Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge [u.a.]
Cambridge Univ. Press
2002
|
Ausgabe: | 7. (expanded) ed., repr. with corr. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Hier auch später erschienene unveränderte Nachdrucke |
Beschreibung: | XXXIII, 952 S. Ill., graph. Darst. |
ISBN: | 0521642221 9780521642224 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022452629 | ||
003 | DE-604 | ||
005 | 20171120 | ||
007 | t | ||
008 | 070605s2002 ad|| |||| 00||| eng d | ||
020 | |a 0521642221 |9 0-521-64222-1 | ||
020 | |a 9780521642224 |9 978-0-521-64222-4 | ||
035 | |a (OCoLC)180019541 | ||
035 | |a (DE-599)BVBBV022452629 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-91G |a DE-898 |a DE-703 |a DE-29T |a DE-20 |a DE-706 |a DE-355 |a DE-91 | ||
082 | 0 | |a 535.2 | |
084 | |a UH 5000 |0 (DE-625)145647: |2 rvk | ||
084 | |a PHY 350f |2 stub | ||
100 | 1 | |a Born, Max |d 1882-1970 |e Verfasser |0 (DE-588)118513621 |4 aut | |
245 | 1 | 0 | |a Principles of optics |b electromagnetic theory of propagation, interference and diffraction of light |c Max Born and Emil Wolf |
250 | |a 7. (expanded) ed., repr. with corr. | ||
264 | 1 | |a Cambridge [u.a.] |b Cambridge Univ. Press |c 2002 | |
300 | |a XXXIII, 952 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Hier auch später erschienene unveränderte Nachdrucke | ||
650 | 0 | 7 | |a Kristalloptik |0 (DE-588)4165767-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Interferenz |g Physik |0 (DE-588)4162000-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Beugung |0 (DE-588)4145094-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Licht |0 (DE-588)4035596-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optik |0 (DE-588)4043650-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wellenoptik |0 (DE-588)4189552-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lichtstreuung |0 (DE-588)4167602-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Optik |0 (DE-588)4043650-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Wellenoptik |0 (DE-588)4189552-6 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Beugung |0 (DE-588)4145094-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Licht |0 (DE-588)4035596-2 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Interferenz |g Physik |0 (DE-588)4162000-8 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Lichtstreuung |0 (DE-588)4167602-6 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Kristalloptik |0 (DE-588)4165767-6 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
689 | 7 | 0 | |a Elektromagnetisches Feld |0 (DE-588)4014305-3 |D s |
689 | 7 | |8 8\p |5 DE-604 | |
700 | 1 | |a Wolf, Emil |d 1922-2018 |e Verfasser |0 (DE-588)124170498 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015660463&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015660463 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 8\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804136532750106624 |
---|---|
adam_text | Contents
Historical introduction xxv
1
Basic properties of the electromagnetic field
1
1.1
The electromagnetic field
1
1.1.1
Maxwell s equations
1
1.1.2
Material equations
2
1.1.3
Boundary conditions at a surface of discontinuity
4
1.1.4
The energy law of the electromagnetic field
7
1.2
The wave equation and the velocity of light
11
1.3
Scalar waves
14
1.3.1
Plane waves
15
1.3.2
Spherical waves
16
1.3.3
Harmonic waves. The phase velocity
16
1.3.4
Wave packets. The group velocity
19
1.4
Vector waves
24
1.4.1
The general electromagnetic plane wave
24
1.4.2
The harmonic electromagnetic plane wave
25
(a) Elliptic polarization
25
(b) Linear and circular polarization
29
(c) Characterization of the state of polarization by Stokes parameters
31
1.4.3
Harmonic vector waves of arbitrary form
33
1.5
Reflection and refraction of a plane wave
38
1.5.1
The laws of reflection and refraction
38
1.5.2
Fresnel formulae
40
1.5.3
The reflectivity and transmissivity; polarization on reflection and refraction
43
1.5.4
Total reflection
49
1.6
Wave propagation in a stratified medium. Theory of dielectric films
54
1.6.1
The basic differential equations
55
1.6.2
The characteristic matrix of a stratified medium
58
(a) A homogeneous dielectric film
61
(b) A stratified medium as a pile of thin homogeneous films
62
і
.6.3
The reflection and transmission coefficients
63
1.6.4
A homogeneous dielectric film
64
1.6.5
Periodically stratified media
70
II Electromagnetic potentials and polarization
75
2.1
The electrodynamic potentials in the vacuum
76
xvi
Contents
