCES 410
28. THE HYPOCRETINS IN CARDIOVASCULAR REGULATION 423
Tetsuro Shirasaka and Hiroshi Kannan
1. INTRODUCTION 423
2. HYPOCRETINS AND CARDIOVASCULAR REGULATIONS IN VIVO... 424
3. HYPOCRETINS AND CARDIOVASCULAR REGULATIONS IN
VITRO 428
4. CONCLUSIONS 431
5. REFERENCES 432
INDEX 435
|
adam_txt |
CONTENTS
DISCOVERY OF THE HYPOCRETINS/OREXINS AND THEIR RECEPTORS
1. THE DISCOVERY OF THE HYPOCRETINS: New Hypothalamic Peptides 3
Luis de Lecea and J. Gregor Sutcliffe
1. CLONES OF HYPOTHALAMUS ENRICHED mRNAS 3
2. THE CLONE 35 SEQUENCE 6
3. DETECTING THE PROTEIN 7
4. ARE THE PEPTIDES NEUROTRANSMITTERS? 8
5. GOING PUBLIC: A VOTE ON NOMENCLATURE 9
6. INDEPENDENT DISCOVERY 10
7. FUNCTIONS GALORE 10
8. REFERENCES 11
2. OREXIN AND OREXIN RECEPTORS 13
Takeshi Sakurai
1. INTRODUCTION 13
2. IDENTIFICATION OF HYPOCRETIN AND OREXIN 13
3. PREPRO OREXIN GENE, STRUCTURE AND REGULATION OF
EXPRESSION 15
4. STRUCTURES AND PHARMACOLOGY OF OREXIN RECEPTORS 16
5. GENETICS OF OREXIN RECEPTORS 17
6. HOW MANY OREXIN RECEPTOR GENES? 18
7. SIGNAL TRANSDUCTION SYSTEMS OF OREXIN RECEPTORS 18
8. DISTRIBUTION OF OREXIN RECEPTORS 21
9. STRUCTURE ACTIVITY RELATIONSHIPS 21
10. REFERENCES 22
xii CONTENTS
ANIMAL MODELS IN THE STUDY OF THE HYPOCRETINERGIC SYSTEM
3. RODENT MODELS OF HUMAN NARCOLEPSY CATAPLEXY 27
Takeshi Sakurai, Michihiro Mieda, and Masashi Yanagisawa
1. DISCOVERY OF MOUSE NARCOLEPSY 27
2. REM SLEEP RELATED SYMPTOMS 30
3. NON REM SLEEP RELATED SYMPTOMS 30
4. DIFFERENTIAL REGULATION OF SLEEP/WAKE STATES BY OX1R
ANDOX2R 33
5. RODENT MODELS OF PATHOPHYSIOLOGY OF HUMAN
NARCOLEPSY 34
6. MORE THAN SLEEP/WAKE ABNORMALITIES 36
7. CONCLUSIONS 37
8. REFERENCES 37
4. THE CANINE MODEL OF NARCOLEPSY 39
Seiji Nishino
1. INTRODUCTION 39
2. SYMPTOMS OF CANINE NARCOLEPSY 40
3. INHERITANCE OF NARCOLEPSY IN CANINES 40
4. DOG LEUKOCYTE ANTIGEN (DLA) AND CANINE NARCOLEPSY 43
5. DISCOVERY OF CANINE NARCOLEPY GENE (Canarc 1) 43
6. HYPOCRETIN LIGAND DEFICIENT SPORADIC NARCOLEPTIC
CANINES 45
7. PHARMACOLOGICAL CONTROL OF CATAPLEXY AND EDS 45
7.1. REM Sleep/Cataplexy and Narcolepsy 45
7.2. Monoaminergic and Cholinergic Interactions and Cataplexy 46
7.3. Dopamineregic Transmission and EEG Arousal 49
8. HISTAMINERGIC SYSTEM AND NARCOLEPSY 51
9. HYPOCRETIN REPLACEMENT THERAPY 53
10. HYPOCRETIN DEFICIENCY AND NARCOLEPTIC PHENOTYPE 54
11. CONCLUSION 54
12. ACKNOWELDGEMENTS 54
13. REFERENCES 55
DETAILED ANATOMY OF THE HYPOCRETINERGIC SYSTEM AND
RELATED HYPOTHALAMIC CIRCUITS
5. ANATOMY OF THE HYPOCRETIN SYSTEM 61
Teresa L. Steininger and Thomas S. Kilduff
1. INTRODUCTION 61
CONTENTS xiii
2. DISTRIBUTION AND MORPHOLOGY OF HCRT NEURONS 61
3. COLOCALIZATION OF NEUROCHEMICALS IN HCRT NEURONS 62
4. DEVELOPMENT OF HCRT NEURONS 63
5. COMPARATIVE STUDIES 63
