Highly efficient OLEDs with phosphorescent materials:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Weinheim
WILEY-VCH
2008
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | XVIII, 438 S. Ill., graph. Darst. |
ISBN: | 9783527405947 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022468177 | ||
003 | DE-604 | ||
005 | 20080128 | ||
007 | t | ||
008 | 070618s2008 gw ad|| |||| 00||| eng d | ||
015 | |a 07,N15,0671 |2 dnb | ||
016 | 7 | |a 983498911 |2 DE-101 | |
020 | |a 9783527405947 |c Gb. : ca. EUR 129.00 (freier Pr.), ca. sfr 204.00 (freier Pr.) |9 978-3-527-40594-7 | ||
024 | 3 | |a 9783527405947 | |
028 | 5 | 2 | |a 1140594 000 |
035 | |a (OCoLC)191820091 | ||
035 | |a (DE-599)DNB983498911 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-355 |a DE-19 |a DE-898 |a DE-83 |a DE-11 | ||
050 | 0 | |a TK7871.89.L53 | |
082 | 0 | |a 621.381522 |2 22 | |
084 | |a VE 9580 |0 (DE-625)147158:253 |2 rvk | ||
084 | |a ZN 5040 |0 (DE-625)157432: |2 rvk | ||
084 | |a 620 |2 sdnb | ||
245 | 1 | 0 | |a Highly efficient OLEDs with phosphorescent materials |c ed. by Hartmut Yersin |
264 | 1 | |a Weinheim |b WILEY-VCH |c 2008 | |
300 | |a XVIII, 438 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 4 | |a Light emitting diodes | |
650 | 4 | |a Polymers |x Electric properties | |
650 | 0 | 7 | |a Phosphoreszierender Stoff |0 (DE-588)4544682-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a OLED |0 (DE-588)4762455-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a OLED |0 (DE-588)4762455-3 |D s |
689 | 0 | 1 | |a Phosphoreszierender Stoff |0 (DE-588)4544682-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yersin, Hartmut |d 1940- |e Sonstige |0 (DE-588)134181905 |4 oth | |
856 | 4 | 2 | |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=2930709&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015675721&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015675721 |
Datensatz im Suchindex
_version_ | 1805089068945506304 |
---|---|
adam_text |
Contents
Preface XUl
Contributors XV
1
Triplet Emitters for Organic Light-Emitting Diodes:
Basic Properties
1
Hartmut
Yersin and Walter J. Finkenzeller
1.1
Introduction
1
1.2
Electro-Luminescence and the Population of Excited States
3
1.2.1
Multilayer Design of an
OLED
3
1.2.2
Electron-Hole Recombination, Relaxation Paths, and Light
Emission
7
1.3
Electronic Excitations and Excited States
11
1.3.1
Ligand-Centered (LC) Transitions: States and Splittings
11
1.3.2
Metal-Centered Transitions and States
15
1.3.3
Metal-to-Ligand Charge Transfer/Ligand-Centered Transitions: States
in Organo-Transition Metal Triplet Emitters
Î8
1.3.3.1
Introductory MO Model and Energy States
18
1.3.3.2
Extended MO Model and Energy States
20
1.3.3.3
Spin-Orbit Coupling, Triplet Substates, Zero-Field Splitting, and
Radiative Decay Rates
24
1.4
Zero-Field Splitting (ZFS) of the Emitting Triplet, Photophysical
Trends, and Ordering Scheme for Organo-Transition Metal
Compounds
29
1.4.1
Ordering Scheme
31
1.4.2
Photophysical Properties and ZFS
34
1.4.2.1
Singlet-Triplet Splitting
36
1.4.2.2
Intersystem Crossing Rates
37
1.4.2.3
Emission Decay Time and Photoluminescence Quantum
Yield
38
1.4.2.4
Zero-Field Splitting
-
Summarizing Remarks
38
1.4.2.5
Emission Band Structures and Vibrational Satellites
39
Highly Efficient OLEDs with Phosphonssant Materials. Edited by H. Yersin
Copyright
© 2008
WILEY-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
978-3-527-40594-7
VI
Contents