2.1.1
The vector and scalar potentials
76
2.1.2
Retarded potentials
78
2.2
Polarization and magnetization
80
2.2.1
The potentials in terms of polarization and magnetization
80
2.2.2
Hertz vectors
84
2.2.3
The field of a linear electric
dipole
85
2.3
The Lorentz-Lorenz formula and elementary dispersion theory
89
2.3.1
The dielectric and magnetic susceptibilities
89
2.3.2
The effective field
90
2.3.3
The mean polarizability: the Lorentz-Lorenz formula
92
2.3.4
Elementary theory of dispersion
95
2.4
Propagation of electromagnetic waves treated by integral equations
103
2.4.1
The basic integral equation
104
2.4.2
The Ewald-Oseen extinction theorem and a rigorous derivation of the
Lorentz-Lorenz formula
105
2.4.3
Refraction and reflection of a plane wave, treated with the help of the
Ewald-Oseen extinction theorem
110
III Foundations of geometrical optics
116
3.1
Approximation for very short wavelengths
116
3.1.1
Derivation of the eikonal equation
117
3.1.2
The light rays and the intensity law of geometrical optics
120
3.1.3
Propagation of the amplitude vectors
125
3.1.4
Generalizations and the limits of validity of geometrical optics
127
3.2
General properties of rays
129
3.2.1
The differential equation of light rays
129
3.2.2
The laws of
refracţi
on and reflection
132
3.2.3
Ray congruences and their focal properties
134
3.3
Other basic theorems of geometrical optics
135
3.3.1
Lagrange s integral invariant
135
3.3.2
The principle of
Fermat
136
3.3.3
The theorem of
Malus
and
Dupin
and some related theorems
139
IV Geometrical theory of optical imaging
142
4.1
The characteristic functions of Hamilton
142
4.1.1
The point characteristic
142
4.1.2
The mixed characteristic
144
4.1.3
The angle characteristic
146
4.1.4
Approximate form of the angle characteristic of a refracting surface of
revolution
147
4.1.5
Approximate form of the angle characteristic of a reflecting surface of
revolution
151
4.2
Perfect imaging
152
4.2.1
General theorems
153
4.2.2
Maxwell s fish-eye
157
4.2.3
Stigmatic imaging of surfaces
159
4.3
Projective
transformation (collineation) with axial symmetry
160
4.3.1
General formulae
161
4.3.2
The telescopic case
164
4.3.3
Classification of
projective
transformations
165
4.3.4
Combination of prqjective transformations
166
4.4
Gaussian optics
167
4.4.1
Refracting surface of revolution
167
Contents
4.4.2
Reflecting
surface
of revolution
170
4.4.3
The thick lens
171
4.4.4
The thin lens
174
4.4.5
The general centred system
175
4.5
Stigmatic imaging with wide-angle pencils
178
4.5.1
The sine condition
179
4.5.2
The Herschel condition
180
4.6
Astigmatic pencils of rays
181
4.6.1
Focal properties of a thin pencil
181
4.6.2
Refraction of a thin pencil
182
4.7
Chromatic aberration. Dispersion by a prism
186
4.7.1
Chromatic aberration
186
4.7.2
Dispersion by a prism
190
4.8
Radiometry
and apertures
193
4.8.1
Basic concepts of
radiometry
194
4.8.2
Stops and pupils
199
4.8.3
Brightness and illumination of images
201
4.9
Ray tracing
204
4.9.1
Oblique meridional rays
204
4.9.2
Paraxial rays
207
4.9.3
Skew rays
208
4.10
Design of aspheric surfaces
211
4.10.1
Attainment of axial stigmatism
211
4.10.2
Attainment of aplanatism
214
4.11
Image-reconstruction from projections (computerized tomography)
217
4.11.1
Introduction
217
4.11.2
Beam propagation in an absorbing medium
218
4.11.3
Ray integrals and projections
219
4.11.4
The ¡V-dimensional Radon transform
221
4.11.5
Reconstruction of cross-sections and the projection-slice theorem of
computerized tomography
223
V Geometrical theory of aberrations
228
5.1
Wave and ray aberrations; the aberration function
229
5.2
The perturbation eikonal of
Schwarzschild 233
5.3
The primary
(Seidel)
aberrations
236
(a) Spherical aberration
(0^0) 238
(b) Coma(F^O)
238
(c
)
Astigmatism
(
С
φ
0)
and curvature of field
(
D
ƒ 0) 240
(d)
Distortion
(£^0) 243
5.4
Addition theorem for the primary aberrations
244
5.5
The primary aberration coefficients of a general centred lens system
246
5.5.1
The
Seidel
formulae in terms of two paraxial rays
246
5.5.2
The
Seidel
formulae in terms of one paraxial ray
251
5.5.3
Petzvaľs
theorem
253
5.6
Example: The
priman
aberrations of a thin lens
254
5.7
The chromatic aberration of a general centred lens system
257
VI Image-forming instruments
261
6.1
The eye
261
6.2
The camera
263
6.3
The refracting telescope
267
6.4
The reflecting telescope
274
Contents xix
6.5 Instruments
of illumination
279
6.6
The microscope
281
VII
Elements of the theory of interference and interferometers
286
7.1
Introduction
286
7.2