6. DISTRIBUTION OF HCRT AND RECEPTORS IN NON NEURAL
TISSUES 64
7. DISTRIBUTION OF HCRT EFFERENT AXONS 65
8. LOCALIZATION OF HCRT RECEPTORS 67
9. AFFERENT CONNECTIONS OF HCRT NEURONS 69
10. CONCLUSIONS AND PERSPECTIVE 70
11. ACKNOWLEDGEMENTS 70
12. REFERENCES 70
6. THE ANATOMY OF HYPOCRETIN NEURONS 77
Tamas L. Horvath
1. INTRODUCTION 77
2. HCRT PERIKARYA 77
2.1. Light Microscopy 77
2.2. Electron Microscopy 79
3. AFFERENT INPUT TO THE HCRT NEURONS 81
3.1. Light Microscopy 81
3.2. Electron Microscopy 82
4. HCRT EFFERENTS 87
4.1. Light Microscopy 87
4.2. Electron Microscopy 89
5. SUMMARY 91
6. REFERENCES 91
7. TRANSMITTER IDENTIFIED NEURONS AND AFFERENT
INNERVATION OF THE LATERAL HYPOTHALAMIC AREA:
Focus on Hypocretin and Melanin concentrating Hormone 95
Christian Broberger and Tomas Hokfelt
1. INTRODUCTION 95
2. MELANIN CONCENTRATING HORMONE AND HYPOCRETIN
DEFINE TWO SEPARATE NEURONAL POPULATIONS IN THE LHA. 96
3. COEXISTENCE WITH OTHER SIGNALLING MOLECULES 97
3.1. Cocaine and Amphetamine Regulated Transcript 98
3.2. Dynorphin 98
3.3. Substance P 99
3.4. Galanin 99
3.5. Neurotensin 99
3.6. Other Neuropeptides 99
3.7. Nitric Oxide 100
xiv CONTENTS
3.8. Amino Acid Transmitters 100
4. LOCAL CONNECTIONS WITHIN THE LHA 102
4.1. Hcrt MCH: Anatomical Interactions 102
4.2. Distribution of Hot and MCH Receptors in the LHA 102
4.3. Hcrt MCH: Functional Interactions 102
4.4. Hcrt Autoregulation 103
5. AFFERENT INNERVATION OF THE LHA 103
6. INPUTS FROM THE ARCUATE NUCLEUS 104
6.1. Role in Feeding Behaviour 104
6.2. Parallel Pathways from the Arcuate Nucleus to the LHA 104
6.3. Functional Role Within the Feeding Circuitry 106
7. OTHER INPUTS FROM THE HYPOTHALAMUS 107
7.1. The Suprachiasmatic Nucleus 107
7.2. Ventrolateral Preoptic Area 108
7.3. Dorsomedial Hypothalamic Nucleus 108
7.4. Ventromedial Hypothalamic Nucleus 108
8. INPUTS FROM OTHER AROUSAL SYSTEMS 109
8.1.Noradrenergic and Adrenergic Innervation 109
8.2. Serotonergic Innervation 109
8.3. Cholinergic Innervation 109
8.4. Histaminergic Innervation 110
9. INPUTS FROM THE BASAL GANGLIA 110
10. CORTICAL INPUTS HI
11. CONCLUDING REMARKS Ill
12. ACKNOWLEDGMENTS 111
13. REFERENCES 111
PHYSIOLOGICAL CONSEQUENCES OF HYPOCRETIN ACTIVATION
8. PHYSIOLOGICAL CHARACTERISTICS OF HYPOCRETIN/OREXIN
NEURONS 123
Anthony N. van den Pol
1. INTRODUCTION 123
2. HYPOCRETIN NEURONS SHOW SPONTANEOUS REGULAR ACTION
POTENTIALS 124
3. SYNAPTIC INPUT TO HYPOCRETIN NEURONS IS MEDIATED BY
GLUTAMATE AND GABA 126
4. INHIBITORY RESPONSE TO NOREPINEPHRINE AND SEROTONIN. 126
5. HYPOCRETIN ACTIVATES HYPOCRETIN NEURONS BY AN
INDIRECT EXCITATION OF GLUTAMATERGIC INTERNEURONS 128
6. GROUP 3 METABOTROPIC GLUTAMATE RECEPTORS INHIBIT
HYPOCRETIN NEURONS 128
CONTENTS xv
7. GLUCAGON LIKE PEPTIDE 1 EXCITES HYPOCRETIN NEURONS 132
