Experimental techniques for low temperature measurements: cryostat design, material properties, and superconductor critical-current testing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford [u.a.]
Oxford University Press
2007
|
Ausgabe: | 1. publ., reprinted (with corr.) |
Schlagworte: | |
Online-Zugang: | Publisher description Table of contents Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene, unveränderte Nachdrucke |
Beschreibung: | XXVIII, 673 S. Ill., graph. Darst. |
ISBN: | 0198570546 9780198570547 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV022463724 | ||
003 | DE-604 | ||
005 | 20120508 | ||
007 | t | ||
008 | 070614s2007 xxuad|| |||| 00||| eng d | ||
020 | |a 0198570546 |c alk. paper |9 0-19-857054-6 | ||
020 | |a 9780198570547 |9 978-0-19-857054-7 | ||
035 | |a (OCoLC)232370445 | ||
035 | |a (DE-599)BVBBV022463724 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-703 |a DE-355 |a DE-91G |a DE-898 |a DE-20 | ||
050 | 0 | |a QC278 | |
082 | 0 | |a 536/.54 | |
084 | |a UX 3300 |0 (DE-625)146955: |2 rvk | ||
084 | |a PHY 152f |2 stub | ||
100 | 1 | |a Ekin, Jack W. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Experimental techniques for low temperature measurements |b cryostat design, material properties, and superconductor critical-current testing |c Jack W. Ekin |
250 | |a 1. publ., reprinted (with corr.) | ||
264 | 1 | |a Oxford [u.a.] |b Oxford University Press |c 2007 | |
300 | |a XXVIII, 673 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene, unveränderte Nachdrucke | ||
650 | 4 | |a Low temperatures |x Measurement | |
650 | 4 | |a Low temperatures |x Instruments | |
650 | 4 | |a Low temperature research | |
650 | 4 | |a Superconductors | |
650 | 0 | 7 | |a Temperaturmessung |0 (DE-588)4133187-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tieftemperaturtechnik |0 (DE-588)4078299-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tieftemperatur |0 (DE-588)4134801-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Tieftemperaturtechnik |0 (DE-588)4078299-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Tieftemperatur |0 (DE-588)4134801-1 |D s |
689 | 1 | 1 | |a Temperaturmessung |0 (DE-588)4133187-4 |D s |
689 | 1 | |5 DE-604 | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0640/2006010332-d.html |3 Publisher description | |
856 | 4 | |u http://www.loc.gov/catdir/enhancements/fy0640/2006010332-t.html |3 Table of contents | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671343&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015671343 |
Datensatz im Suchindex
_version_ | 1804136548032053248 |
---|---|
adam_text | Contents
SYMBOLS
AND ABBREVIATIONS
ХХІІІ
ACKNOWLEDGMENTS
XXVI
ABOUT THE AUTHOR
ХХІХ
CONTACT INFORMATION
ХХІХ
DISCLAIMER
XXX
PARTI CRYOSTAT
DESIGNAND
MATERIALS SELECTION
1
1
Introduction to Measurement
Cryostats
and Cooling Methods
3
1.1
Introduction
1.1.1
Organization of the book
3
4
1.1.2
The last step
5
1.1.3
Extra items
6
1.2
Cryogenic liquids
6
1.2.1
Pumping and pressurizing techniques for changing the bath temperature
9
Pumping
10
Pressurizing
12
1.2.2
Superfluid helium
12
1.3
Introduction to measurement
cryostats
14
1.3.1
Checklist/guide to the most relevant sections of this book, depending
on
cryostat type
15
Temperature
16
Transport current
16
Magnetic field
17
Mechanical properties
18
1.4
Examples of measurement
cryostats
and cooling methods
—
low
transport current (S
1
A)
18
1.4.1
Introduction
18
1.4.2
Dipper probes
19
1.4.3
Liquid-flow
cryostats
24
1.4.4
Cryocoolers
25
1.4.5
Pulse-tube cryocooler
26
1.4.6
Gas-flow
cryostats
28
x
Contents
1.5
Examples of measurement
cryostats
and cooling methods
—
high
transport current (a
1
A)
30
1.5.1
Immersion test apparatus
30
1.5.2
Variable-temperature high-current measurement
cryostats
32
1.5.3
Measurements near the superfluid-transition temperature
32
Lambda-point refrigerator
33
Saturated-liquid-container refrigerator
34
1.5.4
Variable-angle
cryostats
for measurements in a magnetic field
36
1.6
Addenda: safety and cryogen handling
37
1.6.1
Safety: how we can go wrong
37
Cryogenic problems
37
Less common cryogenic problems
38
Vacuum foibles
39
Unhealthy materials
39
1.6.2
Transferring cryogenic liquids
40
Liquid nitrogen
40
Liquid helium
41
Procedure for transferring liquid helium
42
Helium-transfer problems
43
1.7
References
45
1.7.1
Further reading
45
1.7.2
Chapter references
46
2
Heat Transfer at Cryogenic Temperatures
49
2.1
Introduction
49
2.2
Heat conduction through solids
50
2.3
Heat conduction through gases (and liquids)
52
2.3.1
Normal pressure (hydrodynamic case)
54
2.3.2
Low pressure (free-molecule case)
55
2.4
Radiative heat transfer
55
2.4.1
Superinsulation/multilayer insulation
57
2.5
Heat conduction across liquid/solid interfaces
59
2.5.1
Liquid-helium/solid interfaces
59
2.5.2
Liquid-nitrogen/solid interfaces
61
2.6
Heat conduction across solid/solid interfaces
62
2.6.1
Solderjoints
64
2.6.2
Varnish and glue joints
64
Contents
x¡
2.6.3
Pressed
contacts
and heat switches
65
2.6.4
To grease, or not to grease?
