Graphs, networks and algorithms: with 9 tables
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English German |
Veröffentlicht: |
Berlin [u.a.]
Springer
2008
|
Ausgabe: | 3. ed. |
Schriftenreihe: | Algorithms and Computation in Mathematics
5 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [601] - 633 |
Beschreibung: | XIX, 650 S. Ill., graph. Darst. |
ISBN: | 9783540727798 3540727795 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022471347 | ||
003 | DE-604 | ||
005 | 20100126 | ||
007 | t | ||
008 | 070619s2008 ad|| |||| 00||| eng d | ||
015 | |a 07,N21,0877 |2 dnb | ||
016 | 7 | |a 983974454 |2 DE-101 | |
020 | |a 9783540727798 |c Gb. : EUR 69.50 (freier Pr.), sfr 106.50 (freier Pr.) |9 978-3-540-72779-8 | ||
020 | |a 3540727795 |c Gb. : EUR 69.50 (freier Pr.), sfr 106.50 (freier Pr.) |9 3-540-72779-5 | ||
024 | 3 | |a 9783540727798 | |
028 | 5 | 2 | |a 12063185 |
035 | |a (OCoLC)255726213 | ||
035 | |a (DE-599)DNB983974454 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 1 | |a eng |h ger | |
049 | |a DE-1051 |a DE-860 |a DE-20 |a DE-703 |a DE-573 |a DE-91G |a DE-11 |a DE-384 |a DE-83 |a DE-29T |a DE-898 | ||
082 | 0 | |a 510 | |
084 | |a SK 890 |0 (DE-625)143267: |2 rvk | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 055f |2 stub | ||
084 | |a DAT 530f |2 stub | ||
100 | 1 | |a Jungnickel, Dieter |d 1952- |e Verfasser |0 (DE-588)12042858X |4 aut | |
240 | 1 | 0 | |a Graphen, Netzwerke und Algorithmen |
245 | 1 | 0 | |a Graphs, networks and algorithms |b with 9 tables |c Dieter Jungnickel |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2008 | |
300 | |a XIX, 650 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Algorithms and Computation in Mathematics |v 5 | |
500 | |a Literaturverz. S. [601] - 633 | ||
650 | 4 | |a Kombinatorische Optimierung - Graphentheorie | |
650 | 0 | 7 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Graphentheorie |0 (DE-588)4113782-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |D s |
689 | 0 | 1 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Graphentheorie |0 (DE-588)4113782-6 |D s |
689 | 1 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a Algorithms and Computation in Mathematics |v 5 |w (DE-604)BV011131286 |9 5 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015678831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015678831 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136558725431296 |
---|---|
adam_text | DIETER JUNGNICKEL GRAPHS, NETWORKS AND ALGORITHMS THIRD EDITION WITH 209
FIGURES AND 9 TABLES |Y SPRINGER CONTENTS WHEN WE HAVE NOT WHAT WE LIKE,
WE MUST LIKE WHAT WE HAVE. COMTE DE BUSSY-R.ABUTIN PREFACE TO THE THIRD
EDITION VII PREFACE TO THE SECOND EDITION IX PREFACE TO THE FIRST