8. METABOLIC SIGNALS MODULATE HYPOCRETIN NEURON
ACTIVITY 132
9. HYPOCRETIN CELLS ARE EXCITATORY 132
10. ACKNOWLEDGEMENTS 133
11. REFERENCES 133
9. THE NE SYSTEM AS A TARGET FOR HYPOCRETIN NEURONS:
IMPLICATIONS FOR REGULATION OF AROUSAL 137
Gary Aston Jones, J. Patrick Card, Yan Zhu, Monica Gonzalez, and
Elizabeth Haggerty
1. INTRODUCTION 137
2. EXCITATORY EFFECT OF HCRT ON LC NEURONS 139
3. HCRT INNERVATION OF THE LC 140
4. GABA INTERNEURONS IN THE PERI LC: TARGET FOR HCRT
INPUTS 142
5. A CIRCUIT FROM THE SCN TO THE LC AND CIRCADIAN
REGULATION OF AROUSAL: A POSSIBLE ROLE FOR HCRT? 147
6. ACKNOWLEDGEMENTS 151
7. REFERENCES 151
10. HYPOCRETIN/OREXIN ACTIONS ON MESOPONTINE CHOLINERGIC
SYSTEMS CONTROLING BEHAVIORAL STATE 153
Christopher S. Leonard, Christopher J. Tyler, Sophie Burlet, Shigeo Watanabe, and
Kristi A. Kohlmeier
1. INTRODUCTION 153
2. EXPERIMENTAL 154
3. HYPOCRETIN/OREXIN STIMULATES THE FIRING OF LDT
NEURONS 155
4. HYPOCRETIN/OREXIN STIMULATES CHOLINERGIC AND
NON CHOLINERGIC LDT NEURONS BY DIRECT AND
INDIRECT MEANS 155
5. HYPOCRETIN/OREXIN STIMULATES EXCITATORY AFFERENTS
TO LDT 157
6. HYPOCRETIN/OREXIN HAD INCONSISTENT ACTIONS ON
INHIBITORY AFFERENTS TO LDT 159
7. HYPOCRETIN/OREXIN EVOKED A NOISY CATION CURRENT IN
LDT NEURONS 159
8. HYPOCRETIN/OREXIN ELEVATES INTRACELLULAR CALCIUM
IN LDT NEURONS 161
9. CONCLUSIONS 164
10. FUNCTIONAL IMPLICATIONS 164
xvi CONTENTS
11. ACKNOWLEDGEMENTS 165
12. REFERENCES 165
11. THE AMINERGIC SYSTEMS AND THE HYPOCRETINS 169
Oliver Selbach and Helmut L. Haas
1. INTRODUCTION 169
2. THE HYPOCRETIN SYSTEM 169
2.1. Glutamate and GABA 170
3. THE AMINERGIC SYSTEMS 171
3.1. Tuberomamillary Nucleus (Histamine) 172
3.2. Dorsal Raphe (Serotonin) 175
3.3. Ventral Tegmental Area / Substantia Nigra (Dopamine) 178
3.4. Locus Coeruleus (Noradrenaline) 180
3.5. Laterodorsal Tegmentum / Basal Forebrain (Acetylcholine) 180
4. HIPPOCAMPUS AND CORTEX 180
5. CONCLUSION 183
6. REFERENCES 183
12. EFFECTS OF HYPOCRETIN/OREXIN ON THE THALAMOCORTICAL
ACTIVATING SYSTEM 191
Evelyn K. Lambe and George K. Aghajanian
1. INTRODUCTION 191
2. THALAMOCORTICAL ACTIVATING SYSTEM 191
3. SELECTIVE HYPOCRETIN PROJECTIONS 192
4. HYPOCRETIN EXCITES MIDLINE INTRALAMINAR THALAMIC
NEURONS 193
5. HYPOCRETIN EXCITES THALAMOCORTICAL TERMINALS IN
PREFRONTAL CORTEX 195
5.1. Pharmacology and Lesion Studies 195
5.2. Two Photon Calcium Imaging Studies 198
6. AROUSAL AND ATTENTION 199
7. CONCLUSIONS 200
8. REFERENCES 200
PHARMACOLOGY OF THE HYPOCRETINS AND DRUG DESIGN
13. IN VIVO PHARMACOLOGY OF OREXIN (HYPOCRETIN)
RECEPTORS 205
Neil Upton
1. INTRODUCTION 205
CONTENTS xvii
2. PHARMACOLOGICAL TOOLS FOR CHARACTERIZING THE OREXIN
PEPTIDE RECEPTOR SYSTEM IN VIVO 206
2. 1. Orexin Receptor Agonists 206