66
2.7
Heat conduction across solid/gas interfaces
67
2.8
Other heat sources
69
2.8.1
Joule heating
69
2.8.2
Thermoacoustic oscillations
70
2.8.3
Superfluid-helium creep
71
2.8.4
Adsorption and desorption of exchange gas
71
2.9
Examples of heat-transfer calculation
72
2.9.1
Case
1 ;
simple dipper probe immersed in liquid helium
72
2.9.2
Case
2:
dipper probe operated in variable-temperature mode in
a superconducting magnet
76
2.9.3
Case
3:
variable-temperature sample chamber
81
2.10
References
82
2.10.1
Further reading
82
2.10.2
Material property information on the internet
83
2.10.3
Chapter references
83
3
Cryostat
Construction
87
3.1
Introduction
87
3.2
Material selection for
cryostat
parts
88
3.2.1
Room-temperature intuition generally does not work
88
3.2.2
Personalities of materials at low temperatures
90
Thermal conductivity
90
Thermal contraction
92
Heat capacity
93
Mechanical properties
94
Magnetic susceptibility
97
3.3
Joining techniques
98
3.3.1
Introduction
98
Temporary joining techniques
98
Permanent joining techniques
100
3.3.2
Welding
101
3.3.3
Brazing
103
3.3.4
Soldering
104
The right flux
106
Superconducting properties of solder
107
xü Contents
Low-melting-temperature solders
107
Soldering aluminum
—
a tough case
108
3.3.5
Sticky stuff
108
3.4
Construction example for a basic dipper probe
109
3.5
Sizing of parts for mechanical strength
113
3.5.1
Yield strength
113
3.5.2
Euler
buckling criterion
114
3.5.3
Deflection of beams and plates
116
3.5.4
Pressure and vacuum loading
118
3.6
Mechanical motion at cryogenic temperature
120
3.7
Vacuum techniques and seals for cryogenic use
122
3.7.1
Introduction to cryogenic vacuum technology
122
3.7.2
Preparing cryogenic vacuum spaces
123
3.7.3
Leak detectors
124
3.7.4
Cryogenic vacuum seals
125
Commercial vacuum seals for cryogenic use
126
Indium
О
-ring
vacuum seals
127
3.7.5
Vacuum-duct sizing (hydrodynamic flow)
129
3.8
Addenda: high and ultrahigh vacuum techniques
131
3.8.1
Vacuum-duct sizing (free-molecular flow)
131
3.8.2
Pump speed and ultimate pressure
132
3.8.3
Sources of gas in a vacuum system
135
Vacuum vessel leaks
135
Virtual leaks
135
Degassing of materials
13 5
Vapor pressure of solids
138
Permeation of gases through materials
140
3.9
References
146
3.9.1
Further reading
146
3.9.2
Properties of solids: internet information
147
3.9.3
Chapter references
147
4
Wiring and Connections
150
4.1
Introduction
150
4.1.1
General guidelines
150
4.1.2
DC and low-frequency
(ë
10
kHz) wiring
151
Contents xiii
4.1.3
AC high-frequency wiring
152
4.1.4
Wiring installation techniques
153
4.2
Wire selection
154
4.2.1
Wire selection for
cryostat
design
154
4.2.2
Wire material properties
155
4.3
Insulation selection
157
4.4
Heat sinks for instrumentation leads
157
4.4.1
Wire-anchoring techniques
159
4.4.2
Length of wire needed for thermal anchoring
159
4.4.3
Beryllium-oxide heat-sink chips
160
4.5
Solder connections
161
4.5.1
Solder-joint cracking after repeated thermal cycling
162
4.5.2
Soldering to thin silver or gold films
—
the magical disappearing act
162
4.5.3
Superconducting-solder artifacts
162
4.6
Sensitive dc voltage leads: techniques for minimizing thermoelectric voltages
163
4.6.1
Connection techniques for low-thermoelectric voltages
163
4.6.2
Voltmeter connections
165
4.7
Vacuum electrical lead-throughs
166
4.7.1
Room-temperature lead-throughs
166
Nonvacuum connector boxes
167
Vacuum connector boxes
168
Vacuum lead-throughs for low-thermoelectric-voltage leads
170
4.7.2
Cryogenic vacuum lead-throughs
171
4.8
Radio-frequency coaxial cables
172
4.8.1
Heat-sinking
172
4.8.2
Vacuum-sealing
173
4.8.3
Superconducting rf transmission lines
174
4.9
High-current leads
174
4.9.1
Copper wire: optimum diameters
174
4.9.2
Vapor-cooled leads, or how to beat the Wiedemann-Franz-Lorenz law
177
4.9.3
Superconductor leads
179
4.10
Flexible current leads
181
4.11
References
182
4.11.1
Further reading
182
4.11.2
Chapter references
183
xiv Contents
5
Temperature Measurement and
Control
185
5.1
Thermometer selection
(1-300
К)
186
5.1.1
Thermometer overview
186
5.1.2
Thermometer-selection characteristics
189
5.1.3
General recommendations: examples of thermometer selection
for several common measurement situations
192
Temperature measurements in zero magnetic field
192
Temperature measurements in magnetic fields
194
5.1.4
Small sensing elements
195
5.1.5
Thermometry in the presence of nuclear radiation
196
Gamma radiation
196
Neutron radiation
196
5.1.6
Calibration
196
5.2
Selection of thermometers for use in high magnetic fields
198
5.2.1
Comparison of magnetic errors for commercial thermometers
198
5.2.2
Correcting magnetic temperature error in the best sensors
200
5.3
Thermometer installation and measurement procedures
202
5.3.1
Thermal anchoring of thermometers and their leads
202
5.3.2
Thermal anchoring of samples (while maintaining electrical isolation)
204
5.3.3
Thermometer location
206
5.3.4
Thermal radiation and eddy-current heating
206
5.3.5
Electrical instrumentation for thermometer sensors
207
5.3.6
Operational checkout
208
Self-heating problems
208
Direct check of the temperature error between thermometer and sample
209
5.4
Controlling temperature
210
5.4.1
Pumped liquid refrigerants
210
5.4.2
Resistance heaters
210
5.4.3
Temperature controllers
211
5.5
Addendum: reference compendium of cryogenic-thermometer
properties and application techniques
214
5.5.1
Platinum resistance thermometers
214
5.5.2
Rhodium-iron resistance thermometers
216
5.5.3
Germanium resistance thermometers
216
5.5.4
Zirconium-oxynitride resistance thermometers
218
5.5.5
Carbon-glass thermometers
219
5.5.6
Bismuth-ruthenate and ruthenium-oxide thermometers
219
5.5.7
Silicon diodes
220
Contents xv
5.5.8
GaAIAs
diodes
221
5.5.9
Thermocouples
221
5.5.10
Capacitance thermometers
222
5.5.11
Carbon resistance thermometers
223
5.6
References
223
5.6.1
Further reading
223
5.6.2
Chapter references
225
б
Properties of Solids at Low Temperatures
226
6.1
Specific heat and thermal diffusivity
227
6.1.1
Design data and materials selection
227
6.1.2
Debye model
228
6.1.3
Estimating the cost of cooling
cryostat