1.4.2.6
Localization/
Delocalization
and Geometry Changes in the Excited
Triplet State
39
1.5
Characterization of the Lowest Triplet State Based on High-Resolution
Spectroscopy. Application to Pt(thpy)2
40
1.5.1
Highly Resolved Electronic Transitions
42
1.5.2
Symmetry and Grouptheoretical Considerations
43
1.6
Characterization of the Lowest Triplet State Based on Decay Time
Measurements: Application to Ir(ppy)3
45
1.7
Phosphorescence Dynamics and Spin-Lattice Relaxation: Background
and Case Study Applied to Pt(thpy)2
49
1.7.1
Processes of Spin-Lattice Relaxation
49
1.7.1.1
The Direct Process
49
1.7.1.2
The
Orbách
Process
50
1.7.1.3
The Raman Process
51
1.7.2
Population and Decay Dynamics of the Triplet Substates of
Pt(thpy)2
51
1.8
The Triplet State Under Application of High Magnetic Fields:
Properties of Ir(btp)2(acac)
56
1.9
Vibrational Satellite Structures: Case Studies Applied to Pt(thpy)2 and
Ir(btp)2(acac)
63
1.9.1
Vibrational Satellites: Background
63
1.9.1.1
Franck-Condon Activity
64
1.9.1.2
Herzberg-Teller Activity
67
1.9.2
Pt(thpy)2 Emission: Temperature- and Time-Dependence of the
Vibrational Satellite Structure
68
1.9.2.1
Herzberg-Teller-Induced Emission from
Substate
I: The
1.3
К
Spectrum
69
1.9.2.2
Franck-Condon Activity in the Emissions from Substates II and III:
The
20
К
Spectrum
70
1.9.2.3
Time-Resolved Emission and Franck-Condon/Herzberg-Teller
Activities
72
1.9.3
Ir(btp)2(acac) Emission: Low-Temperature Vibrational Satellite
Structure
75
1.10
Environmental Effects on Triplet State Properties: Case Studies
Applied to Ir(btp)2(acac)
76
1.10.1
Energy Distribution of Sites
77
1.10.2
Zero-Field Splittings at Different Sites
78
1.10.3
Emission Decay and Spin-Lattice Relaxation Times
80
1.11
Emission Linewidths and Spectral Broadening Effects
81
1.11.1
Inhomogeneous Linewidths
81
1.11.2
Homogeneous Linewidths
82
1.11.3
Line Broadening Effects on the Example of Pt(thpy)2
85
1.11.4
Phenomenological Simulation of Spectral Broadening
86
1.12
Conclusions
89
Contents
VII
2
Spin Correlations in Organic Light-Emitting Diodes
99
Manfred J. Walter and John M. Lupton
2.1
Introduction
99
2.2
Spin-Dependent Recombination of Charge Carriers and Spin-Lattice
Relaxation
103
2.3
Studying Spin States using Electric Field Modulated Fluorescence and
Phosphorescence
107
2.3.1
Electric Field Modulation of Fluorescence and Phosphorescence:
Experimental Method
107
2.3.2
Estimating the Triplet Formation Rate from Transient
Electroluminescence
113
2.3.3
Spin Persistence in Charge Carrier Pairs Generated by an Electric
Field
114
2.3.4
Spin Persistence in Charge Carrier Pairs Generated
S pontaneously
119
2.4
Summary and Outlook
125
3
Cyclometallated Organoiridium Complexes as Emitters in
Electrophosphorescent Devices
131
Peter I. Djurovich and Mark E. Thompson
3.1
Organic Light-Emitting Devices
131
3.2
Phosphorescent Materials as Emitters in OLEDs
132
3.3
Organometallic Complexes as Phosphorescent Emitters in OLEDs
134
3.4
Confining Triplet
Excitons
and Carriers in Phosphor-Doped
OLEDs
336
3.5
Cyclometallated Complexes for OLEDs
139
3.5.1
Synthesis of Cyclometallated
Ir
Complexes
139
3.5.2
Excited States in Cyclometallated Complexes
140
3.5.3
MO Analysis of
Ir Cyclometallates
242
3.5.4
Using Ancillary Ligands to Modify the Excited State Properties
143
3.5.5
Facial and Meridional Isomers of Tris-Cyclometallates
145
3.5.6
Ancillary Ligands with Low Triplet Energies
146
3.5.7
Ligand Tuning to Achieve Green to Near-Infrared Emission
