An introduction to measure-theoretic probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam [u.a.]
Elsevier Acad. Press
2005
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XVIII, 443 S. graph. Darst. |
ISBN: | 0125990227 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022478446 | ||
003 | DE-604 | ||
005 | 20081023 | ||
007 | t | ||
008 | 070625s2005 d||| |||| 00||| eng d | ||
020 | |a 0125990227 |c (alk. paper) |9 0-12-599022-7 | ||
035 | |a (OCoLC)474199195 | ||
035 | |a (DE-599)BVBBV022478446 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-824 |a DE-20 | ||
050 | 0 | |a QA273 | |
082 | 0 | |a 519.2 |2 22 | |
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
100 | 1 | |a Roussas, George G. |d 1933- |e Verfasser |0 (DE-588)122639596 |4 aut | |
245 | 1 | 0 | |a An introduction to measure-theoretic probability |c George G. Roussas |
264 | 1 | |a Amsterdam [u.a.] |b Elsevier Acad. Press |c 2005 | |
300 | |a XVIII, 443 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Measure theory | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Probabilities | |
650 | 4 | |a Measure theory | |
650 | 0 | 7 | |a Maßtheorie |0 (DE-588)4074626-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Maßtheorie |0 (DE-588)4074626-4 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m GBV Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015685828&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015685828 |
Datensatz im Suchindex
_version_ | 1804136568571559936 |
---|---|
adam_text | AN INTRODUCTION TO MEASURE-THEORETIC PROBABILITY GEORGE G. ROUSSAS
UNIVERSITY OF CALIFORNIA, DAVIS TABLE OF CONTENTS PREFACE XI CHAPTE R I:
CERTAIN CLASSES OF SETS, MEASURABILITY, AND POINTWISE APPROXIMATION 1 1.
MEASURABLE SPACES 1 2. PRODUCT MEASURABLE SPACES 8 3. MEASURABLE
FUNCTIONS AND RANDOM VARIABLES 11 EXERCISES 20 CHAPTE R 2: DEFINITION
AND CONSTRUCTION OF A MEASURE AND ITS BASIC PROPERTIES 29 1. ABOUT
MEASURES IN GENERAL, AND PROBABILITY MEASURES IN PARTICULAR 29 2. OUTER
MEASURES : 33 3. THE CARATHEODORY EXTENSION THEOREM 39 4. MEASURES AND
(POINT) FUNCTIONS 43 EXERCISES 48 CHAPTE R 3: SOME MODES OF CONVERGENCE
OF SEQUENCES OF RANDOM VARIABLES AND THEIR RELATIONSHIPS 55 1. ALMOST
EVERYWHERE CONVERGENCE AND CONVERGENCE IN MEASURE 55 2. CONVERGENCE IN
MEASURE IS EQUIVALENT TO MUTUAL CONVERGENCE IN MEASURE 60 EXERCISES 67
CHAPTE R 4: THE INTEGRAL OF A RANDOM VARIABLE AND ITS BASIC PROPERTIES
71 1. DEFINITION OF THE INTEGRAL 71 2. BASIC PROPERTIES OF THE INTEGRAL
76 3. PROBABILITY DISTRIBUTIONS 84 EXERCISES 86 VII CHAPTE R 5: STANDARD
CONVERGENCE THEOREMS, THE FUBINI THEOREM 89 1. STANDARD CONVERGENCE
THEOREMS AND SOME OF THEIR RAMIFICATIONS.... 89 2. SECTIONS, PRODUCT
MEASURE THEOREM, THE FUBINI THEOREM 102 EXERCISES 114 CHAPTE R 6:
STANDARD MOMENT AND PROBABILITY INEQUALITIES, CONVERGENCE IN THE RTH
MEAN AND ITS IMPLICATIONS 119 1. MOMENT AND PROBABILITY INEQUALITIES 119
2. CONVERGENCE IN THE RTH MEAN, UNIFORM CONTINUITY, UNIFORM
INTEGRABILITY, AND THEIR RELATIONSHIPS 127 EXERCISES 141 CHAPTE R 7: THE
HAHN-JORDAN DECOMPOSITION THEOREM, THE LEBESGUE DECOMPOSITION THEOREM,
AND THE RADON*NIKODYM THEOREM 147 1. THE HAHN*JORDAN DECOMPOSITION
THEOREM 147 2. THE LEBESGUE DECOMPOSITION THEOREM 153 3. THE
RADON-NIKODYM THEOREM 161 EXERCISES 165 CHAPTE R 8: DISTRIBUTION
FUNCTIONS AND THEIR BASIC PROPERTIES, HELLY-BRAY TYPE RESULTS 167 1.