parts using the Debye model
230
6.1.4
Thermal diffusivity
231
6.2
Thermal expansion/contraction
233
6.2.1
Design data and materials selection
—
great differences among resins,
metals, and glasses
233
6.2.2
Estimating thermal expansion between arbitrary temperatures
238
6.2.3
Calculating thermal stresses
239
6.3
Electrical resistivity
240
6.3.1
Design data and materials selection: dependence of electrical
resistivity on temperature and purity
240
6.3.2
Residual resistivity pres and defect scattering
241
6.3.3
Ideal resistivity
p¡(r)
and phonon scattering
243
Bloch-Grüneisen
formula: it does not work
244
Umklapp scattering
245
6.3.4
Matthiessen s rule
—
a simple method of estimating the total electrical
resistivity of nearly pure metals at arbitrary temperatures
246
6.3.5
Summary of important points for normal metals
247
6.3.6
Superconductors
248
6.4
Thermal conductivity
248
6.4.1
Design data and materials selection
248
6.4.2
Electronic thermal conductivity in metals
250
Wiedemann-Franz-Lorenz law
251
6.4.3
Phonon thermal conductivity in insulators
252
6.5
Magnetic susceptibility
252
6.5.1
Design data and materials selection
252
6.5.2
High-field measurements
—
forces, forces
254
xvi Contents
6.6
Mechanical properties
255
6.6.1
Tensile properties
256
6.6.2
Fracture toughness
261
6.6.3
Fatigue
262
6.6.4
Creep
264
6.6.5
Mechanical properties of technical materials: synopsis
264
6.7
References
265
6.7.1
Further reading
265
6.7.2
Properties of solids: internet information
266
6.7.3
Chapter references
267
PARTII
ELECTRICAL TRANSPORT MEASUREMENTS: SAMPLE
HOLDERS AND CONTACTS
271
7
Sample Holders
273
7.1
General principles for sample-holder design
273
7.2
Four-lead and two-lead electrical transport measurements
274
7.3
Bulk sample holders
276
7.3.1
Requirement
1 :
sample temperature uniformity and control
276
Temperature nonuniformity from variable convective cooling
276
Temperature nonuniformity from Joule heating
279
Practical illustrations of bulk sample holders
280
7.3.2
Requirement
2:
thermal contraction of the sample holder and strain-free
mounting techniques
282
Choosing a sample holder with a thermal contraction that matches the sample
283
7.3.3
Requirement
3:
instrumentation wiring
—
keep the loop area small
288
7.3.4
Requirement
4:
voltage-tap placement and current-contact lengths
290
Strange voltages of the first kind: the current-transfer length
291
More strange voltages: the twist-pitch effect
293
7.3.5
Requirement
5:
support your sample!
296
7.3.6
Procedures for mounting long superconductor samples
298
7.4
Thin-film sample holders
301
7.4.1
Requirement
1 :
temperature control and uniformity
301
7.4.2
Requirement
2:
stress from differential thermal contraction
303
7.4.3
Requirement
3:
lead attachment to the sample s contact pads
303
Wire/ribbon bonds
304
Pogo pins
306
Contents xvii
Fuzz buttons
307
Beryllium-copper microsprings
308
Thin-film transport measurements without patterning
309
7.4.4
Requirement
4:
voltage taps
—
noise pickup and current-transfer lengths
311
7.5
Addenda
312
7.5.1
Thermal runaway (quench)
312
7.5.2
Multifilamentary geometry of practical high-current
superconductor composites
312
7.6
References
315
7.6.1
Further reading
315
7.6.2
Chapter references
316
8
Sample Contacts
317
8.1
Introduction
317
8.2
Definition of specific contact resistivity and values for practical applications
318
8.3
Contact techniques for high-current superconductors
320
8.3.1
Overview for high-current superconductors
320
8.3.2
Voltage contacts
320
Soldered voltage contacts
321
Wetting the oxides
321
Pressure contacts
322
Silver paint, paste, and epoxy
323
8.3.3
Current contacts for oxide highTc superconductors
323
Pressed-indium contacts
323
High-current contacts
—
failures
324
Interfacial
chemistry
324
Fabrication procedures for high-quality
HTS
current contacts
326
Soldering to noble-metal contact pads
331
Silver-sheathed
HTS
materials
332
8.3.4
Measuring contact resistivity
332
8.4
Contact techniques for film superconductors
333
8.4.1
Overview for film superconductors
333
8.4.2
Contacts for oxide high-
Гс
superconductor films
334
In situ vs. ex situ contacts
334
Cleaning etch
335
Noble-metal deposition and thickness
337
Film contact annealing
337
8.4.3
Measuring film/contact interface resistivity
339
xviii Contents
8.5
Example calculations of
minimum
contact
area
341
8.5.1
Nb-Tiat-łK
341
Contacts immersed in liquid helium
341
Contacts in helium gas or vacuum
342
8.5.2
Nb3Sn at
4
K: resistive-matrix contribution
343
8.5.3
High- Tc superconductors at
77
К
344
Contacts in nitrogen gas or vacuum
346
8.6
Spreading-resistance effect in thin contact pads and
example calculations
346
8.6.1
YBCO-coated-conductor contacts
347
8.6.2
Thin-film contacts
348
8.7
References
349
8.7.1
Further reading
349
8.7.2
Chapter references
350
PART III SUPERCONDUCTOR CRITICAL-CURRENT MEASUREMENTS
AND DATA ANALYSIS
351
9
Critical-Current Measurements
353
9.1
Introduction
353
9.1.1
Transport method vs. contactless methods of measuring critical current
354
9.1.2
Defining critical-current density
355
9.1.3
The overall picture: dependence of critical current on magnetic field,
temperature, and strain
357
9.1.4
Test configurations
359
Transmission-line applications
359
Magnet and rotating-machinery applications
3 59
Thin-film electronic applications
360
9.2
Instrumentation
361
9.2.1
Setting up a critical-current measurement system
361
Sample current supply
362
Thermal-runaway protection circuits
363
Voltmeter
364
Magnet power supplies
364
Pulsed-current measurements
365
9.2.2
Wiring check-out for a new system
366
9.3
Measurement procedures
366
9.3.1
General troubleshooting tips
367
Contents xix
9.3.2 Critical-current
measurement procedures
367
The V-lcurve reversal point
368
Sample stability
368
Data-acquisition protocol to avoid sample burnout and ensure good data
368
Curve shape: the who s who in problem identification
370
9.3.3
Automatic data-acquisition programs
372
Introduction and general approach
372
Program architecture: simple data loggers
373
Program architecture: data acquisition with automated current control
374
9.4
Examples of critical-current measurement