EDITION XI 1 BASIC GRAPH THEORY 1 1.1 GRAPHS, SUBGRAPHS AND FACTORS 2
1.2 PATHS, CYCLES, CONNECTEDNESS, TREES 5 1.3 EULER TOURS 13 1.4
HAMILTONIAN CYCLES 15 1.5 PLANAR GRAPHS - 21 1.6 DIGRAPHS 25 1.7 AN
APPLICATION: TOURNAMENTS AND LEAGUES 28 2 ALGORITHMS AND COMPLEXITY 33
2.1 ALGORITHMS 34 2.2 REPRESENTING GRAPHS 36 2.3 THE ALGORITHM OF
HIERHOLZER . , 39 2.4 HOW TO WRITE DOWN ALGORITHMS 41 2.5 THE COMPLEXITY
OF ALGORITHMS 43 2.6 DIRECTED ACYCLIC GRAPHS 46 2.7 NP-COMPLETE PROBLEMS
49 2.8 HC IS NP-COMPLETE * 53 3 SHORTEST PATHS 59 3.1 SHORTEST PATHS 59
3.2 FINITE METRIC SPACES 61 3.3 BREADTH FIRST SEARCH AND BIPARTITE
GRAPHS 63 3.4 SHORTEST PATH TREES 68 3.5 BELLMAN S EQUATIONS AND ACYCLIC
NETWORKS 70 XVI CONTENTS 3.6 AN APPLICATION: SCHEDULING PROJECTS 72 3.7
THE ALGORITHM OF DIJKSTRA 76 3.8 AN APPLICATION: TRAIN SCHEDULES 81 3.9
THE ALGORITHM OF FLOYD AND WARSHALL 84 3.10 CYCLES OF NEGATIVE LENGTH 89
3.11 PATH ALGEBRAS 90 4 SPANNING TREES . . 97 4.1 TREES AND FORESTS 97
4.2 INCIDENCE MATRICES 99 4.3 MINIMAL SPANNING TREES . 104 4.4 THE
ALGORITHMS OF PRIM, KRUSKAL AND BORUVKA 106 4.5 MAXIMAL SPANNING TREES
113 4.6 STEINER TREES 115 4.7 SPANNING TREES WITH RESTRICTIONS 118 4.8
ARBORESCENCES AND DIRECTED EULER TOURS 121 5 THE GREEDY ALGORITHM 127
5.1 THE GREEDY ALGORITHM AND MATROIDS 127 5.2 CHARACTERIZATIONS OF
MATROIDS 129 5.3 MATROID DUALITY 135 5.4 THE GREEDY ALGORITHM AS AN
APPROXIMATION METHOD 137 5.5 MINIMIZATION IN INDEPENDENCE SYSTEMS 144
5.6 ACCESSIBLE SET SYSTEMS 148 6 FLOWS ; 153 6.1 THE THEOREMS OF FORD
AND FULKERSON 153 6.2 THE ALGORITHM OF EDMONDS AND KARP 159 6.3
AUXILIARY NETWORKS AND PHASES 169 6.4 CONSTRUCTING BLOCKING FLOWS 176
6.5 ZERO-ONE FLOWS 185 6.6 THE ALGORITHM OF GOLDBERG AND TARJAN 189 7
COMBINATORIAL APPLICATIONS 209 7.1 DISJOINT PATHS: MENGER S THEOREM 209
7.2 MATCHINGS: KONIG S THEOREM 213 7.3 PARTIAL TRANSVERSALS: THE
MARRIAGE THEOREM 218 7.4 COMBINATORICS OF MATRICES 223 7.5 DISSECTIONS:
DILWORTH S THEOREM 227 7.6 PARALLELISMS: BARANYAI S THEOREM 231 7.7
SUPPLY AND DEMAND: THE GALE-RYSER THEOREM 234 CONTENTS XVII 8
CONNECTIVITY AND DEPTH FIRST SEARCH 239 8.1 FC-CONNECTED GRAPHS 239 8.2
DEPTH FIRST SEARCH 242 8.3 2-CONNECTED GRAPHS 245 8.4 DEPTH FIRST SEARCH
FOR DIGRAPHS 252 8.5 STRONGLY CONNECTED DIGRAPHS 253 8.6 EDGE
CONNECTIVITY 258 9 COLORINGS . 261 9.1 VERTEX COLORINGS 261 9.2
COMPARABILITY GRAPHS AND INTERVAL GRAPHS 265 9.3 EDGE COLORINGS 268 9.4
CAYLEY GRAPHS 271 9.5 THE FIVE COLOR THEOREM 275 10 CIRCULATIONS 279
10.1 CIRCULATIONS AND FLOWS *. 279 10.2 FEASIBLE CIRCULATIONS 282 10.3
ELEMENTARY CIRCULATIONS 289 10.4 THE ALGORITHM OF KLEIN 295 10.5 THE
ALGORITHM OF BUSACKER AND GOWEN 299 10.6 POTENTIALS AND E-OPTIMALITY 302
10.7 OPTIMAL CIRCULATIONS BY SUCCESSIVE APPROXIMATION 311 10.8 A