BASIC PROPERTIES OF DISTRIBUTION FUNCTIONS 167 2. WEAK CONVERGENCE AND
COMPACTNESS OF A SEQUENCE OF DISTRIBUTION FUNCTIONS 175 3. HELLY*BRAY
TYPE THEOREMS FOR DISTRIBUTION FUNCTIONS 179 EXERCISES 184 CHAPTE R 9:
CONDITIONAL EXPECTATION AND CONDITIONAL PROBABILITY, AND RELATED
PROPERTIES AND RESULTS 187 1. DEFINITION OF CONDITIONAL EXPECTATION AND
CONDITIONAL PROBABILITIY 187 2. SOME BASIC THEOREMS ABOUT CONDITIONAL
EXPECTATIONS AND CONDITIONAL PROBABILITIES 192 3. CONVERGENCE THEOREMS
AND INEQUALITIES FOR CONDITIONAL EXPECTATIONS 194 4. FURTHER PROPERTIES
OF CONDITIONAL EXPECTATIONS AND CONDITIONAL PROBABILITIES 204 EXERCISES
211 TABLE OF CONTENTS CHAPTER 10: INDEPENDENCE 217 1. INDEPENDENCE OF
EVENTS, CR-FIELDS, AND RANDOM VARIABLES 217 2. SOME AUXILIARY RESULTS
220 3. PROOF OF THEOREM 1, AND OF LEMMA 1 IN CHAPTER 9 227 EXERCISES :
229 CHAPTE R 11: TOPICS FROM THE THEORY OF CHARACTERISTIC FUNCTIONS 235
1. DEFINITION OF THE CHARACTERISTIC FUNCTION OF A DISTRIBUTION AND BASIC
PROPERTIES 236 2. THE INVERSION FORMULA 238 3. CONVERGENCE IN
DISTRIBUTION AND CONVERGENCE OF CHARACTERISTIC FUNCTIONS*THE PAUL LEVY
CONTINUITY THEOREM ,. 246 4. CONVERGENCE IN DISTRIBUTION IN THE
MULTIDIMENTIONAL CASE*THE CRAMER*WOLD DEVICE 253 5. CONVOLUTION OF
DISTRIBUTION FUNCTIONS AND RELATED RESULTS 256 6. SOME FURTHER
PROPERTIES OF CHARACTERISTIC FUNCTIONS 262 7. APPLICATIONS TO THE WEAK
LAW OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM 271 8. THE MOMENTS OF
A RANDOM VARIABLE DETERMINE ITS DISTRIBUTION .... 273 9. SOME BASIC
CONCEPTS AND RESULTS FROM COMPLEX ANALYSIS EMPLOYED IN THE PROOF OF
THEOREM 11 278 EXERCISES 282 CHAPTE R 12: THE CENTRAL LIMIT PROBLEM: THE
CENTERED CASE 289 1. CONVERGENCE TO THE NORMAL LAW (CENTRAL LIMIT
THEOREM, CLT) 290 2. LIMITING LAWS OF (S N ) UNDER CONDITIONS (C) 295
3. CONDITIONS FOR THE CENTRAL LIMIT THEOREM TO HOLD 304 4. PROOF OF
RESULTS IN SECTION 2 314 EXERCISES 321 CHAPTE R 13: THE CENTRAL LIMIT
PROBLEM: THE NONCENTERED CASE 325 1. NOTATION AND PRELIMINARY DISCUSSION
326 2. LIMITING LAWS OF C(S N ) UNDER CONDITIONS (C ) 328 3. TWO SPECIAL
CASES OF THE LIMITING LAWS OF C(S N ) 334 EXERCISES 342 TABLE OF
CONTENTS CHAPTE R 14: TOPICS FROM SEQUENCES OF INDEPENDENT RANDOM
VARIABLES 345 1. KOLMOGOROV INEQUALITIES 346 2. MORE IMPORTANT RESULTS
TOWARD PROVING THE STRONG LAW OF LARGE NUMBERS 352 3. STATEMENT AND
PROOF OF THE STRONG LAW OF LARGE NUMBERS 362 4. A VERSION OF THE STRONG
LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH INFINITE EXPECTATION 370
5. SOME FURTHER RESULTS ON SEQUENCES OF INDEPENDENT RANDOM VARIABLES 374
EXERCISES 381 CHAPTE R 15: TOPICS FROM ERGODIC THEORY 383 1. STOCHASTIC
PROCESSES, THE COORDINATE PROCESS, STATIONARY PROCESS, AND RELATED
RESULTS 384 2. MEASURE-PRESERVING TRANSFORMATIONS, THE SHIFT
TRANSFORMATION, AND RELATED RESULTS 388 3. INVARIANT AND ALMOST SURE
INVARIANT SETS RELATIVE TO A TRANSFORMATION AND RELATED RESULTS 393 4.