cryostats
377
9.4.1
Critical current vs. magnetic field
378
9.4.2
Critical current vs. the angle of magnetic field
378
9.4.3
Critical current vs. temperature
380
Low-current variable-temperature
cryostats
380
High-current variable-temperature
cryostats
381
9.4.4
Critical current vs. axial strain
383
Stress-free cooling
cryostats
384
Bending-beam
cryostats
386
Variable-temperature strain measurements
388
Ring-coil hoop-stress measurements
388
9.4.5
Critical current vs. bending strain
391
9.5
References
392
9.5.1
Further reading
392
9.5.2
Chapter references
393
10
Critical-Current Data Analysis
395
10.1
Practical critical-current definitions
396
10.1.1
Electric-field criterion
396
10.1.2
Resistivity criterion
399
10.1.3
Offset criterion
400
10.1.4
Summary of the advantages and disadvantages of the different criteria
402
10.1.5
Transforming to a more sensitive criterion
403
10.2
Current-transfer correction
404
10.2.1
Introduction
404
10.2.2
Back-extrapolation correction method: extend the V-l curve to high voltage
405
10.2.3
Baseline method: what to do if thermal runaway prevents extending
the V-l curve to high voltages
407
10.3
Magnetic-field dependence of critical current
408
10.3.1
introduction
408
xx Contents
10.3.2 General
function for the magnetic-field dependence of critical
current in low-
Γ,,
superconductors
412
10.3.3
Method for magnetic-field interpolations and extrapolations
413
10.3.4
Effect of
ßC2 inhomogeneity
on the shape of the i-B characteristics of
low-Tc superconductors
418
10.3.5
Effect of weak links on the shape of the Ic-B characteristics of
high-ľc
superconductors
419
10.3.6
Improvement of Jc-B characteristics from grain alignment in
high
-Гс
superconductors
421
10.4
Temperature dependence of critical current
424
10.4.1
Introduction
424
10.4.2
Critical field vs. temperature
424
10.4.3
Critical current vs. temperature
425
10.4.4
Linear method for calculating temperature changes in the critical current
426
10.5
Strain-induced changes in the critical current
432
10.5.1
Introduction
432
Reversible strain effect
434
Irreversible strain limit
436
10.5.2
Bending strain effects
437
10.5.3
Axial-strain effects
439
10.5.4
Strain scaling law for
low-ľ,.
superconductors
440
10.5.5
Nearly universal effect of strain on the upper critical field
442
10.5.6
High-compressive-strain range
446
10.5.7
Example: application of the strain scaling law
449
10.6
Transformation method for simplified application of scaling relations
456
10.6.1
Transformation method
456
Stain-scaling transformations
458
10.6.2
Example: transformation method for calculating strain changes
in the critical current
459
10.6.3
Temperature scaling law
461
Temperature-scaling transformations
462
10.7
Unified strain-and-temperature scaling law and transformations
464
10.7.1
Unified scaling law
—
basic relation
464
Separable form
466
10.7.2
Parameterization of the unified strain-and-temperature scaling law over
the intrinsic peak range
(-0.5% <
ε0
< +0.4%) 468
10.7.3
General parameterization of the unified strain-and-temperature scaling law
for strains extending to high compression
(
ε0
< - 0.5%) 471
Contents xxi
10.7.4
Methods for determining parameter
values
474
10.7.5
Transformation method for simplified application of the unified scaling law
478
Unified-scaling transformations
479
Intrinsic peak range
(-0.5%
<εο<
+0.4%) 480
High-compressive-strain range
481
Example: transformation method for calculating combined
strain-and-temperature changes in the critical current
482
10.8
References
485
10.8.1
Further reading
485
10.8.2
Chapter references
486
Appendixes
491-626
Data handbook of materials properties and
cryostat
design
(see inside back cover for appendix contents)
INDEX
627
|
adam_txt |
Contents
SYMBOLS
AND ABBREVIATIONS
ХХІІІ
ACKNOWLEDGMENTS
XXVI
ABOUT THE AUTHOR
ХХІХ
CONTACT INFORMATION
ХХІХ
DISCLAIMER
XXX
PARTI CRYOSTAT
DESIGNAND
MATERIALS SELECTION
1
1
Introduction to Measurement
Cryostats
and Cooling Methods
3
1.1
Introduction
1.1.1
Organization of the book
3
4
1.1.2
The last step
5
1.1.3
Extra items
6
1.2
Cryogenic liquids
6
1.2.1
Pumping and pressurizing techniques for changing the bath temperature
9
Pumping
10
Pressurizing
12
1.2.2
Superfluid helium
12
1.3
Introduction to measurement
cryostats
14
1.3.1
Checklist/guide to the most relevant sections of this book, depending
on
cryostat type
15
Temperature
16
Transport current
16
Magnetic field
17
Mechanical properties
18
1.4
Examples of measurement
cryostats
and cooling methods
—
low
transport current (S
1
A)
18
1.4.1
Introduction
18
1.4.2
Dipper probes
19
1.4.3
Liquid-flow
cryostats
24
1.4.4
Cryocoolers
25
1.4.5
Pulse-tube cryocooler
26
1.4.6
Gas-flow
cryostats
28
x
Contents
1.5
Examples of measurement
cryostats
and cooling methods
—
high
transport current (a
1
A)
30
1.5.1
Immersion test apparatus
30
1.5.2
Variable-temperature high-current measurement
cryostats
32
1.5.3
Measurements near the superfluid-transition temperature
32
Lambda-point refrigerator
33
Saturated-liquid-container refrigerator
34
1.5.4
Variable-angle
cryostats
for measurements in a magnetic field
36
1.6
Addenda: safety and cryogen handling
37
1.6.1
Safety: how we can go wrong
37
Cryogenic problems
37
Less common cryogenic problems
38
Vacuum foibles
39
Unhealthy materials
39
1.6.2
Transferring cryogenic liquids
40
Liquid nitrogen
40
Liquid helium
41
Procedure for transferring liquid helium
42
Helium-transfer problems
43
1.7
References
45
1.7.1
Further reading
45
1.7.2
Chapter references
46
2
Heat Transfer at Cryogenic Temperatures
49
2.1
Introduction
49
2.2
Heat conduction through solids
50
2.3
Heat conduction through gases (and liquids)
52
2.3.1
Normal pressure (hydrodynamic case)
54
2.3.2
Low pressure (free-molecule case)
55
2.4
Radiative heat transfer
55
2.4.1
Superinsulation/multilayer insulation
57
2.5
Heat conduction across liquid/solid interfaces
59
2.5.1
Liquid-helium/solid interfaces
59
2.5.2
Liquid-nitrogen/solid interfaces
61
2.6
Heat conduction across solid/solid interfaces
62
2.6.1
Solderjoints
64
2.6.2
Varnish and glue joints
64
Contents
x¡
2.6.3
Pressed
contacts
and heat switches
65
2.6.4
To grease, or not to grease?