POLYNOMIAL PROCEDURE REFINE 315 10.9 THE MINIMUM MEAN CYCLE CANCELLING
ALGORITHM 322 10.10 SOME FURTHER PROBLEMS 327 10.11 AN APPLICATION:
GRAPHICAL CODES 329 11 THE NETWORK SIMPLEX ALGORITHM 343 11.1 THE
MINIMUM COST FLOW PROBLEM 344 11.2 TREE SOLUTIONS 346 11.3 CONSTRUCTING
AN ADMISSIBLE TREE STRUCTURE 349 11.4 THE ALGORITHM , 353 11.5 EFFICIENT
IMPLEMENTATIONS 358 12 SYNTHESIS OF NETWORKS 363 12.1 SYMMETRIC NETWORKS
363 12.2 SYNTHESIS OF EQUIVALENT FLOW TREES . . . ** 366 12.3
SYNTHESIZING MINIMAL NETWORKS 373 12.4 CUT TREES 379 12.5 INCREASING THE
CAPACITIES 383 XVIII CONTENTS 13 MATCHINGS 387 13.1 THE 1-FACTOR THEOREM
387 13.2 AUGMENTING PATHS 390 13.3 ALTERNATING TREES AND BLOSSOMS 394
13.4 THE ALGORITHM OF EDMONDS 400 13.5 MATCHING MATROIDS 416 14 WEIGHTED
MATCHINGS R. 419 14.1 THE BIPARTITE CASE 420 14.2 THE HUNGARIAN
ALGORITHM 421 14.3 MATCHINGS, LINEAR PROGRAMS, AND POLYTOPES 430 14.4
THE GENERAL CASE 434 14.5 THE CHINESE POSTMAN 438 14.6 MATCHINGS AND
SHORTEST PATHS 442 14.7 SOME FURTHER PROBLEMS 449 14.8 AN APPLICATION:
DECODING GRAPHICAL CODES 452 15 A HARD PROBLEM: THE TSP 457 15.1 BASIC
DEFINITIONS 457 15.2 LOWER BOUNDS: RELAXATIONS 460 15.3 LOWER BOUNDS:
SUBGRADIENT OPTIMIZATION 466 15.4 APPROXIMATION ALGORITHMS 471 15.5
UPPER BOUNDS: HEURISTICS 477 15.6 UPPER BOUNDS: LOCAL SEARCH 480 15.7
EXACT NEIGHBORHOODS AND SUBOPTIMALITY 483 15.8 OPTIMAL SOLUTIONS: BRANCH
AND BOUND 489 15.9 CONCLUDING REMARKS 497 A SOME NP-COMPLETE PROBLEMS 50
1 B SOLUTIONS 509 B.I SOLUTIONS FOR CHAPTER 1 509 B.2 SOLUTIONS FOR
CHAPTER 2 * 515 B.3 SOLUTIONS FOR CHAPTER 3 520 B.4 SOLUTIONS FOR
CHAPTER 4 527 B.5 SOLUTIONS FOR CHAPTER 5 532 B.6 SOLUTIONS FOR CHAPTER
6 ^ 535 B.7 SOLUTIONS FOR CHAPTER 7 * 545 B.8 SOLUTIONS FOR CHAPTER 8
554 B.9 SOLUTIONS FOR CHAPTER 9 560 B.10 SOLUTIONS FOR CHAPTER 10 563
B.LL SOLUTIONS FOR CHAPTER 11 572 B.12 SOLUTIONS FOR CHAPTER 12 572 B.13
SOLUTIONS FOR CHAPTER 13 578 B.14 SOLUTIONS FOR CHAPTER 14 583 CONTENTS
- XIX B.15 SOLUTIONS FOR CHAPTER 15 589 C LIST OF SYMBOLS 593 C.I
GENERAL SYMBOLS 593 C.2 SPECIAL SYMBOLS 595 REFERENCES 601 INDEX .- 635
|
adam_txt |
DIETER JUNGNICKEL GRAPHS, NETWORKS AND ALGORITHMS THIRD EDITION WITH 209
FIGURES AND 9 TABLES |Y SPRINGER CONTENTS WHEN WE HAVE NOT WHAT WE LIKE,
WE MUST LIKE WHAT WE HAVE. COMTE DE BUSSY-R.ABUTIN PREFACE TO THE THIRD
EDITION VII PREFACE TO THE SECOND EDITION IX PREFACE TO THE FIRST
EDITION XI 1 BASIC GRAPH THEORY 1 1.1 GRAPHS, SUBGRAPHS AND FACTORS 2
1.2 PATHS, CYCLES, CONNECTEDNESS, TREES 5 1.3 EULER TOURS 13 1.4
HAMILTONIAN CYCLES 15 1.5 PLANAR GRAPHS - 21 1.6 DIGRAPHS 25 1.7 AN
APPLICATION: TOURNAMENTS AND LEAGUES 28 2 ALGORITHMS AND COMPLEXITY 33
2.1 ALGORITHMS 34 2.2 REPRESENTING GRAPHS 36 2.3 THE ALGORITHM OF