148
3.5.8
Near-UV Luminescent Cyclometallated Complexes
150
3.6
Conclusion
154
4
Highly Efficient Red-Phosphorescent
Iridium
Complexes
163
Akira Tsuboyama, Shinjiro Okada, and Kazunori Ueno
4.1
Introduction
364
4.2
Issues of Red-Emissive Materials
165
4.3
Red-Phosphorescent Iridium Complexes
165
4.3.1
Lowest Excited State of Iridium Complexes
165
4.3.2
Molecular Design and Structure
167
4.3.3
Phosphorescence Spectra
269
VIII
I Contents
4.3.4
Phosphorescence Yield
172
4.3.5
Substituent
Effects of Ir(piq)3
(6) 173
4.4
OLED
Device
177
4.4.1
Thermal Stability
177
4.4.2
Red
OLED
using Ir(4F5mpiq)3
(10) 179
4.5
Summary
179
5
Pyridyl
Azotate
Based Luminescent Complexes: Strategic Design,
Photophysics, and Applications
185
Yun Chi and Pi-Tai
Chou
5.1
Introduction
185
5.2
Ligand Synthesis
186
5.2.1
Ligand Modifications
188
5.2.2
Fluorescent Behavior and Color Tuning
290
5.3
Phosphorescent
OLED
Applications
193
5.3.1
Osmium-Based Emitters
193
5.3.1.1
Blue-Emitting Materials
293
5.3.1.2
Red-Emitting Materials
298
5.3.2
Ruthenium-Based Emitters
203
5.3.3
Iridium-Based Emitters
207
5.3.3.1
Tuning the Color to Red
207
5.3.3.2
Blue-Emitting Materials
209
5.3.4
Platinum-Based Emitters
212
5.4
Concluding Remarks
216
6
Physical Processes in Polymer-Based Electrophosphorescent
Devices
222
Xiao-Hui Yang,
Frankjaiser,
and Dieter Neher
6.1
Introduction
221
6.2
Phosphorescent Devices Based on PVK
223
6.2.1
Charge Trapping in Devices with Ir(ppy)j
224
6.2.2
Competition Between Free Carrier Recombination and
Trapping
227
6.2.3
Competition between
Förster
Transfer and Trapping
230
6.2.3.1
Exciplex Emission
235
6.2.4
Confinement of Singlet and Triplet
Excitons
on the PVK:
PB D
Matrix
239
6.3
Devices with PtOEP Doped into Conjugated Polymer
Matrices
243
6.3.1
PtOEP in MeLPPP
245
6.3.1.1 Förster
Transfer
245
6.3.1.2
Dexter Transfer
247
6.3.1.3
Electrophosphorescence
250
6.3.2
PtOEP in Polyfluorene
250
6.4
Conclusion and Outlook
252
Contents
IX
7
Phosphorescent
Platinum(ll) Materials for
OLED
Applications
259
Hai-Feng Xiang, Síu-Wai
Lai, P. T.
Lai,
and Chi-Ming
Che
7.1
Introduction
259
7.1.1
Phosphorescent
Materials
for
OLED Applications
259
7.1.2
Criteria for Complexes as
OLED
Emitters
260
7.2
Device Fabrication and Electroluminescence Measurements
260
7.3
Platinum(II) oc-Diimine
Arylacetylide Complexes
262
7.4
Tridentate
Pt(II) Complexes
265
7.4.1
Cyclometalated 6-Aryl-2,2'-bipyridine Arylacetylide Pt(II)
Complexes
265
7
A.I Pt(II) Complexes bearing 6-(2-Hydroxyphenyl)-2,2'-bipyridine
Ligands
268
7.5
Tetradentate Pt(II) Complexes
270
7.5.1
Pt(II)
Schiff
Base Complexes
270
7.5.2
Pt(II) Bis(phenoxy)diimme Complexes
273
7.5.3
Pt(II) Bis(pyrrole)diimine Complexes
276
7.5.4
Pt(II) Porphyrin Complexes
277
7.6
Concluding Remarks
279
8
Energy-Transfer Processes between Phosphorescent Guest and
Fluorescent Host Molecules in Phosphorescent OLEDs
283
Isao Tanaka and Shizuo Tokito
8.1
Introduction
283
8.2
Electronic Structure and Energy Transfer in Guest-Host Systems
284
8.3
Luminescence Properties of Phosphorescent and Fluorescent
Materials
286
8.4
Energy Transfer of Blue Phosphorescent Molecules in Guest-Host
Systems
288
8.5
Energy Transfer Between Ir(ppy)3 and Alq3: Enhancement of
Phosphorescence from Alq3
294
8.6
Energy Transfer Between Ir(ppy)3 and BAlq: Observation of Thermal
Equilibrium of Triplet Excited States
301
8.7
Conclusion
306
9
High-Efficiency Phosphorescent Polymer
LEDs 311
Addy van
Dijken,
Klemens
Brunner,
Herbert
Borner,
and
Bea
M.W.