66
2.7
Heat conduction across solid/gas interfaces
67
2.8
Other heat sources
69
2.8.1
Joule heating
69
2.8.2
Thermoacoustic oscillations
70
2.8.3
Superfluid-helium creep
71
2.8.4
Adsorption and desorption of exchange gas
71
2.9
Examples of heat-transfer calculation
72
2.9.1
Case
1 ;
simple dipper probe immersed in liquid helium
72
2.9.2
Case
2:
dipper probe operated in variable-temperature mode in
a superconducting magnet
76
2.9.3
Case
3:
variable-temperature sample chamber
81
2.10
References
82
2.10.1
Further reading
82
2.10.2
Material property information on the internet
83
2.10.3
Chapter references
83
3
Cryostat
Construction
87
3.1
Introduction
87
3.2
Material selection for
cryostat
parts
88
3.2.1
Room-temperature intuition generally does not work
88
3.2.2
Personalities of materials at low temperatures
90
Thermal conductivity
90
Thermal contraction
92
Heat capacity
93
Mechanical properties
94
Magnetic susceptibility
97
3.3
Joining techniques
98
3.3.1
Introduction
98
Temporary joining techniques
98
Permanent joining techniques
100
3.3.2
Welding
101
3.3.3
Brazing
103
3.3.4
Soldering
104
The right flux
106
Superconducting properties of solder
107
xü Contents
Low-melting-temperature solders
107
Soldering aluminum
—
a tough case
108
3.3.5
Sticky stuff
108
3.4
Construction example for a basic dipper probe
109
3.5
Sizing of parts for mechanical strength
113
3.5.1
Yield strength
113
3.5.2
Euler
buckling criterion
114
3.5.3
Deflection of beams and plates
116
3.5.4
Pressure and vacuum loading
118
3.6
Mechanical motion at cryogenic temperature
120
3.7
Vacuum techniques and seals for cryogenic use
122
3.7.1
Introduction to cryogenic vacuum technology
122
3.7.2
Preparing cryogenic vacuum spaces
123
3.7.3
Leak detectors
124
3.7.4
Cryogenic vacuum seals
125
Commercial vacuum seals for cryogenic use
126
Indium
О
-ring
vacuum seals
127
3.7.5
Vacuum-duct sizing (hydrodynamic flow)
129
3.8
Addenda: high and ultrahigh vacuum techniques
131
3.8.1
Vacuum-duct sizing (free-molecular flow)
131
3.8.2
Pump speed and ultimate pressure
132
3.8.3
Sources of gas in a vacuum system
135
Vacuum vessel leaks
135
Virtual leaks
135
Degassing of materials
13 5
Vapor pressure of solids
138
Permeation of gases through materials
140
3.9
References
146
3.9.1
Further reading
146
3.9.2
Properties of solids: internet information
147
3.9.3
Chapter references
147
4
Wiring and Connections
150
4.1
Introduction
150
4.1.1
General guidelines
150
4.1.2
DC and low-frequency
(ë
10
kHz) wiring
151
Contents xiii
4.1.3
AC high-frequency wiring
152
4.1.4
Wiring installation techniques
153
4.2
Wire selection
154
4.2.1
Wire selection for
cryostat
design
154
4.2.2
Wire material properties
155
4.3
Insulation selection
157
4.4
Heat sinks for instrumentation leads
157
4.4.1
Wire-anchoring techniques
159
4.4.2
Length of wire needed for thermal anchoring
159
4.4.3
Beryllium-oxide heat-sink chips
160
4.5
Solder connections
161
4.5.1
Solder-joint cracking after repeated thermal cycling
162
4.5.2
Soldering to thin silver or gold films
—
the magical disappearing act
162
4.5.3
Superconducting-solder artifacts
162
4.6
Sensitive dc voltage leads: techniques for minimizing thermoelectric voltages
163
4.6.1
Connection techniques for low-thermoelectric voltages
163
4.6.2
Voltmeter connections
165
4.7
Vacuum electrical lead-throughs
166
4.7.1
Room-temperature lead-throughs
166
Nonvacuum connector boxes
167
Vacuum connector boxes
168
Vacuum lead-throughs for low-thermoelectric-voltage leads
170
4.7.2
Cryogenic vacuum lead-throughs
171
4.8
Radio-frequency coaxial cables
172
4.8.1
Heat-sinking
172
4.8.2
Vacuum-sealing
173
4.8.3
Superconducting rf transmission lines
174
4.9
High-current leads
174
4.9.1
Copper wire: optimum diameters
174
4.9.2
Vapor-cooled leads, or how to beat the Wiedemann-Franz-Lorenz law
177
4.9.3
Superconductor leads
179
4.10
Flexible current leads
181
4.11
References
182
4.11.1
Further reading
182
4.11.2
Chapter references
183
xiv Contents
5
Temperature Measurement and
Control
185
5.1
Thermometer selection
(1-300
К)
186
5.1.1
Thermometer overview
186
5.1.2
Thermometer-selection characteristics
189
5.1.3
General recommendations: examples of thermometer selection
for several common measurement situations
192
Temperature measurements in zero magnetic field
192
Temperature measurements in magnetic fields