HIERHOLZER . , 39 2.4 HOW TO WRITE DOWN ALGORITHMS 41 2.5 THE COMPLEXITY
OF ALGORITHMS 43 2.6 DIRECTED ACYCLIC GRAPHS 46 2.7 NP-COMPLETE PROBLEMS
49 2.8 HC IS NP-COMPLETE * 53 3 SHORTEST PATHS 59 3.1 SHORTEST PATHS 59
3.2 FINITE METRIC SPACES 61 3.3 BREADTH FIRST SEARCH AND BIPARTITE
GRAPHS 63 3.4 SHORTEST PATH TREES 68 3.5 BELLMAN'S EQUATIONS AND ACYCLIC
NETWORKS 70 XVI CONTENTS 3.6 AN APPLICATION: SCHEDULING PROJECTS 72 3.7
THE ALGORITHM OF DIJKSTRA 76 3.8 AN APPLICATION: TRAIN SCHEDULES 81 3.9
THE ALGORITHM OF FLOYD AND WARSHALL 84 3.10 CYCLES OF NEGATIVE LENGTH 89
3.11 PATH ALGEBRAS 90 4 SPANNING TREES ."". 97 4.1 TREES AND FORESTS 97
4.2 INCIDENCE MATRICES 99 4.3 MINIMAL SPANNING TREES '. 104 4.4 THE
ALGORITHMS OF PRIM, KRUSKAL AND BORUVKA 106 4.5 MAXIMAL SPANNING TREES
113 4.6 STEINER TREES 115 4.7 SPANNING TREES WITH RESTRICTIONS 118 4.8
ARBORESCENCES AND DIRECTED EULER TOURS 121 5 THE GREEDY ALGORITHM 127
5.1 THE GREEDY ALGORITHM AND MATROIDS 127 5.2 CHARACTERIZATIONS OF
MATROIDS 129 5.3 MATROID DUALITY 135 5.4 THE GREEDY ALGORITHM AS AN
APPROXIMATION METHOD 137 5.5 MINIMIZATION IN INDEPENDENCE SYSTEMS 144
5.6 ACCESSIBLE SET SYSTEMS 148 6 FLOWS ; 153 6.1 THE THEOREMS OF FORD
AND FULKERSON 153 6.2 THE ALGORITHM OF EDMONDS AND KARP 159 6.3
AUXILIARY NETWORKS AND PHASES 169 6.4 CONSTRUCTING BLOCKING FLOWS 176
6.5 ZERO-ONE FLOWS 185 6.6 THE ALGORITHM OF GOLDBERG AND TARJAN 189 7
COMBINATORIAL APPLICATIONS 209 7.1 DISJOINT PATHS: MENGER'S THEOREM 209
7.2 MATCHINGS: KONIG'S THEOREM 213 7.3 PARTIAL TRANSVERSALS: THE
MARRIAGE THEOREM 218 7.4 COMBINATORICS OF MATRICES 223 7.5 DISSECTIONS:
DILWORTH'S THEOREM 227 7.6 PARALLELISMS: BARANYAI'S THEOREM 231 7.7
SUPPLY AND DEMAND: THE GALE-RYSER THEOREM 234 CONTENTS XVII 8
CONNECTIVITY AND DEPTH FIRST SEARCH 239 8.1 FC-CONNECTED GRAPHS 239 8.2
DEPTH FIRST SEARCH 242 8.3 2-CONNECTED GRAPHS 245 8.4 DEPTH FIRST SEARCH
FOR DIGRAPHS 252 8.5 STRONGLY CONNECTED DIGRAPHS 253 8.6 EDGE
CONNECTIVITY 258 9 COLORINGS '. 261 9.1 VERTEX COLORINGS 261 9.2
COMPARABILITY GRAPHS AND INTERVAL GRAPHS 265 9.3 EDGE COLORINGS 268 9.4
CAYLEY GRAPHS 271 9.5 THE FIVE COLOR THEOREM 275 10 CIRCULATIONS 279
10.1 CIRCULATIONS AND FLOWS *. 279 10.2 FEASIBLE CIRCULATIONS 282 10.3
ELEMENTARY CIRCULATIONS 289 10.4 THE ALGORITHM OF KLEIN 295 10.5 THE
ALGORITHM OF BUSACKER AND GOWEN 299 10.6 POTENTIALS AND E-OPTIMALITY 302
10.7 OPTIMAL CIRCULATIONS BY SUCCESSIVE APPROXIMATION 311 10.8 A
POLYNOMIAL PROCEDURE REFINE 315 10.9 THE MINIMUM MEAN CYCLE CANCELLING
ALGORITHM 322 10.10 SOME FURTHER PROBLEMS 327 10.11 AN APPLICATION:
GRAPHICAL CODES 329 11 THE NETWORK SIMPLEX ALGORITHM 343 11.1 THE
MINIMUM COST'FLOW PROBLEM 344 11.2 TREE SOLUTIONS 346 11.3 CONSTRUCTING