Langeveld
9.1
Introduction
311
9.2
The Route Toward High-Efficiency OLEDs
312
9.3
Singlet and Triplet Excited States
312
9.4
Phosphorescent Emitters
313
9.5
Host Materials for Phosphorescent Emitters
324
9.5.1
General Requirements
314
9.5.2
Carbazole-Based Host Materials
316
X
Contents
9.5.3 Tuning
the Properties of
Carbazole
Derivatives
318
9.5.4
Carbazole-Based Polymers for High-Efficiency Phosphorescent
pLEDs
322
9.6
Outlook
325
10
Electroluminescence from Metal-Containing Polymers and Metal
Complexes with Functional Ligands
329
Chris Shuk
Kwan
Мак,
and Wai Kin Chan
10.1
Introduction
329
10.2
Traditional Materials Used in OLEDs
330
10.2.1
Molecular Materials
330
10.2.2
Polymeric Materials
330
10.3
Development of Phosphorescent Materials for OLEDS
332
10.3.1
Small Molecules
-
Pure Organic Dyes and Organometallic
Complexes
333
10.3.2
Polymeric Materials
334
10.4
Ruthenium Containing Polymers
335
10.4.1
Photophysics of Ruthenium Complexes
335
10.4.2
Examples of Ruthenium Complex Containing Polymers
337
10.4.3
Ruthenium Complexes for Light-Emitting Devices
339
10.4.4
Complexes Based on Multifunctional Ligands
343
10.4.5
Ruthenium Containing Polymers for Light-Emitting Devices
346
10.4.5.1
EL Devices Based on Ruthenium Complex Containing Nonconjugated
Polymers
346
10.4.5.2
Multifunctional Ruthenium Complex Containing Conjugated
Polymers
347
10.4.5.3
Conjugated Polymers with Pendant Metal Complexes
356
10.5
Summary
358
11
Molecular Engineering of
Iridium
Complexes and their Application in
Organic Light Emitting Devices
363
Mohammad K. Nazeeruddin, Cedric Klein, Michael
Grätzel,
Libero Zuppiroü,
and
Detlef Berner
11.1
Introduction
363
11.1.1 Ligand
Field
Splitting 364
11.1.2 Photophysical
Properties
365
11.2
Phosphorescent
Iridium
Complexes
366
11.2.1 Tuning
of Phosphorescence Colors in Neutral
Iridium
Complexes
366
11.2.2
Tuning of Phosphorescence Colors in Cationic
Iridium
Complexes
369
11.2.3
Tuning of Phosphorescence Colors in
Anionie
Iridium
Complexes
372
11.2.3.1
Phosphorescent Color Shift in
Anionie
Iridium
Complexes by Tuning
of HOMO Levels
375
Contents
11.2.4 Controlling Quantum
Yields in
Iridium
Complexes
377
11.3 Application
of
Iridium
Complexes in Organic Light-Emitting
Devices
(OLEDs) 378
11.3.1 Standard
OLED
Device
Architecture
379
11.3.2
Light-Emitting Electrochemical Cell
(LEC)
Device Architecture
387
12
Progress in Electroluminescence Based on Lanthanide Complexes
391
Zu-Qjang Bian and Chun-
Hui
Huang
12.1
Introduction
391
12.2
The Device Construction and Operating Principles
393
12.3
The Red Electroluminescence Based on Europium Complexes
396
12.4
The Green Electroluminescence Based on Terbium Complexes
404
12.5
The Near Infrared Electroluminescence Based on Neodymium,
Erbium, or Ytterbium Complexes
411
12.6
The Ligand Emission Electroluminescence Based on Yttrium,
Lanthanum, Gadolinium, or
Lutetium
Complexes
415
12.7
Conclusion
417
Index
421 |
adam_txt |
Contents
Preface XUl
Contributors XV
1
Triplet Emitters for Organic Light-Emitting Diodes:
Basic Properties
1
Hartmut
Yersin and Walter J. Finkenzeller
1.1
Introduction
1
1.2
Electro-Luminescence and the Population of Excited States
3
1.2.1
Multilayer Design of an
OLED
3
1.2.2
Electron-Hole Recombination, Relaxation Paths, and Light
Emission
7
1.3
Electronic Excitations and Excited States
11
1.3.1
Ligand-Centered (LC) Transitions: States and Splittings
11
1.3.2
Metal-Centered Transitions and States
15
1.3.3
Metal-to-Ligand Charge Transfer/Ligand-Centered Transitions: States
in Organo-Transition Metal Triplet Emitters
Î8
1.3.3.1
Introductory MO Model and Energy States
18
1.3.3.2
Extended MO Model and Energy States
20
1.3.3.3
Spin-Orbit Coupling, Triplet Substates, Zero-Field Splitting, and
Radiative Decay Rates
24
1.4