194
5.1.4
Small sensing elements
195
5.1.5
Thermometry in the presence of nuclear radiation
196
Gamma radiation
196
Neutron radiation
196
5.1.6
Calibration
196
5.2
Selection of thermometers for use in high magnetic fields
198
5.2.1
Comparison of magnetic errors for commercial thermometers
198
5.2.2
Correcting magnetic temperature error in the best sensors
200
5.3
Thermometer installation and measurement procedures
202
5.3.1
Thermal anchoring of thermometers and their leads
202
5.3.2
Thermal anchoring of samples (while maintaining electrical isolation)
204
5.3.3
Thermometer location
206
5.3.4
Thermal radiation and eddy-current heating
206
5.3.5
Electrical instrumentation for thermometer sensors
207
5.3.6
Operational checkout
208
Self-heating problems
208
Direct check of the temperature error between thermometer and sample
209
5.4
Controlling temperature
210
5.4.1
Pumped liquid refrigerants
210
5.4.2
Resistance heaters
210
5.4.3
Temperature controllers
211
5.5
Addendum: reference compendium of cryogenic-thermometer
properties and application techniques
214
5.5.1
Platinum resistance thermometers
214
5.5.2
Rhodium-iron resistance thermometers
216
5.5.3
Germanium resistance thermometers
216
5.5.4
Zirconium-oxynitride resistance thermometers
218
5.5.5
Carbon-glass thermometers
219
5.5.6
Bismuth-ruthenate and ruthenium-oxide thermometers
219
5.5.7
Silicon diodes
220
Contents xv
5.5.8
GaAIAs
diodes
221
5.5.9
Thermocouples
221
5.5.10
Capacitance thermometers
222
5.5.11
Carbon resistance thermometers
223
5.6
References
223
5.6.1
Further reading
223
5.6.2
Chapter references
225
б
Properties of Solids at Low Temperatures
226
6.1
Specific heat and thermal diffusivity
227
6.1.1
Design data and materials selection
227
6.1.2
Debye model
228
6.1.3
Estimating the cost of cooling
cryostat
parts using the Debye model
230
6.1.4
Thermal diffusivity
231
6.2
Thermal expansion/contraction
233
6.2.1
Design data and materials selection
—
great differences among resins,
metals, and glasses
233
6.2.2
Estimating thermal expansion between arbitrary temperatures
238
6.2.3
Calculating thermal stresses
239
6.3
Electrical resistivity
240
6.3.1
Design data and materials selection: dependence of electrical
resistivity on temperature and purity
240
6.3.2
Residual resistivity pres and defect scattering
241
6.3.3
Ideal resistivity
p¡(r)
and phonon scattering
243
Bloch-Grüneisen
formula: it does not work
244
Umklapp scattering
245
6.3.4
Matthiessen's rule
—
a simple method of estimating the total electrical
resistivity of nearly pure metals at arbitrary temperatures
246
6.3.5
Summary of important points for normal metals
247
6.3.6
Superconductors
248
6.4
Thermal conductivity
248
6.4.1
Design data and materials selection
248
6.4.2
Electronic thermal conductivity in metals
250
Wiedemann-Franz-Lorenz law
251
6.4.3
Phonon thermal conductivity in insulators
252
6.5
Magnetic susceptibility
252
6.5.1
Design data and materials selection
252
6.5.2
High-field measurements
—
forces, forces
254
xvi Contents
6.6
Mechanical properties
255
6.6.1
Tensile properties
256
6.6.2
Fracture toughness
261
6.6.3
Fatigue
262
6.6.4
Creep
264
6.6.5
Mechanical properties of technical materials: synopsis
264
6.7
References
265
6.7.1
Further reading
265
6.7.2
Properties of solids: internet information
266
6.7.3
Chapter references
267
PARTII
ELECTRICAL TRANSPORT MEASUREMENTS: SAMPLE
HOLDERS AND CONTACTS
271
7
Sample Holders
273
7.1
General principles for sample-holder design
273
7.2
Four-lead and two-lead electrical transport measurements
274
7.3
Bulk sample holders
276
7.3.1
Requirement
1 :
sample temperature uniformity and control
276
Temperature nonuniformity from variable convective cooling
276
Temperature nonuniformity from Joule heating
279
Practical illustrations of bulk sample holders
280
7.3.2
Requirement
2:
thermal contraction of the sample holder and strain-free
mounting techniques
282
Choosing a sample holder with a thermal contraction that matches the sample
283
7.3.3
Requirement
3:
instrumentation wiring
—
keep the loop area small
288
7.3.4
Requirement
4:
voltage-tap placement and current-contact lengths
290
Strange voltages of the first kind: the current-transfer length
291
More strange voltages: the twist-pitch effect
293
7.3.5
Requirement
5:
support your sample!