2.2. Orexin Receptor Antagonists 207
3. IN VIVO PHARMACOLOGY OF OREXIN RECEPTORS 208
3.1. Feeding and Appetite 209
3.2. Arousal and Sleep 210
3.3. Pain Modulation 213
3.4. Other Actions 214
4. CONCLUSIONS AND THERAPEUTIC OPPORTUNITIES FOR THE
FUTURE 216
5. REFERENCES 217
14. INTRACELLULAR SIGNAL PATHWAYS UTILIZED BY THE
HYPOCRETIN/OREXIN RECEPTORS 221
Jyrki P. Kukkonen and Karl E. O. Akerman
1. INTRODUCTION 221
2. CELLULAR SIGNALING PATHWAYS 221
2.1. G proteins 221
2.2. Hypocretin Receptor Signaling in Neurons 223
2.3. Hypocretin Receptor Signaling in Endocrine Systems 225
2.4. Hypocretin Receptor Signaling in Heterologous Expression Systems 226
3. CONCENTRATION RESPONSE RELATIONSHIPS 227
4. RECEPTOR SUBTYPE DIFFERENCES IN SIGNALING? 228
5. FUTURE PERSPECTIVES 228
6. REFERENCES 228
THE HYPOCRETINS IN NARCOLEPSY AND AROUSAL
15. THE HYPOCRETINS AND NARCOLEPSY: Pathophysiology
and Diagnosis 233
Wynne Chen, Jamie M. Zeitzer, and Emmanuel Mignot
1. INTRODUCTION 233
2. CLINICAL ASPECTS OF NARCOLEPSY 234
3. GENETIC ASPECTS OF NARCOLEPSY 237
4. HYPOCRETIN DEFICIENCY IN NARCOLEPSY 240
5. ROLE OF CSF HYPOCRETIN IN THE DIAGNOSIS OF NARCOLEPSY. 242
5.1. Narcolepsy with Definite Cataplexy 244
5.2. Narcolepsy without Cataplexy or with Atypical Cataplexy 244
5.3. Narcolepsy Associated with a Known Physiological Condition 244
6. HYPOCRETIN DEFICIENCY AND PHARMACOLOGIC
CORRELATES 245
xviii CONTENTS
7. FUTURE PROSPECTS 246
8. REFERENCES 248
16. AN APPROACH TO DETERMINING THE FUNCTIONS OF
HYPOCRETIN (OREXIN) 253
Jerome M. Siegel
1. INTRODUCTION 253
2. ARE HYPOCRETIN CELLS HOMOGENEOUS? 254
3. REGULATION OF HYPOCRETIN/OREXIN RELEASE 254
4. ARE HYPOCRETINS ASSOCIATED WITH LOCOMOTOR
ACTIVITY? 256
5. REFERENCES 258
17. HYPOCRETIN IN NEUROPSYCHIATRIC DISORDERS 261
Patrice Bourgin and Yves Dauvilliers
1. INTRODUCTION 261
2. HYPERSOMNIAS (EXCEPT TYPICAL NARCOLEPSY CATAPLEXY) 261
2.1. Atypical Narcolepsy 261
2.2. Idiopathic Hypersomnia 262
2.3. Post Traumatic Hypersomnia 262
2.4. Obstructive Sleep Apnea Syndrome 263
2.5. Hypersomnias: Conclusion 263
3. IMMUNE DISORDERS 263
3.1. Immune Polyneuropathies 263
3.2. Encephalitis and Demyelinating Disorders 264
3.3. Immune Disorders: Conclusion 264
4. OTHER NEUROLOGICAL DISORDERS 265
4.1. Kleine Levin Syndrome (KLS) 265
4.2. Prader Willi Syndrome 265
4.3. Niemann Pick Disease 265
4.4. Myotonic Dystrophy 265
4.5. Hypothalamic Lesions 266
5. MOVEMENT DISORDERS 266
5.1. Parkinson Disease 266
5.2. Restless Legs Syndrome 267
6. DEMENTIA 267
7. PAIN DISORDERS 269
8. PSYCHIATRIC DISORDERS 269
8.1. Depressive Syndrome 270
8.2. Schizophrenia 271 i
9. LIMITATIONS AND PERSPECTIVES 271
10. CONCLUSION 272
11. REFERENCES 273
CONTENTS xix
18. HYPOCRETIN/OREXIN AND SLEEP: Implications for the
