Lectures on Kähler manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Zürich
European Mathematical Society
2006
|
Schriftenreihe: | Lectures in mathematics and physics
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. [165] - 170 |
Beschreibung: | X, 172 S. |
ISBN: | 9783037190258 3037190256 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022469670 | ||
003 | DE-604 | ||
005 | 20170816 | ||
007 | t | ||
008 | 070619s2006 |||| 00||| eng d | ||
020 | |a 9783037190258 |9 978-3-03719-025-8 | ||
020 | |a 3037190256 |9 3-03719-025-6 | ||
035 | |a (OCoLC)71891800 | ||
035 | |a (DE-599)BVBBV022469670 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-19 |a DE-703 |a DE-355 |a DE-91G |a DE-83 |a DE-188 |a DE-384 |a DE-11 |a DE-20 |a DE-29T | ||
050 | 0 | |a QA649 | |
082 | 0 | |a 516.07 |2 22 | |
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a SK 780 |0 (DE-625)143255: |2 rvk | ||
084 | |a 58Jxx |2 msc | ||
084 | |a 53C35 |2 msc | ||
084 | |a MAT 537f |2 stub | ||
084 | |a 32Q15 |2 msc | ||
084 | |a MAT 322f |2 stub | ||
084 | |a 53C55 |2 msc | ||
100 | 1 | |a Ballmann, Werner |d 1951- |e Verfasser |0 (DE-588)143941178 |4 aut | |
245 | 1 | 0 | |a Lectures on Kähler manifolds |c Werner Ballmann |
264 | 1 | |a Zürich |b European Mathematical Society |c 2006 | |
300 | |a X, 172 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Lectures in mathematics and physics | |
500 | |a Literaturverz. S. [165] - 170 | ||
650 | 4 | |a Variétés kählériennes | |
650 | 4 | |a Kählerian manifolds | |
650 | 0 | 7 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kähler-Mannigfaltigkeit |0 (DE-588)4162978-4 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Ballmann, Werner, 1951- |t Lectures on Kähler manifolds |z 978-3-03719-525-3 |w (DE-604)BV036747104 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015677183&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015677183 |
Datensatz im Suchindex
_version_ | 1804136556352503808 |
---|---|
adam_text | Contents
1
Preliminaries
................................ 1
1.1 Differential
Forms
.......................... 2
1.2
Exterior Derivative
.......................... 4
1.3
Laplace Operator
........................... 6
1.4
Hodge Operator
........................... 8
2
Complex Manifolds
............................ 11
2.1
Complex Vector Fields
........................ 18
2.2
Differential Forms
.......................... 20
2.3
Compatible Metrics
......................... 23
2.4
Blowing Up Points
.......................... 24
3
Holomorphic Vector Bundles
....................... 29
3.1
Dolbeault Cohomology
....................... 29
3.2
Chern Connection
.......................... 31
3.3
Some Formulas
........................... 34
3.4
Holomorphic Line Bundles
..................... 36
4 Kahler
Manifolds
............................. 41
4.1 Kahler
Form and Volume
...................... 48
4.2
Levi-Civita Connection
....................... 50
4.3
Curvature Tensor
........................... 52
4.4
Ricci
Tensor
............................. 54
4.5
Holonomy
.............................. 55
4.6
KillingFields
............................ 57
5
Cohomology of
Kahler
Manifolds
..................... 60
5.1
Lefschetz Map and Differentials
................... 62
5.2
Lef
schetz Map and Cohomology
.................. 65
5.3
The ddc-Lemma and Formality
................... 71
5.4
Some Vanishing Theorems
...................... 75
6
Ricci
Curvature and Global Structure
................... 80
6.1 Ricci-Fiat Kahler
Manifolds
..................... 81
6.2
Nonnegative Ricci
Curvature
.................... 82
6.3
Ricci
Curvature and Laplace Operator
................ 83
7
Calabi Conjecture
............................. 86
7.1
Uniqueness
.............................. 89
7.2
Regularity
.............................. 91
7.3
Existence
............................... 92
7.4
Obstructions
............................. 97
Contents
8 Kahler
Hyperbolic
Spaces......................... 103
8.1 Kahler Hyperbolicity and Spectram................. 106
8.2
Non-
Vanishing of Cohomology
...................
ПО
9 Kodaira
Embedding
Theorem....................... 114
9.1
Proof of the Embedding
Theorem.................. 116
9.2
Two Applications
.......................... 120
Appendix A Chern-Weil Theory
....................... 121
A.1 Chern Classes and Character
.................... 127
A.2
Euler
Class
.............................. 131
Appendix
В
Symmetric Spaces
........................ 134
B.I Symmetric Pairs
........................... 138
B.2 Examples
............................... 144
B.3 Hermitian Symmetric Spaces
.................... 152
Appendix
С
Remarks on Differential Operators
............... 157
C.I Dirac Operators
........................... 160
C.2 L2-de Rham Cohomology
...................... 162
C.3 L2-Dolbeault Cohomology
..................... 163
Literature
................................... 165
Index
..................................... 171
|
adam_txt |
Contents
1
Preliminaries
. 1
1.1 Differential
Forms
. 2
1.2
Exterior Derivative
. 4
1.3
Laplace Operator
. 6
1.4
Hodge Operator
. 8
2
Complex Manifolds
. 11
2.1
Complex Vector Fields
. 18
2.2
Differential Forms
. 20
2.3
Compatible Metrics
. 23
2.4
Blowing Up Points
. 24
3
Holomorphic Vector Bundles
. 29
3.1
Dolbeault Cohomology
. 29
3.2
Chern Connection
. 31
3.3
Some Formulas
. 34
3.4
Holomorphic Line Bundles
. 36
4 Kahler
Manifolds
. 41
4.1 Kahler
Form and Volume
. 48
4.2
Levi-Civita Connection
. 50
4.3
Curvature Tensor
. 52
4.4
Ricci
Tensor
. 54
4.5
Holonomy
. 55
4.6
KillingFields
. 57
5
Cohomology of
Kahler
Manifolds
. 60
5.1
Lefschetz Map and Differentials
. 62
5.2
Lef
schetz Map and Cohomology
. 65
5.3
The ddc-Lemma and Formality
. 71
5.4
Some Vanishing Theorems
. 75
6
Ricci
Curvature and Global Structure
. 80
6.1 Ricci-Fiat Kahler
Manifolds
. 81
6.2
Nonnegative Ricci
Curvature
. 82
6.3
Ricci
Curvature and Laplace Operator
. 83
7
Calabi Conjecture
. 86
7.1
Uniqueness
. 89
7.2
Regularity
. 91
7.3
Existence
. 92
7.4
Obstructions
. 97
Contents
8 Kahler
Hyperbolic
Spaces. 103
8.1 Kahler Hyperbolicity and Spectram. 106
8.2
Non-
Vanishing of Cohomology
.