296
7.3.6
Procedures for mounting long superconductor samples
298
7.4
Thin-film sample holders
301
7.4.1
Requirement
1 :
temperature control and uniformity
301
7.4.2
Requirement
2:
stress from differential thermal contraction
303
7.4.3
Requirement
3:
lead attachment to the sample's contact pads
303
Wire/ribbon bonds
304
Pogo pins
306
Contents xvii
Fuzz buttons
307
Beryllium-copper microsprings
308
Thin-film transport measurements without patterning
309
7.4.4
Requirement
4:
voltage taps
—
noise pickup and current-transfer lengths
311
7.5
Addenda
312
7.5.1
Thermal runaway (quench)
312
7.5.2
Multifilamentary geometry of practical high-current
superconductor composites
312
7.6
References
315
7.6.1
Further reading
315
7.6.2
Chapter references
316
8
Sample Contacts
317
8.1
Introduction
317
8.2
Definition of specific contact resistivity and values for practical applications
318
8.3
Contact techniques for high-current superconductors
320
8.3.1
Overview for high-current superconductors
320
8.3.2
Voltage contacts
320
Soldered voltage contacts
321
Wetting the oxides
321
Pressure contacts
322
Silver paint, paste, and epoxy
323
8.3.3
Current contacts for oxide highTc superconductors
323
Pressed-indium contacts
323
High-current contacts
—
failures
324
Interfacial
chemistry
324
Fabrication procedures for high-quality
HTS
current contacts
326
Soldering to noble-metal contact pads
331
Silver-sheathed
HTS
materials
332
8.3.4
Measuring contact resistivity
332
8.4
Contact techniques for film superconductors
333
8.4.1
Overview for film superconductors
333
8.4.2
Contacts for oxide high-
Гс
superconductor films
334
In situ vs. ex situ contacts
334
Cleaning etch
335
Noble-metal deposition and thickness
337
Film contact annealing
337
8.4.3
Measuring film/contact interface resistivity
339
xviii Contents
8.5
Example calculations of
minimum
contact
area
341
8.5.1
Nb-Tiat-łK
341
Contacts immersed in liquid helium
341
Contacts in helium gas or vacuum
342
8.5.2
Nb3Sn at
4
K: resistive-matrix contribution
343
8.5.3
High- Tc superconductors at
77
К
344
Contacts in nitrogen gas or vacuum
346
8.6
Spreading-resistance effect in thin contact pads and
example calculations
346
8.6.1
YBCO-coated-conductor contacts
347
8.6.2
Thin-film contacts
348
8.7
References
349
8.7.1
Further reading
349
8.7.2
Chapter references
350
PART III SUPERCONDUCTOR CRITICAL-CURRENT MEASUREMENTS
AND DATA ANALYSIS
351
9
Critical-Current Measurements
353
9.1
Introduction
353
9.1.1
Transport method vs. contactless methods of measuring critical current
354
9.1.2
Defining critical-current density
355
9.1.3
The overall picture: dependence of critical current on magnetic field,
temperature, and strain
357
9.1.4
Test configurations
359
Transmission-line applications
359
Magnet and rotating-machinery applications
3 59
Thin-film electronic applications
360
9.2
Instrumentation
361
9.2.1
Setting up a critical-current measurement system
361
Sample current supply
362
Thermal-runaway protection circuits
363
Voltmeter
364
Magnet power supplies
364
Pulsed-current measurements
365
9.2.2
Wiring check-out for a new system
366
9.3
Measurement procedures
366
9.3.1
General troubleshooting tips
367
Contents xix
9.3.2 Critical-current
measurement procedures
367
The V-lcurve reversal point
368
Sample stability
368
Data-acquisition protocol to avoid sample burnout and ensure good data
368
Curve shape: the "who's who" in problem identification
370
9.3.3
Automatic data-acquisition programs
372
Introduction and general approach
372
Program architecture: simple data loggers
373
Program architecture: data acquisition with automated current control
374
9.4
Examples of critical-current measurement
cryostats
377
9.4.1
Critical current vs. magnetic field
378
9.4.2
Critical current vs. the angle of magnetic field
378
9.4.3
Critical current vs. temperature
380
Low-current variable-temperature
cryostats
380
High-current variable-temperature
cryostats
381
9.4.4
Critical current vs. axial strain
383
Stress-free cooling
cryostats
384
Bending-beam
cryostats
386
Variable-temperature strain measurements
388
Ring-coil hoop-stress measurements
388
9.4.5
Critical current vs. bending strain
391
9.5
References
392
9.5.1
Further reading
392
9.5.2
Chapter references
393
10
Critical-Current Data Analysis
395
10.1
Practical critical-current definitions
396
10.1.1
Electric-field criterion
396
10.1.2
Resistivity criterion
399
10.1.3
Offset criterion
400
10.1.4
Summary of the advantages and disadvantages of the different criteria
402
10.1.5
Transforming to a more sensitive criterion
403
10.2
Current-transfer correction
404
10.2.1
Introduction
404
10.2.2
Back-extrapolation correction method: extend the V-l curve to high voltage
405
10.2.3
Baseline method: what to do if thermal runaway prevents extending
the V-l curve to high voltages
407
10.3
Magnetic-field dependence of critical current
408
10.3.1
introduction
408
xx Contents
10.3.2 General
function for the magnetic-field dependence of critical
current in low-
Γ,,
superconductors
412
10.3.3
Method for magnetic-field interpolations and extrapolations
413
10.3.4
Effect of
ßC2 inhomogeneity
on the shape of the i-B characteristics of
low-Tc superconductors
418
10.3.5
Effect of weak links on the shape of the Ic-B characteristics of
high-ľc
superconductors
419
10.3.6
Improvement of Jc-B characteristics from grain alignment in
high
-Гс
superconductors
421
10.4
Temperature dependence of critical current
424
10.4.1
Introduction
424
10.4.2
Critical field vs. temperature
424
10.4.3
Critical current vs. temperature
425
10.4.4
Linear method for calculating temperature changes in the critical current
426
10.5
Strain-induced changes in the critical current
432
10.5.1
Introduction
432
Reversible strain effect
434
Irreversible strain limit
436
10.5.2
Bending strain effects
437
10.5.3
Axial-strain effects
439
10.5.4
Strain scaling law for
low-ľ,.