Zero-Field Splitting (ZFS) of the Emitting Triplet, Photophysical
Trends, and Ordering Scheme for Organo-Transition Metal
Compounds
29
1.4.1
Ordering Scheme
31
1.4.2
Photophysical Properties and ZFS
34
1.4.2.1
Singlet-Triplet Splitting
36
1.4.2.2
Intersystem Crossing Rates
37
1.4.2.3
Emission Decay Time and Photoluminescence Quantum
Yield
38
1.4.2.4
Zero-Field Splitting
-
Summarizing Remarks
38
1.4.2.5
Emission Band Structures and Vibrational Satellites
39
Highly Efficient OLEDs with Phosphonssant Materials. Edited by H. Yersin
Copyright
© 2008
WILEY-VCH
Verlag
GmbH
&
Co. KGaA, Weinheim
ISBN:
978-3-527-40594-7
VI
Contents
1.4.2.6
Localization/
Delocalization
and Geometry Changes in the Excited
Triplet State
39
1.5
Characterization of the Lowest Triplet State Based on High-Resolution
Spectroscopy. Application to Pt(thpy)2
40
1.5.1
Highly Resolved Electronic Transitions
42
1.5.2
Symmetry and Grouptheoretical Considerations
43
1.6
Characterization of the Lowest Triplet State Based on Decay Time
Measurements: Application to Ir(ppy)3
45
1.7
Phosphorescence Dynamics and Spin-Lattice Relaxation: Background
and Case Study Applied to Pt(thpy)2
49
1.7.1
Processes of Spin-Lattice Relaxation
49
1.7.1.1
The Direct Process
49
1.7.1.2
The
Orbách
Process
50
1.7.1.3
The Raman Process
51
1.7.2
Population and Decay Dynamics of the Triplet Substates of
Pt(thpy)2
51
1.8
The Triplet State Under Application of High Magnetic Fields:
Properties of Ir(btp)2(acac)
56
1.9
Vibrational Satellite Structures: Case Studies Applied to Pt(thpy)2 and
Ir(btp)2(acac)
63
1.9.1
Vibrational Satellites: Background
63
1.9.1.1
Franck-Condon Activity
64
1.9.1.2
Herzberg-Teller Activity
67
1.9.2
Pt(thpy)2 Emission: Temperature- and Time-Dependence of the
Vibrational Satellite Structure
68
1.9.2.1
Herzberg-Teller-Induced Emission from
Substate
I: The
1.3
К
Spectrum
69
1.9.2.2
Franck-Condon Activity in the Emissions from Substates II and III:
The
20
К
Spectrum
70
1.9.2.3
Time-Resolved Emission and Franck-Condon/Herzberg-Teller
Activities
72
1.9.3
Ir(btp)2(acac) Emission: Low-Temperature Vibrational Satellite
Structure
75
1.10
Environmental Effects on Triplet State Properties: Case Studies
Applied to Ir(btp)2(acac)
76
1.10.1
Energy Distribution of Sites
77
1.10.2
Zero-Field Splittings at Different Sites
78
1.10.3
Emission Decay and Spin-Lattice Relaxation Times
80
1.11
Emission Linewidths and Spectral Broadening Effects
81
1.11.1
Inhomogeneous Linewidths
81
1.11.2
Homogeneous Linewidths
82
1.11.3
Line Broadening Effects on the Example of Pt(thpy)2
85
1.11.4
Phenomenological Simulation of Spectral Broadening
86
1.12
Conclusions
89
Contents
VII
2
Spin Correlations in Organic Light-Emitting Diodes
99
Manfred J. Walter and John M. Lupton
2.1
Introduction
99
2.2
Spin-Dependent Recombination of Charge Carriers and Spin-Lattice
Relaxation
103
2.3
Studying Spin States using Electric Field Modulated Fluorescence and
Phosphorescence
107
2.3.1
Electric Field Modulation of Fluorescence and Phosphorescence:
Experimental Method
107
2.3.2
Estimating the Triplet Formation Rate from Transient
Electroluminescence
113
2.3.3
Spin Persistence in Charge Carrier Pairs Generated by an Electric
Field
114
2.3.4
Spin Persistence in Charge Carrier Pairs Generated
S pontaneously
119
2.4
Summary and Outlook
125
3
Cyclometallated Organoiridium Complexes as Emitters in
Electrophosphorescent Devices
131
Peter I. Djurovich and Mark E. Thompson
3.1
Organic Light-Emitting Devices
131
3.2
Phosphorescent Materials as Emitters in OLEDs
132
3.3
Organometallic Complexes as Phosphorescent Emitters in OLEDs
134
3.4
Confining Triplet
Excitons
and Carriers in Phosphor-Doped
OLEDs
336
3.5
Cyclometallated Complexes for OLEDs
139
3.5.1
Synthesis of Cyclometallated
Ir
Complexes
139
3.5.2
Excited States in Cyclometallated Complexes