Pathophysiology of Human Narcolepsy 277
Gert Jan Lammers and Sebastiaan Overeem
1. INTRODUCTION 277
2. HYPOCRETIN DEFICIENCY IN HUMAN NARCOLEPSY 278
3. ANIMAL MODELS 280
4. THE CAUSE OF HUMAN NARCOLEPSY 281
5. ROLE OF HYPOCRETIN IN SLEEP REGULATION 282
6. ENDOCRINE RHYTHMS, AUTONOMIC TONE AND OBESITY 283
7. REFERENCES 285
19. MODULATION OF CORTICAL ACTIVITY AND SLEEP WAKE
STATES BY HYPOCRETIN/OREXIN 289
Barbara E. Jones and Michel Muhlethaler
1. INTRODUCTION 289
2. MODULATION AND ACTIVITY OF HCRT/ORX NEURONS 291
3. EXCITATORY INFLUENCE OF HCRT/ORX UPON THE DIFFUSE
THALAMO CORTICAL PROJECTION SYSTEM 292
4. EXCITATORY INFLUENCE OF HCRT/ORX UPON THE
CHOLINERGIC BASALO CORTICAL PROJECTION SYSTEM 294
5. EXCITATORY INFLUENCE OF HCRT/ORX UPON CORTICO
CORTICAL PROJECTION NEURONS 295
6. INDIRECT INFLUENCE OF HCRT/ORX UPON SLEEP PROMOTING
NEURONS 297
7. SUMMARY AND CONCLUSIONS 297
8. ACKNOWLEDGMENTS 298
9. REFERENCES 298
THE HYPOCRETINS IN FEEDING AND ENERGY BALANCE
20. REGULATION OF HYPOCRETIN BY METABOLIC SIGNALS 305
Katherine E. Wortley and Sarah F. Leibowitz
1. INTRODUCTION 305
2. REGULATION OF HYPOCRETIN/OREXIN SYSTEM BY METABOLIC
SIGNALS RELATED TO NEGATIVE ENERGY BALANCE 306
3. REGULATION OF HYPOCRETIN/OREXIN SYSTEM BY METABOLIC
SIGNALS RELATED TO POSITIVE ENERGY BALANCE 306
; 4. CONCLUSION 310
j 5. REFERENCES 310
xx CONTENTS
THE HYPOCRETINS IN ADDICTION AND HYPERAROUSAL
21. HYPOCRETIN AND BRAIN REWARD FUNCTION 315
Benjamin Boutrel, Paul J. Kenny, Athina Markou, and George F. Koob
1. INTRODUCTION 315
2. LATERAL HYPOTHALAMIC SELF STIMULATION AND THE
HYPOCRETIN SYSTEM 316
2.1. Lateral Hypothalamic Self Stimulation Paradigm 316
2.2. Lateral Hypothalamic Self Stimulation May Activate Hypocretin
Neurons 316
3. BRAIN REWARD CIRCUITRY AND HYPOCRETIN PROJECTIONS 317
4. HYPOCRETIN AND BRAIN REWARD MODULATION 318
5. HYPOCRETIN AND RELAPSE FOR DRUG SEEKING 319
6. SUMMARY AND PERSPECTIVES 320
7. REFERENCES 321
22. OREXIN/HYPOCRETIN AND OPIOID DEPENDENCE 325
Ralph J. DiLeone
1. INTRODUCTION 325
2. EARLY STUDIES OF THE LH 325
3. THE VIEW OF THE LH IN THE MODERN HYPOTHALAMUS 326
4. NEW LH PEPTIDES 326
5. THE HYPOTHALAMUS AND ADDICTION 327
5.1. The LH and Drugs of Abuse 327
6. ORX/HCRT NEURONS RESPOND TO CHRONIC MORPHINE AND
MORPHINE WITHDRAWAL 327
7. THE ORX/HCRT GENE IS UPREGULATED AFTER PRECIPITATED
MORPHINE WITHDRAWAL 329
8. ORX/HCRT NEURONS EXPRESS THE u OPIOID RECEPTOR 329
9. ORX/HCRT KNOCKOUT MICE SHOW ATTENUATED MORPHINE
WITHDRAWAL 330
10. SUMMARY OF ORX/HCRT DATA 331
11. INTERPRETATION AND IMPLICATIONS FOR ADDICTION
BIOLOGY 331
11.1. Is ORX/HCRT Essential for the Development of Dependence and/or
the Expression of Withdrawal? 331
12. ORX/HCRT RECEPTORS AND NEURAL CIRCUITS RELEVANT TO
ADDICTION 331