superconductors
440
10.5.5
Nearly universal effect of strain on the upper critical field
442
10.5.6
High-compressive-strain range
446
10.5.7
Example: application of the strain scaling law
449
10.6
Transformation method for simplified application of scaling relations
456
10.6.1
Transformation method
456
Stain-scaling transformations
458
10.6.2
Example: transformation method for calculating strain changes
in the critical current
459
10.6.3
Temperature scaling law
461
Temperature-scaling transformations
462
10.7
Unified strain-and-temperature scaling law and transformations
464
10.7.1
Unified scaling law
—
basic relation
464
Separable form
466
10.7.2
Parameterization of the unified strain-and-temperature scaling law over
the intrinsic peak range
(-0.5% <
ε0
< +0.4%) 468
10.7.3
General parameterization of the unified strain-and-temperature scaling law
for strains extending to high compression
(
ε0
< - 0.5%) 471
Contents xxi
10.7.4
Methods for determining parameter
values
474
10.7.5
Transformation method for simplified application of the unified scaling law
478
Unified-scaling transformations
479
Intrinsic peak range
(-0.5%
<εο<
+0.4%) 480
High-compressive-strain range
481
Example: transformation method for calculating combined
strain-and-temperature changes in the critical current
482
10.8
References
485
10.8.1
Further reading
485
10.8.2
Chapter references
486
Appendixes
491-626
Data handbook of materials properties and
cryostat
design
(see inside back cover for appendix contents)
INDEX
627 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Ekin, Jack W. |
author_facet | Ekin, Jack W. |
author_role | aut |
author_sort | Ekin, Jack W. |
author_variant | j w e jw jwe |
building | Verbundindex |
bvnumber | BV022463724 |
callnumber-first | Q - Science |
callnumber-label | QC278 |
callnumber-raw | QC278 |
callnumber-search | QC278 |
callnumber-sort | QC 3278 |
callnumber-subject | QC - Physics |
classification_rvk | UX 3300 |
classification_tum | PHY 152f |
ctrlnum | (OCoLC)232370445 (DE-599)BVBBV022463724 |
dewey-full | 536/.54 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 536 - Heat |
dewey-raw | 536/.54 |
dewey-search | 536/.54 |
dewey-sort | 3536 254 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 1. publ., reprinted (with corr.) |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02232nam a2200529zc 4500</leader><controlfield tag="001">BV022463724</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20120508 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070614s2007 xxuad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0198570546</subfield><subfield code="c">alk. paper</subfield><subfield code="9">0-19-857054-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780198570547</subfield><subfield code="9">978-0-19-857054-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)232370445</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022463724</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC278</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">536/.54</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UX 3300</subfield><subfield code="0">(DE-625)146955:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 152f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ekin, Jack W.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental techniques for low temperature measurements</subfield><subfield code="b">cryostat design, material properties, and superconductor critical-current testing</subfield><subfield code="c">Jack W. Ekin</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1. publ., reprinted (with corr.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford [u.a.]</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVIII, 673 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene, unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low temperatures</subfield><subfield code="x">Measurement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low temperatures</subfield><subfield code="x">Instruments</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low temperature research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductors</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Temperaturmessung</subfield><subfield code="0">(DE-588)4133187-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tieftemperaturtechnik</subfield><subfield code="0">(DE-588)4078299-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tieftemperatur</subfield><subfield code="0">(DE-588)4134801-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tieftemperaturtechnik</subfield><subfield code="0">(DE-588)4078299-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Tieftemperatur</subfield><subfield code="0">(DE-588)4134801-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Temperaturmessung</subfield><subfield code="0">(DE-588)4133187-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0640/2006010332-d.html</subfield><subfield code="3">Publisher description</subfield></datafield><datafield tag="856" ind1="4" ind2=" "><subfield code="u">http://www.loc.gov/catdir/enhancements/fy0640/2006010332-t.html</subfield><subfield code="3">Table of contents</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671343&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015671343</subfield></datafield></record></collection> |
id | DE-604.BV022463724 |
illustrated | Illustrated |
index_date | 2024-07-02T17:41:26Z |
indexdate | 2024-07-09T20:58:09Z |
institution | BVB |
isbn | 0198570546 9780198570547 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015671343 |
oclc_num | 232370445 |
open_access_boolean | |
owner | DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
owner_facet | DE-703 DE-355 DE-BY-UBR DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-20 |
physical | XXVIII, 673 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Oxford University Press |
record_format | marc |
spelling | Ekin, Jack W. Verfasser aut Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing Jack W. Ekin 1. publ., reprinted (with corr.) Oxford [u.a.] Oxford University Press 2007 XXVIII, 673 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene, unveränderte Nachdrucke Low temperatures Measurement Low temperatures Instruments Low temperature research Superconductors Temperaturmessung (DE-588)4133187-4 gnd rswk-swf Tieftemperaturtechnik (DE-588)4078299-2 gnd rswk-swf Tieftemperatur (DE-588)4134801-1 gnd rswk-swf Tieftemperaturtechnik (DE-588)4078299-2 s DE-604 Tieftemperatur (DE-588)4134801-1 s Temperaturmessung (DE-588)4133187-4 s http://www.loc.gov/catdir/enhancements/fy0640/2006010332-d.html Publisher description http://www.loc.gov/catdir/enhancements/fy0640/2006010332-t.html Table of contents Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671343&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Ekin, Jack W. Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing Low temperatures Measurement Low temperatures Instruments Low temperature research Superconductors Temperaturmessung (DE-588)4133187-4 gnd Tieftemperaturtechnik (DE-588)4078299-2 gnd Tieftemperatur (DE-588)4134801-1 gnd |
subject_GND | (DE-588)4133187-4 (DE-588)4078299-2 (DE-588)4134801-1 |
title | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing |
title_auth | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing |
title_exact_search | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing |
title_exact_search_txtP | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing |
title_full | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing Jack W. Ekin |
title_fullStr | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing Jack W. Ekin |
title_full_unstemmed | Experimental techniques for low temperature measurements cryostat design, material properties, and superconductor critical-current testing Jack W. Ekin |
title_short | Experimental techniques for low temperature measurements |
title_sort | experimental techniques for low temperature measurements cryostat design material properties and superconductor critical current testing |
title_sub | cryostat design, material properties, and superconductor critical-current testing |
topic | Low temperatures Measurement Low temperatures Instruments Low temperature research Superconductors Temperaturmessung (DE-588)4133187-4 gnd Tieftemperaturtechnik (DE-588)4078299-2 gnd Tieftemperatur (DE-588)4134801-1 gnd |
topic_facet | Low temperatures Measurement Low temperatures Instruments Low temperature research Superconductors Temperaturmessung Tieftemperaturtechnik Tieftemperatur |
url | http://www.loc.gov/catdir/enhancements/fy0640/2006010332-d.html http://www.loc.gov/catdir/enhancements/fy0640/2006010332-t.html http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015671343&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT ekinjackw experimentaltechniquesforlowtemperaturemeasurementscryostatdesignmaterialpropertiesandsuperconductorcriticalcurrenttesting |