140
3.5.3
MO Analysis of
Ir Cyclometallates
242
3.5.4
Using Ancillary Ligands to Modify the Excited State Properties
143
3.5.5
Facial and Meridional Isomers of Tris-Cyclometallates
145
3.5.6
Ancillary Ligands with Low Triplet Energies
146
3.5.7
Ligand Tuning to Achieve Green to Near-Infrared Emission
148
3.5.8
Near-UV Luminescent Cyclometallated Complexes
150
3.6
Conclusion
154
4
Highly Efficient Red-Phosphorescent
Iridium
Complexes
163
Akira Tsuboyama, Shinjiro Okada, and Kazunori Ueno
4.1
Introduction
364
4.2
Issues of Red-Emissive Materials
165
4.3
Red-Phosphorescent Iridium Complexes
165
4.3.1
Lowest Excited State of Iridium Complexes
165
4.3.2
Molecular Design and Structure
167
4.3.3
Phosphorescence Spectra
269
VIII
I Contents
4.3.4
Phosphorescence Yield
172
4.3.5
Substituent
Effects of Ir(piq)3
(6) 173
4.4
OLED
Device
177
4.4.1
Thermal Stability
177
4.4.2
Red
OLED
using Ir(4F5mpiq)3
(10) 179
4.5
Summary
179
5
Pyridyl
Azotate
Based Luminescent Complexes: Strategic Design,
Photophysics, and Applications
185
Yun Chi and Pi-Tai
Chou
5.1
Introduction
185
5.2
Ligand Synthesis
186
5.2.1
Ligand Modifications
188
5.2.2
Fluorescent Behavior and Color Tuning
290
5.3
Phosphorescent
OLED
Applications
193
5.3.1
Osmium-Based Emitters
193
5.3.1.1
Blue-Emitting Materials
293
5.3.1.2
Red-Emitting Materials
298
5.3.2
Ruthenium-Based Emitters
203
5.3.3
Iridium-Based Emitters
207
5.3.3.1
Tuning the Color to Red
207
5.3.3.2
Blue-Emitting Materials
209
5.3.4
Platinum-Based Emitters
212
5.4
Concluding Remarks
216
6
Physical Processes in Polymer-Based Electrophosphorescent
Devices
222
Xiao-Hui Yang,
Frankjaiser,
and Dieter Neher
6.1
Introduction
221
6.2
Phosphorescent Devices Based on PVK
223
6.2.1
Charge Trapping in Devices with Ir(ppy)j
224
6.2.2
Competition Between Free Carrier Recombination and
Trapping
227
6.2.3
Competition between
Förster
Transfer and Trapping
230
6.2.3.1
Exciplex Emission
235
6.2.4
Confinement of Singlet and Triplet
Excitons
on the PVK:
PB D
Matrix
239
6.3
Devices with PtOEP Doped into Conjugated Polymer
Matrices
243
6.3.1
PtOEP in MeLPPP
245
6.3.1.1 Förster
Transfer
245
6.3.1.2
Dexter Transfer
247
6.3.1.3
Electrophosphorescence
250
6.3.2
PtOEP in Polyfluorene
250
6.4
Conclusion and Outlook
252
Contents
IX
7
Phosphorescent
Platinum(ll) Materials for
OLED
Applications
259
Hai-Feng Xiang, Síu-Wai
Lai, P. T.
Lai,
and Chi-Ming
Che
7.1
Introduction
259
7.1.1
Phosphorescent
Materials
for
OLED Applications
259
7.1.2
Criteria for Complexes as
OLED
Emitters
260
7.2
Device Fabrication and Electroluminescence Measurements
260
7.3
Platinum(II) oc-Diimine
Arylacetylide Complexes
262
7.4
Tridentate
Pt(II) Complexes
265
7.4.1
Cyclometalated 6-Aryl-2,2'-bipyridine Arylacetylide Pt(II)
Complexes
265
7
A.I Pt(II) Complexes bearing 6-(2-Hydroxyphenyl)-2,2'-bipyridine
Ligands
268
7.5
Tetradentate Pt(II) Complexes
270
7.5.1
Pt(II)
Schiff
Base Complexes
270
7.5.2
Pt(II) Bis(phenoxy)diimme Complexes
273
7.5.3
Pt(II) Bis(pyrrole)diimine Complexes
276
7.5.4
Pt(II) Porphyrin Complexes
277
7.6
Concluding Remarks
279
8
Energy-Transfer Processes between Phosphorescent Guest and
Fluorescent Host Molecules in Phosphorescent OLEDs
283
Isao Tanaka and Shizuo Tokito
8.1
Introduction
283
8.2
Electronic Structure and Energy Transfer in Guest-Host Systems
284
8.3
Luminescence Properties of Phosphorescent and Fluorescent
Materials
286
8.4
Energy Transfer of Blue Phosphorescent Molecules in Guest-Host
Systems
288
8.5
Energy Transfer Between Ir(ppy)3 and Alq3: Enhancement of
Phosphorescence from Alq3
294
8.6
Energy Transfer Between Ir(ppy)3 and BAlq: Observation of Thermal
Equilibrium of Triplet Excited States
301
8.7
Conclusion
306
9
High-Efficiency Phosphorescent Polymer
LEDs 311
Addy van
Dijken,
Klemens
Brunner,
Herbert
Borner,
and
Bea
M.W.