12.1. What Brain Regions are the Critical ORX/HCRT Targets? 332
13. REFERENCES 332
j
CONTENTS xxi
23. DOPAMINE HYPOCRETIN/OREXIN INTERACTIONS: The Prefrontal
Cortex and Schizophrenia 337
Ariel Y. Deutch, Jim Fadel, and Michael Bubser
1. INTRODUCTION 337
2. ANATOMICAL BASIS OF DOPAMINE OREXIN INTERACTIONS 338
2.1. Orexin Projections to Midbrain Dopamine Neurons 338
2.2. Overlap of Forebrain Hcrt/Orexin and DA Axons 339
2.3. The Dopaminergic Innervation of the Lateral Hypothalamus and
Orexin 339
3. DOPAMINERGIC REGULATION OF OREXIN NEURONS 340
3.1. Amphetamine and Apomorphine Effects on Fos Expression in Orexin
Cells 341
3.2. Activation of Orexin Neurons by Dl and D2 Agonists 341
3.3. Mechanisms of Dopamine Agonist Induced Activation of Orexin
Neurons 342
4. ANTIPSYCHOTIC DRUGS AND OREXIN NEURONS 342
4.1. Effects of Typical and Atypical Antipsychotic Drugs on Orexin
Neurons 343
4.2. How Do Both Anorexic and Orexigenic Drugs Both Active Orexin
Cells? 343
5. DOPAMINE, OREXIN, AND SCHIZOPHRENIA 345
6. CONCLUSIONS 346
7. ACKNOWLEDGMENTS 346
8. REFERENCES 346
24. HYPOCRETIN/OREXIN IN STRESS AND AROUSAL 351
Craig W. Berridge and Rodrigo A. Espana
1. INTRODUCTION 351
2. THE NEUROBIOLOGY OF STRESS 351
3. HCRT AND WAKING 353
4. CIRCADIAN INDEPENDENT ACTIONS OF HCRT 355
5. HCRT AND STRESS 358
5.1. Stress Like Physiological and Behavioral Actions of HCRT 358
5.2. Effects of Stress on c Fos Expression in HCRT Synthesizing and
HCRT Receptive Neurons 358
5.3. Activating Actions of HCRT on CRH Neurotransmission 360
6. APPETITIVE HIGH AROUSAL STATES 360
7. REFERENCES 361
xxii CONTENTS
ROLE OF HYPOCRETINS ON PERIPHERAL SYSTEMS
25. THE HYPOCRETINS/OREXINS AND THE HYPOTHALAMO
PITUITARY ADRENAL AXIS 369
Willis K. Samson, Meghan M. Taylor, and Alastair V. Ferguson
1. INTRODUCTION 369
2. THE ANATOMICAL FRAMEWORK 369
3. HYPOCRETIN AND THE CENTRAL ARM OF THE HPA AXIS 371
4. HYPOCRETIN ACTIONS AT THE LEVEL OF THE PITUITARY
GLAND 373
5. HYPOCRETIN ACTIONS IN THE ADRENAL GLAND 375
6. AN INTEGRATIVE VIEW OF THE ACTIONS OF THE
HYPOCRETINS IN THE HYPOTHALAMO PITUITARY ADRENAL
AXIS 376
7. CONCLUDING REMARKS 378
8. REFERENCES 378
26. OREXINS (HYPOCRETINS) IN THE GUT 383
Annette L. Kirchgessner and Erik Naslund
1. INTRODUCTION 383
2. DISTRIBUTION OF HCRT/OREXIN IN THE GASTROINTESTINAL
TRACT 384
2.1. Rodent Gastrointestinal Tract 384
2.2. Human Gastrointestinal Tract 385
3. HCRT/OREXIN EFFECTS ON VAGAL AFFERENT SIGNALING 385
4. FASTING SMALL BOWEL MOTILITY 386
5. GASTRIC EMPTYING 387
6. GASTRIC AND INTESTINAL SECRETIONS 388
7. SUMMARY 389
8. ACKNOWLEDGEMENTS 389
9. REFERENCES 389
27. HYPOCRETINS IN ENDOCRINE REGULATION 393
Miguel Lopez, Manuel Tena Sempere, Tomas Garcia Caballero, Rosa Seftaris, and
Carlos Dieguez
1. INTRODUCTION 393 \