AN ADMISSIBLE TREE STRUCTURE 349 11.4 THE ALGORITHM , 353 11.5 EFFICIENT
IMPLEMENTATIONS 358 12 SYNTHESIS OF NETWORKS 363 12.1 SYMMETRIC NETWORKS
363 12.2 SYNTHESIS OF EQUIVALENT FLOW TREES . . . ** 366 12.3
SYNTHESIZING MINIMAL NETWORKS 373 12.4 CUT TREES 379 12.5 INCREASING THE
CAPACITIES 383 XVIII CONTENTS 13 MATCHINGS 387 13.1 THE 1-FACTOR THEOREM
387 13.2 AUGMENTING PATHS 390 13.3 ALTERNATING TREES AND BLOSSOMS 394
13.4 THE ALGORITHM OF EDMONDS 400 13.5 MATCHING MATROIDS 416 14 WEIGHTED
MATCHINGS R. 419 14.1 THE BIPARTITE CASE 420 14.2 THE HUNGARIAN
ALGORITHM 421 14.3 MATCHINGS, LINEAR PROGRAMS, AND POLYTOPES 430 14.4
THE GENERAL CASE 434 14.5 THE CHINESE POSTMAN 438 14.6 MATCHINGS AND
SHORTEST PATHS 442 14.7 SOME FURTHER PROBLEMS 449 14.8 AN APPLICATION:
DECODING GRAPHICAL CODES 452 15 A HARD PROBLEM: THE TSP 457 15.1 BASIC
DEFINITIONS 457 15.2 LOWER BOUNDS: RELAXATIONS 460 15.3 LOWER BOUNDS:
SUBGRADIENT OPTIMIZATION 466 15.4 APPROXIMATION ALGORITHMS 471 15.5
UPPER BOUNDS: HEURISTICS 477 15.6 UPPER BOUNDS: LOCAL SEARCH 480 15.7
EXACT NEIGHBORHOODS AND SUBOPTIMALITY 483 15.8 OPTIMAL SOLUTIONS: BRANCH
AND BOUND 489 15.9 CONCLUDING REMARKS 497 A SOME NP-COMPLETE PROBLEMS 50
1 B SOLUTIONS 509 B.I SOLUTIONS FOR CHAPTER 1 509 B.2 SOLUTIONS FOR
CHAPTER 2 * 515 B.3 SOLUTIONS FOR CHAPTER 3 520 B.4 SOLUTIONS FOR
CHAPTER 4 527 B.5 SOLUTIONS FOR CHAPTER 5 532 B.6 SOLUTIONS FOR CHAPTER
6 ^ 535 B.7 SOLUTIONS FOR CHAPTER 7 * 545 B.8 SOLUTIONS FOR CHAPTER 8
554 B.9 SOLUTIONS FOR CHAPTER 9 560 B.10 SOLUTIONS FOR CHAPTER 10 563
B.LL SOLUTIONS FOR CHAPTER 11 572 B.12 SOLUTIONS FOR CHAPTER 12 572 B.13
SOLUTIONS FOR CHAPTER 13 578 B.14 SOLUTIONS FOR CHAPTER 14 583 CONTENTS
- XIX B.15 SOLUTIONS FOR CHAPTER 15 589 C LIST OF SYMBOLS 593 C.I
GENERAL SYMBOLS 593 C.2 SPECIAL SYMBOLS 595 REFERENCES 601 INDEX .- 635 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Jungnickel, Dieter 1952- |
author_GND | (DE-588)12042858X |
author_facet | Jungnickel, Dieter 1952- |
author_role | aut |
author_sort | Jungnickel, Dieter 1952- |
author_variant | d j dj |
building | Verbundindex |
bvnumber | BV022471347 |
classification_rvk | SK 890 |
classification_tum | MAT 055f DAT 530f |
ctrlnum | (OCoLC)255726213 (DE-599)DNB983974454 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02587nam a2200601 cb4500</leader><controlfield tag="001">BV022471347</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100126 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070619s2008 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N21,0877</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983974454</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540727798</subfield><subfield code="c">Gb. : EUR 69.50 (freier Pr.), sfr 106.50 (freier Pr.)