Langeveld
9.1
Introduction
311
9.2
The Route Toward High-Efficiency OLEDs
312
9.3
Singlet and Triplet Excited States
312
9.4
Phosphorescent Emitters
313
9.5
Host Materials for Phosphorescent Emitters
324
9.5.1
General Requirements
314
9.5.2
Carbazole-Based Host Materials
316
X
Contents
9.5.3 Tuning
the Properties of
Carbazole
Derivatives
318
9.5.4
Carbazole-Based Polymers for High-Efficiency Phosphorescent
pLEDs
322
9.6
Outlook
325
10
Electroluminescence from Metal-Containing Polymers and Metal
Complexes with Functional Ligands
329
Chris Shuk
Kwan
Мак,
and Wai Kin Chan
10.1
Introduction
329
10.2
Traditional Materials Used in OLEDs
330
10.2.1
Molecular Materials
330
10.2.2
Polymeric Materials
330
10.3
Development of Phosphorescent Materials for OLEDS
332
10.3.1
Small Molecules
-
Pure Organic Dyes and Organometallic
Complexes
333
10.3.2
Polymeric Materials
334
10.4
Ruthenium Containing Polymers
335
10.4.1
Photophysics of Ruthenium Complexes
335
10.4.2
Examples of Ruthenium Complex Containing Polymers
337
10.4.3
Ruthenium Complexes for Light-Emitting Devices
339
10.4.4
Complexes Based on Multifunctional Ligands
343
10.4.5
Ruthenium Containing Polymers for Light-Emitting Devices
346
10.4.5.1
EL Devices Based on Ruthenium Complex Containing Nonconjugated
Polymers
346
10.4.5.2
Multifunctional Ruthenium Complex Containing Conjugated
Polymers
347
10.4.5.3
Conjugated Polymers with Pendant Metal Complexes
356
10.5
Summary
358
11
Molecular Engineering of
Iridium
Complexes and their Application in
Organic Light Emitting Devices
363
Mohammad K. Nazeeruddin, Cedric Klein, Michael
Grätzel,
Libero Zuppiroü,
and
Detlef Berner
11.1
Introduction
363
11.1.1 Ligand
Field
Splitting 364
11.1.2 Photophysical
Properties
365
11.2
Phosphorescent
Iridium
Complexes
366
11.2.1 Tuning
of Phosphorescence Colors in Neutral
Iridium
Complexes
366
11.2.2
Tuning of Phosphorescence Colors in Cationic
Iridium
Complexes
369
11.2.3
Tuning of Phosphorescence Colors in
Anionie
Iridium
Complexes
372
11.2.3.1
Phosphorescent Color Shift in
Anionie
Iridium
Complexes by Tuning
of HOMO Levels
375
Contents
11.2.4 Controlling Quantum
Yields in
Iridium
Complexes
377
11.3 Application
of
Iridium
Complexes in Organic Light-Emitting
Devices
(OLEDs) 378
11.3.1 Standard
OLED
Device
Architecture
379
11.3.2
Light-Emitting Electrochemical Cell
(LEC)
Device Architecture
387
12
Progress in Electroluminescence Based on Lanthanide Complexes
391
Zu-Qjang Bian and Chun-
Hui
Huang
12.1
Introduction
391
12.2
The Device Construction and Operating Principles
393
12.3
The Red Electroluminescence Based on Europium Complexes
396
12.4
The Green Electroluminescence Based on Terbium Complexes
404
12.5
The Near Infrared Electroluminescence Based on Neodymium,
Erbium, or Ytterbium Complexes
411
12.6
The Ligand Emission Electroluminescence Based on Yttrium,
Lanthanum, Gadolinium, or
Lutetium
Complexes
415
12.7
Conclusion
417
Index
421 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author_GND | (DE-588)134181905 |
building | Verbundindex |
bvnumber | BV022468177 |
callnumber-first | T - Technology |
callnumber-label | TK7871 |
callnumber-raw | TK7871.89.L53 |
callnumber-search | TK7871.89.L53 |
callnumber-sort | TK 47871.89 L53 |
callnumber-subject | TK - Electrical and Nuclear Engineering |
classification_rvk | VE 9580 ZN 5040 |
ctrlnum | (OCoLC)191820091 (DE-599)DNB983498911 |
dewey-full | 621.381522 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.381522 |
dewey-search | 621.381522 |
dewey-sort | 3621.381522 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Maschinenbau / Maschinenwesen Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Maschinenbau / Maschinenwesen Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022468177</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20080128</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070618s2008 gw ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N15,0671</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">983498911</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527405947</subfield><subfield code="c">Gb. : ca. EUR 129.00 (freier Pr.), ca. sfr 204.00 (freier Pr.)