MEASURE-PRESERVING ERGODIC TRANSFORMATIONS, INVARIANT RANDOM VARIABLES
RELATIVE TO A TRANSFORMATION AND RELATED RESULTS 399 5. THE ERGODIC
THEOREM, PRELIMINARY RESULTS 401 6. INVARIANT SETS AND RANDOM VARIABLES
RELATIVE TO A PROCESS, FORMULATION OF THE ERGODIC THEOREM IN TERMS OF A
STATIONARY PROCESS, ERGODIC PROCESSES 410 EXERCISES 418 APPENDIX 421
SELECTED REFERENCES 431 INDEX 433
|
adam_txt |
AN INTRODUCTION TO MEASURE-THEORETIC PROBABILITY GEORGE G. ROUSSAS
UNIVERSITY OF CALIFORNIA, DAVIS TABLE OF CONTENTS PREFACE XI CHAPTE R I:
CERTAIN CLASSES OF SETS, MEASURABILITY, AND POINTWISE APPROXIMATION 1 1.
MEASURABLE SPACES 1 2. PRODUCT MEASURABLE SPACES 8 3. MEASURABLE
FUNCTIONS AND RANDOM VARIABLES 11 EXERCISES 20 CHAPTE R 2: DEFINITION
AND CONSTRUCTION OF A MEASURE AND ITS BASIC PROPERTIES 29 1. ABOUT
MEASURES IN GENERAL, AND PROBABILITY MEASURES IN PARTICULAR 29 2. OUTER
MEASURES : 33 3. THE CARATHEODORY EXTENSION THEOREM 39 4. MEASURES AND
(POINT) FUNCTIONS 43 EXERCISES 48 CHAPTE R 3: SOME MODES OF CONVERGENCE
OF SEQUENCES OF RANDOM VARIABLES AND THEIR RELATIONSHIPS 55 1. ALMOST
EVERYWHERE CONVERGENCE AND CONVERGENCE IN MEASURE 55 2. CONVERGENCE IN
MEASURE IS EQUIVALENT TO MUTUAL CONVERGENCE IN MEASURE 60 EXERCISES 67
CHAPTE R 4: THE INTEGRAL OF A RANDOM VARIABLE AND ITS BASIC PROPERTIES
71 1. DEFINITION OF THE INTEGRAL 71 2. BASIC PROPERTIES OF THE INTEGRAL
76 3. PROBABILITY DISTRIBUTIONS 84 EXERCISES 86 VII CHAPTE R 5: STANDARD
CONVERGENCE THEOREMS, THE FUBINI THEOREM 89 1. STANDARD CONVERGENCE
THEOREMS AND SOME OF THEIR RAMIFICATIONS. 89 2. SECTIONS, PRODUCT
MEASURE THEOREM, THE FUBINI THEOREM 102 EXERCISES 114 CHAPTE R 6:
STANDARD MOMENT AND PROBABILITY INEQUALITIES, CONVERGENCE IN THE RTH
MEAN AND ITS IMPLICATIONS 119 1. MOMENT AND PROBABILITY INEQUALITIES 119
2. CONVERGENCE IN THE RTH MEAN, UNIFORM CONTINUITY, UNIFORM
INTEGRABILITY, AND THEIR RELATIONSHIPS 127 EXERCISES 141 CHAPTE R 7: THE
HAHN-JORDAN DECOMPOSITION THEOREM, THE LEBESGUE DECOMPOSITION THEOREM,
AND THE RADON*NIKODYM THEOREM 147 1. THE HAHN*JORDAN DECOMPOSITION
THEOREM 147 2. THE LEBESGUE DECOMPOSITION THEOREM 153 3. THE
RADON-NIKODYM THEOREM 161 EXERCISES 165 CHAPTE R 8: DISTRIBUTION
FUNCTIONS AND THEIR BASIC PROPERTIES, HELLY-BRAY TYPE RESULTS 167 1.