2. NEUROENDOCRINE ANATOMY OF THE HYPOCRETIN SYSTEM 394 \
3. THE HYPOCRETIN SYSTEM IN PERIPHERAL ENDOCRINE
TISSUES 395
4. ENDOCRINE ACTIONS OF HYPOCRETINS 396
4.1. Hypocretins and Adrenal Axis 397
CONTENTS xxiii
4.2. Hypocretins and Growth Hormone Axis 398
4.3. Hypocretins and Gonadal Axis 401
4.4. Hypocretins and Lactoprope Axis 404
4.5. Hypocretins and Thyroid Axis 405
4.6. Hypocretins and Pancreatic Function 405
4.7. Endocrine Actions of Hypocretins in the Gastrointestinal Tract 407
4.8. Hypocretins and Drinking Behaviour 407
5. THE ROLE OF HCRT2 408
6. SUMMARY 408
7. ACKNOWLEDGEMENTS 410
8. REFERENCES 410
28. THE HYPOCRETINS IN CARDIOVASCULAR REGULATION 423
Tetsuro Shirasaka and Hiroshi Kannan
1. INTRODUCTION 423
2. HYPOCRETINS AND CARDIOVASCULAR REGULATIONS IN VIVO. 424
3. HYPOCRETINS AND CARDIOVASCULAR REGULATIONS IN
VITRO 428
4. CONCLUSIONS 431
5. REFERENCES 432
INDEX 435 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022484663 |
collection | ZDB-2-SBL |
ctrlnum | (OCoLC)762184765 (DE-599)BVBBV022484663 |
discipline | Medizin |
discipline_str_mv | Medizin |
doi_str_mv | 10.1007/b107412 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01801nmm a2200469 c 4500</leader><controlfield tag="001">BV022484663</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160126 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070628s2005 gw |||| o||u| ||||||eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N02,1270</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">977483649</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387250007</subfield><subfield code="9">978-0-387-25000-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387254463</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-387-25446-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b107412</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780387250007</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)762184765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022484663</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">610</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hypocretins</subfield><subfield code="b">integrators of physiological functions</subfield><subfield code="c">ed. by Luis de Lecea ...</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neuropeptide</subfield><subfield code="0">(DE-588)4041895-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Narkolepsie</subfield><subfield code="0">(DE-588)4200507-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Narkolepsie</subfield><subfield code="0">(DE-588)4200507-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neuropeptide</subfield><subfield code="0">(DE-588)4041895-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lecea, Luis