</subfield><subfield code="9">978-3-540-72779-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540727795</subfield><subfield code="c">Gb. : EUR 69.50 (freier Pr.), sfr 106.50 (freier Pr.)</subfield><subfield code="9">3-540-72779-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540727798</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">12063185</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255726213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983974454</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="1" ind2=" "><subfield code="a">eng</subfield><subfield code="h">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1051</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 890</subfield><subfield code="0">(DE-625)143267:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 055f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 530f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jungnickel, Dieter</subfield><subfield code="d">1952-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12042858X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="240" ind1="1" ind2="0"><subfield code="a">Graphen, Netzwerke und Algorithmen</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Graphs, networks and algorithms</subfield><subfield code="b">with 9 tables</subfield><subfield code="c">Dieter Jungnickel</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 650 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algorithms and Computation in Mathematics</subfield><subfield code="v">5</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [601] - 633</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kombinatorische Optimierung - Graphentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Graphentheorie</subfield><subfield code="0">(DE-588)4113782-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algorithms and Computation in Mathematics</subfield><subfield code="v">5</subfield><subfield code="w">(DE-604)BV011131286</subfield><subfield code="9">5</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015678831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015678831</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022471347 |
illustrated | Illustrated |
index_date | 2024-07-02T17:44:46Z |
indexdate | 2024-07-09T20:58:19Z |
institution | BVB |
isbn | 9783540727798 3540727795 |
language | English German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015678831 |
oclc_num | 255726213 |
open_access_boolean | |
owner | DE-1051 DE-860 DE-20 DE-703 DE-573 DE-91G DE-BY-TUM DE-11 DE-384 DE-83 DE-29T DE-898 DE-BY-UBR |
owner_facet | DE-1051 DE-860 DE-20 DE-703 DE-573 DE-91G DE-BY-TUM DE-11 DE-384 DE-83 DE-29T DE-898 DE-BY-UBR |