ПО
9 Kodaira
Embedding
Theorem. 114
9.1
Proof of the Embedding
Theorem. 116
9.2
Two Applications
. 120
Appendix A Chern-Weil Theory
. 121
A.1 Chern Classes and Character
. 127
A.2
Euler
Class
. 131
Appendix
В
Symmetric Spaces
. 134
B.I Symmetric Pairs
. 138
B.2 Examples
. 144
B.3 Hermitian Symmetric Spaces
. 152
Appendix
С
Remarks on Differential Operators
. 157
C.I Dirac Operators
. 160
C.2 L2-de Rham Cohomology
. 162
C.3 L2-Dolbeault Cohomology
. 163
Literature
. 165
Index
. 171 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ballmann, Werner 1951- |
author_GND | (DE-588)143941178 |
author_facet | Ballmann, Werner 1951- |
author_role | aut |
author_sort | Ballmann, Werner 1951- |
author_variant | w b wb |
building | Verbundindex |
bvnumber | BV022469670 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 370 SK 780 |
classification_tum | MAT 537f MAT 322f |
ctrlnum | (OCoLC)71891800 (DE-599)BVBBV022469670 |
dewey-full | 516.07 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.07 |
dewey-search | 516.07 |
dewey-sort | 3516.07 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01876nam a2200493 c 4500</leader><controlfield tag="001">BV022469670</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170816 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070619s2006 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783037190258</subfield><subfield code="9">978-3-03719-025-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3037190256</subfield><subfield code="9">3-03719-025-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)71891800</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022469670</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-29T</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.07</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 780</subfield><subfield code="0">(DE-625)143255:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">58Jxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 537f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">32Q15</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 322f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53C55</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ballmann, Werner</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)143941178</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on Kähler manifolds</subfield><subfield code="c">Werner Ballmann</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Zürich</subfield><subfield code="b">European Mathematical Society</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">X, 172 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in mathematics and physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. [165] - 170</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variétés kählériennes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kählerian manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kähler-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4162978-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Ballmann, Werner, 1951-</subfield><subfield code="t">Lectures on Kähler manifolds</subfield><subfield code="z">978-3-03719-525-3</subfield><subfield code="w">(DE-604)BV036747104</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015677183&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015677183</subfield></datafield></record></collection> |
id | DE-604.BV022469670 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:44:03Z |
indexdate | 2024-07-09T20:58:17Z |
institution | BVB |
isbn | 9783037190258 3037190256 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015677183 |
oclc_num | 71891800 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 DE-384 DE-11 DE-20 DE-29T |
owner_facet | DE-19 DE-BY-UBM DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-83 DE-188 DE-384 DE-11 DE-20 DE-29T |
physical | X, 172 S. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | European Mathematical Society |
record_format | marc |
series2 | Lectures in mathematics and physics |
spelling | Ballmann, Werner 1951- Verfasser (DE-588)143941178 aut Lectures on Kähler manifolds Werner Ballmann Zürich European Mathematical Society 2006 X, 172 S. txt rdacontent n rdamedia nc rdacarrier Lectures in mathematics and physics Literaturverz. S. [165] - 170 Variétés kählériennes Kählerian manifolds Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd rswk-swf Kähler-Mannigfaltigkeit (DE-588)4162978-4 s DE-604 Erscheint auch als Ballmann, Werner, 1951- Lectures on Kähler manifolds 978-3-03719-525-3 (DE-604)BV036747104 Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015677183&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ballmann, Werner 1951- Lectures on Kähler manifolds Variétés kählériennes Kählerian manifolds Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd |
subject_GND | (DE-588)4162978-4 |
title | Lectures on Kähler manifolds |
title_auth | Lectures on Kähler manifolds |
title_exact_search | Lectures on Kähler manifolds |
title_exact_search_txtP | Lectures on Kähler manifolds |
title_full | Lectures on Kähler manifolds Werner Ballmann |
title_fullStr | Lectures on Kähler manifolds Werner Ballmann |
title_full_unstemmed | Lectures on Kähler manifolds Werner Ballmann |
title_short | Lectures on Kähler manifolds |
title_sort | lectures on kahler manifolds |
topic | Variétés kählériennes Kählerian manifolds Kähler-Mannigfaltigkeit (DE-588)4162978-4 gnd |
topic_facet | Variétés kählériennes Kählerian manifolds Kähler-Mannigfaltigkeit |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015677183&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ballmannwerner lecturesonkahlermanifolds |