de</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">0-387-25000-X</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b107412</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015691968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SBL</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015691968</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b107412</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SBL</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV022484663 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:49:33Z |
indexdate | 2024-07-09T20:58:37Z |
institution | BVB |
isbn | 9780387250007 9780387254463 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015691968 |
oclc_num | 762184765 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource |
psigel | ZDB-2-SBL |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
spelling | Hypocretins integrators of physiological functions ed. by Luis de Lecea ... New York, NY Springer 2005 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Neuropeptide (DE-588)4041895-9 gnd rswk-swf Narkolepsie (DE-588)4200507-3 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Narkolepsie (DE-588)4200507-3 s Neuropeptide (DE-588)4041895-9 s b DE-604 Lecea, Luis de Sonstige oth Erscheint auch als Druck-Ausgabe, Hardcover 0-387-25000-X https://doi.org/10.1007/b107412 Verlag Volltext HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015691968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Hypocretins integrators of physiological functions Neuropeptide (DE-588)4041895-9 gnd Narkolepsie (DE-588)4200507-3 gnd |
subject_GND | (DE-588)4041895-9 (DE-588)4200507-3 (DE-588)4143413-4 |
title | Hypocretins integrators of physiological functions |
title_auth | Hypocretins integrators of physiological functions |
title_exact_search | Hypocretins integrators of physiological functions |
title_exact_search_txtP | Hypocretins integrators of physiological functions |
title_full | Hypocretins integrators of physiological functions ed. by Luis de Lecea ... |
title_fullStr | Hypocretins integrators of physiological functions ed. by Luis de Lecea ... |
title_full_unstemmed | Hypocretins integrators of physiological functions ed. by Luis de Lecea ... |
title_short | Hypocretins |
title_sort | hypocretins integrators of physiological functions |
title_sub | integrators of physiological functions |
topic | Neuropeptide (DE-588)4041895-9 gnd Narkolepsie (DE-588)4200507-3 gnd |
topic_facet | Neuropeptide Narkolepsie Aufsatzsammlung |
url | https://doi.org/10.1007/b107412 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015691968&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lecealuisde hypocretinsintegratorsofphysiologicalfunctions |