physical | XIX, 650 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | Springer |
record_format | marc |
series | Algorithms and Computation in Mathematics |
series2 | Algorithms and Computation in Mathematics |
spelling | Jungnickel, Dieter 1952- Verfasser (DE-588)12042858X aut Graphen, Netzwerke und Algorithmen Graphs, networks and algorithms with 9 tables Dieter Jungnickel 3. ed. Berlin [u.a.] Springer 2008 XIX, 650 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Algorithms and Computation in Mathematics 5 Literaturverz. S. [601] - 633 Kombinatorische Optimierung - Graphentheorie Kombinatorische Optimierung (DE-588)4031826-6 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Graphentheorie (DE-588)4113782-6 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Kombinatorische Optimierung (DE-588)4031826-6 s Graphentheorie (DE-588)4113782-6 s DE-604 Numerische Mathematik (DE-588)4042805-9 s 2\p DE-604 Algorithms and Computation in Mathematics 5 (DE-604)BV011131286 5 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015678831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Jungnickel, Dieter 1952- Graphs, networks and algorithms with 9 tables Algorithms and Computation in Mathematics Kombinatorische Optimierung - Graphentheorie Kombinatorische Optimierung (DE-588)4031826-6 gnd Numerische Mathematik (DE-588)4042805-9 gnd Graphentheorie (DE-588)4113782-6 gnd |
subject_GND | (DE-588)4031826-6 (DE-588)4042805-9 (DE-588)4113782-6 (DE-588)4123623-3 |
title | Graphs, networks and algorithms with 9 tables |
title_alt | Graphen, Netzwerke und Algorithmen |
title_auth | Graphs, networks and algorithms with 9 tables |
title_exact_search | Graphs, networks and algorithms with 9 tables |
title_exact_search_txtP | Graphs, networks and algorithms with 9 tables |
title_full | Graphs, networks and algorithms with 9 tables Dieter Jungnickel |
title_fullStr | Graphs, networks and algorithms with 9 tables Dieter Jungnickel |
title_full_unstemmed | Graphs, networks and algorithms with 9 tables Dieter Jungnickel |
title_short | Graphs, networks and algorithms |
title_sort | graphs networks and algorithms with 9 tables |
title_sub | with 9 tables |
topic | Kombinatorische Optimierung - Graphentheorie Kombinatorische Optimierung (DE-588)4031826-6 gnd Numerische Mathematik (DE-588)4042805-9 gnd Graphentheorie (DE-588)4113782-6 gnd |
topic_facet | Kombinatorische Optimierung - Graphentheorie Kombinatorische Optimierung Numerische Mathematik Graphentheorie Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015678831&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV011131286 |
work_keys_str_mv | AT jungnickeldieter graphennetzwerkeundalgorithmen AT jungnickeldieter graphsnetworksandalgorithmswith9tables |