BASIC PROPERTIES OF DISTRIBUTION FUNCTIONS 167 2. WEAK CONVERGENCE AND
COMPACTNESS OF A SEQUENCE OF DISTRIBUTION FUNCTIONS 175 3. HELLY*BRAY
TYPE THEOREMS FOR DISTRIBUTION FUNCTIONS 179 EXERCISES 184 CHAPTE R 9:
CONDITIONAL EXPECTATION AND CONDITIONAL PROBABILITY, AND RELATED
PROPERTIES AND RESULTS 187 1. DEFINITION OF CONDITIONAL EXPECTATION AND
CONDITIONAL PROBABILITIY 187 2. SOME BASIC THEOREMS ABOUT CONDITIONAL
EXPECTATIONS AND CONDITIONAL PROBABILITIES 192 3. CONVERGENCE THEOREMS
AND INEQUALITIES FOR CONDITIONAL EXPECTATIONS 194 4. FURTHER PROPERTIES
OF CONDITIONAL EXPECTATIONS AND CONDITIONAL PROBABILITIES 204 EXERCISES
211 TABLE OF CONTENTS CHAPTER 10: INDEPENDENCE 217 1. INDEPENDENCE OF
EVENTS, CR-FIELDS, AND RANDOM VARIABLES 217 2. SOME AUXILIARY RESULTS
220 3. PROOF OF THEOREM 1, AND OF LEMMA 1 IN CHAPTER 9 227 EXERCISES :
229 CHAPTE R 11: TOPICS FROM THE THEORY OF CHARACTERISTIC FUNCTIONS 235
1. DEFINITION OF THE CHARACTERISTIC FUNCTION OF A DISTRIBUTION AND BASIC
PROPERTIES 236 2. THE INVERSION FORMULA 238 3. CONVERGENCE IN
DISTRIBUTION AND CONVERGENCE OF CHARACTERISTIC FUNCTIONS*THE PAUL LEVY
CONTINUITY THEOREM ,. 246 4. CONVERGENCE IN DISTRIBUTION IN THE
MULTIDIMENTIONAL CASE*THE CRAMER*WOLD DEVICE 253 5. CONVOLUTION OF
DISTRIBUTION FUNCTIONS AND RELATED RESULTS 256 6. SOME FURTHER
PROPERTIES OF CHARACTERISTIC FUNCTIONS 262 7. APPLICATIONS TO THE WEAK
LAW OF LARGE NUMBERS AND THE CENTRAL LIMIT THEOREM 271 8. THE MOMENTS OF
A RANDOM VARIABLE DETERMINE ITS DISTRIBUTION . 273 9. SOME BASIC
CONCEPTS'AND RESULTS FROM COMPLEX ANALYSIS EMPLOYED IN THE PROOF OF
THEOREM 11 278 EXERCISES 282 CHAPTE R 12: THE CENTRAL LIMIT PROBLEM: THE
CENTERED CASE 289 1. CONVERGENCE TO THE NORMAL LAW (CENTRAL LIMIT
THEOREM, CLT) 290 2. LIMITING LAWS OF (S N ) UNDER CONDITIONS (C) 295
3. CONDITIONS FOR THE CENTRAL LIMIT THEOREM TO HOLD 304 4. PROOF OF
RESULTS IN SECTION 2 314 EXERCISES 321 CHAPTE R 13: THE CENTRAL LIMIT
PROBLEM: THE NONCENTERED CASE 325 1. NOTATION AND PRELIMINARY DISCUSSION
326 2. LIMITING LAWS OF C(S N ) UNDER CONDITIONS (C") 328 3. TWO SPECIAL
CASES OF THE LIMITING LAWS OF C(S N ) 334 EXERCISES 342 TABLE OF
CONTENTS CHAPTE R 14: TOPICS FROM SEQUENCES OF INDEPENDENT RANDOM
VARIABLES 345 1. KOLMOGOROV INEQUALITIES 346 2. MORE IMPORTANT RESULTS
TOWARD PROVING THE STRONG LAW OF LARGE NUMBERS 352 3. STATEMENT AND
PROOF OF THE STRONG LAW OF LARGE NUMBERS 362 4. A VERSION OF THE STRONG
LAW OF LARGE NUMBERS FOR RANDOM VARIABLES WITH INFINITE EXPECTATION 370
5. SOME FURTHER RESULTS ON SEQUENCES OF INDEPENDENT RANDOM VARIABLES 374
EXERCISES 381 CHAPTE R 15: TOPICS FROM ERGODIC THEORY 383 1. STOCHASTIC
PROCESSES, THE COORDINATE PROCESS, STATIONARY PROCESS, AND RELATED
RESULTS 384 2. MEASURE-PRESERVING TRANSFORMATIONS, THE SHIFT
TRANSFORMATION, AND RELATED RESULTS 388 3. INVARIANT AND ALMOST SURE
INVARIANT SETS RELATIVE TO A TRANSFORMATION AND RELATED RESULTS 393 4.