</subfield><subfield code="9">978-3-527-40594-7</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527405947</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">1140594 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)191820091</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB983498911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">TK7871.89.L53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.381522</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9580</subfield><subfield code="0">(DE-625)147158:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 5040</subfield><subfield code="0">(DE-625)157432:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">620</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Highly efficient OLEDs with phosphorescent materials</subfield><subfield code="c">ed. by Hartmut Yersin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 438 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Light emitting diodes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymers</subfield><subfield code="x">Electric properties</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Phosphoreszierender Stoff</subfield><subfield code="0">(DE-588)4544682-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">OLED</subfield><subfield code="0">(DE-588)4762455-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">OLED</subfield><subfield code="0">(DE-588)4762455-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Phosphoreszierender Stoff</subfield><subfield code="0">(DE-588)4544682-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yersin, Hartmut</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)134181905</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=2930709&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015675721&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015675721</subfield></datafield></record></collection> |
id | DE-604.BV022468177 |
illustrated | Illustrated |
index_date | 2024-07-02T17:43:24Z |
indexdate | 2024-07-20T09:18:03Z |
institution | BVB |
isbn | 9783527405947 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015675721 |
oclc_num | 191820091 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-83 DE-11 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-19 DE-BY-UBM DE-898 DE-BY-UBR DE-83 DE-11 |
physical | XVIII, 438 S. Ill., graph. Darst. |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Highly efficient OLEDs with phosphorescent materials ed. by Hartmut Yersin Weinheim WILEY-VCH 2008 XVIII, 438 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Light emitting diodes Polymers Electric properties Phosphoreszierender Stoff (DE-588)4544682-9 gnd rswk-swf OLED (DE-588)4762455-3 gnd rswk-swf OLED (DE-588)4762455-3 s Phosphoreszierender Stoff (DE-588)4544682-9 s DE-604 Yersin, Hartmut 1940- Sonstige (DE-588)134181905 oth text/html http://deposit.dnb.de/cgi-bin/dokserv?id=2930709&prov=M&dok_var=1&dok_ext=htm Inhaltstext Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015675721&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Highly efficient OLEDs with phosphorescent materials Light emitting diodes Polymers Electric properties Phosphoreszierender Stoff (DE-588)4544682-9 gnd OLED (DE-588)4762455-3 gnd |
subject_GND | (DE-588)4544682-9 (DE-588)4762455-3 |
title | Highly efficient OLEDs with phosphorescent materials |
title_auth | Highly efficient OLEDs with phosphorescent materials |
title_exact_search | Highly efficient OLEDs with phosphorescent materials |
title_exact_search_txtP | Highly efficient OLEDs with phosphorescent materials |
title_full | Highly efficient OLEDs with phosphorescent materials ed. by Hartmut Yersin |
title_fullStr | Highly efficient OLEDs with phosphorescent materials ed. by Hartmut Yersin |
title_full_unstemmed | Highly efficient OLEDs with phosphorescent materials ed. by Hartmut Yersin |
title_short | Highly efficient OLEDs with phosphorescent materials |
title_sort | highly efficient oleds with phosphorescent materials |
topic | Light emitting diodes Polymers Electric properties Phosphoreszierender Stoff (DE-588)4544682-9 gnd OLED (DE-588)4762455-3 gnd |
topic_facet | Light emitting diodes Polymers Electric properties Phosphoreszierender Stoff OLED |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=2930709&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015675721&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT yersinhartmut highlyefficientoledswithphosphorescentmaterials |