MEASURE-PRESERVING ERGODIC TRANSFORMATIONS, INVARIANT RANDOM VARIABLES
RELATIVE TO A TRANSFORMATION AND RELATED RESULTS 399 5. THE ERGODIC
THEOREM, PRELIMINARY RESULTS 401 6. INVARIANT SETS AND RANDOM VARIABLES
RELATIVE TO A PROCESS, FORMULATION OF THE ERGODIC THEOREM IN TERMS OF A
STATIONARY PROCESS, ERGODIC PROCESSES 410 EXERCISES 418 APPENDIX 421
SELECTED REFERENCES 431 INDEX 433 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Roussas, George G. 1933- |
author_GND | (DE-588)122639596 |
author_facet | Roussas, George G. 1933- |
author_role | aut |
author_sort | Roussas, George G. 1933- |
author_variant | g g r gg ggr |
building | Verbundindex |
bvnumber | BV022478446 |
callnumber-first | Q - Science |
callnumber-label | QA273 |
callnumber-raw | QA273 |
callnumber-search | QA273 |
callnumber-sort | QA 3273 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 800 |
ctrlnum | (OCoLC)474199195 (DE-599)BVBBV022478446 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01590nam a2200421 c 4500</leader><controlfield tag="001">BV022478446</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081023 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070625s2005 d||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0125990227</subfield><subfield code="c">(alk. paper)</subfield><subfield code="9">0-12-599022-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)474199195</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022478446</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA273</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roussas, George G.</subfield><subfield code="d">1933-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)122639596</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An introduction to measure-theoretic probability</subfield><subfield code="c">George G. Roussas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam [u.a.]</subfield><subfield code="b">Elsevier Acad. Press</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 443 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Measure theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maßtheorie</subfield><subfield code="0">(DE-588)4074626-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">GBV Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015685828&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015685828</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV022478446 |
illustrated | Illustrated |
index_date | 2024-07-02T17:47:28Z |
indexdate | 2024-07-09T20:58:28Z |
institution | BVB |
isbn | 0125990227 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015685828 |
oclc_num | 474199195 |
open_access_boolean | |
owner | DE-824 DE-20 |
owner_facet | DE-824 DE-20 |
physical | XVIII, 443 S. graph. Darst. |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Elsevier Acad. Press |
record_format | marc |
spelling | Roussas, George G. 1933- Verfasser (DE-588)122639596 aut An introduction to measure-theoretic probability George G. Roussas Amsterdam [u.a.] Elsevier Acad. Press 2005 XVIII, 443 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Measure theory Probabilities Maßtheorie (DE-588)4074626-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Maßtheorie (DE-588)4074626-4 s DE-604 GBV Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015685828&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Roussas, George G. 1933- An introduction to measure-theoretic probability Measure theory Probabilities Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4074626-4 (DE-588)4079013-7 (DE-588)4151278-9 |
title | An introduction to measure-theoretic probability |
title_auth | An introduction to measure-theoretic probability |
title_exact_search | An introduction to measure-theoretic probability |
title_exact_search_txtP | An introduction to measure-theoretic probability |
title_full | An introduction to measure-theoretic probability George G. Roussas |
title_fullStr | An introduction to measure-theoretic probability George G. Roussas |
title_full_unstemmed | An introduction to measure-theoretic probability George G. Roussas |
title_short | An introduction to measure-theoretic probability |
title_sort | an introduction to measure theoretic probability |
topic | Measure theory Probabilities Maßtheorie (DE-588)4074626-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Measure theory Probabilities Maßtheorie Wahrscheinlichkeitstheorie Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015685828&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT roussasgeorgeg anintroductiontomeasuretheoreticprobability |