Interference of two monochromatic waves
287
7.3
Two-beam interference: division of wave-front
290
7.3.1
Young s experiment
290
7.3.2
Fresnel s mirrors and similar arrangements
292
7.3.3
Fringes with quasi-monochromatic and white light
295
7.3.4
Use of slit sources; visibility of fringes
296
7.3.5
Application to the measurement of optical path difference: the Rayleigh
interferometer
299
7.3.6
Application to the measurement of angular dimensions of sources:
the Michelson stellar interferometer
302
7.4
Standing waves
308
7.5
Two-beam interference: division of amplitude
313
7.5.1
Fringes with a plane-parallel plate
ЗІЗ
7.5.2
Fringes with thin films; the Fizeau interferometer
318
7.5.3
Localization of fringes
325
7.5.4
The Michelson interferometer
334
7.5.5
The Twyman-Green and related interferometers
336
7.5.6
Fringes with two identical plates: the Jamin interferometer and
interference microscopes
341
7.5.7
The Mach-Zehnder interferometer; the Bates wave-front shearing inter¬
ferometer
348
7.5.8
The coherence length; the application of two-beam interference to the
study of the fine structure of spectral lines
352
7.6
Multiple-beam interference
359
7.6.1
Multiple-beam fringes with a plane-parallel plate
360
7.6.2
The Fabry-Perot interferometer
366
7.6.3
The application of the Fabry-Perot interferometer to the study of the
fine structure of spectral lines
370
7.6.4
The application of the Fabry-Perot interferometer to the comparison of
wavelengths
377
7.6.5
The Lummer-Gehrcke interferometer
380
7.6.6
Interference filters
386
7.6.7
Multiple-beam fringes with thin films
391
7.6.8
Multiple-beam fringes with two plane-parallel plates
401
(a) Fringes with monochromatic and quasi-monochromatic light
401
(b) Fringes of superposition
405
7.7
The comparison of wavelengths with the standard metre
409
VIII
Elements of the theory of diffraction
412
8.1
Introduction
412
8.2
The Huygens-Fresnel principle
413
8.3 Kirchhoff
s
diffraction theory
417
8.3.1
The integral theorem of
Kirchhoff 417
8.3.2
Kirchhoffs diffraction theory
421
8.3.3 Fraunhofer
and Fresnel diffraction
425
8.4
Transition to a scalar theory
430
8.4.1
The image field due to a monochromatic oscillator
431
8.4.2
The total image field
434
xx Contents
8.5 Fraunhofer
diffraction
at apertures of various forms
436
8.5.1
The rectangular aperture and the slit
436
8.5.2
The circular aperture
439
8.5.3
Other forms of aperture
443
8.6 Fraunhofer
diffraction in optical instruments
446
8.6.1
Diffraction gratings
446
(a) The principle of the diffraction grating
446
(b) Types of grating
453
(c) Grating spectrographs
458
8.6.2
Resolving power of image-forming systems
461
8.6.3
Image formation in the microscope
465
(a) Incoherent illumination
465
(b) Coherent illumination
-
Abbe s theory
467
(c) Coherent illumination
-
Zernike s phase contrast method of
observation
472
8.7
Fresnel diffraction at a straight edge
476
8.7.1
The diffraction integral
476
8.7.2
Fresnel s integrals
478
8.7.3
Fresnel diffraction at a straight edge
481
8.8
The three-dimensional light distribution near focus
484
8.8.1
Evaluation of the diffraction integral in terms of
Lömmel
functions
484
8.8.2
The distribution of intensity
489
(a) Intensity in the geometrical focal plane
490
(b) Intensity along the axis
491
(c) Intensity along the boundary of the geometrical shadow
491
8.8.3
The integrated intensity
492
8.8.4
The phase behaviour
494
8.9
The boundary diffraction wave
499
8.10
Gabor s method of imaging by reconstructed wave-fronts (holography)
504
8.10.1
Producing the positive hologram
504
8.10.2
The reconstruction
506
8.11
The Rayleigh-Sommerfeld diffraction integrals
512
8.11.1
The Rayleigh diffraction integrals
512
8.11.2
The Rayleigh-Sommerfeld diffraction integrals
514
IX The diffraction theory of aberrations
517
9.1
The diffraction integral in the presence of aberrations
518
9.1.1
The diffraction integral
518
9.1.2.
The displacement theorem. Change of reference sphere
520
9.1.3.
A relation between the intensity and the average deformation of
wave-fronts
522
9.2
Expansion of the aberration function
523
9.2.1
The circle polynomials of Zernike
523
9.2.2
Expansion of the aberration function
525
9.3
Tolerance conditions for primary aberrations
527
9.4
The diffraction pattern associated with a single aberration
532
9.4.1
Primary spherical aberration
536
9.4.2
Primary coma
538
9.4.3
Primary astigmatism
539
9.5
Imaging of extended objects
543
9.5.1
Coherent illumination
543
9.5.2
Incoherent illumination
547
Contents xxi
X Interference and diffraction with partially coherent light
554
10.1
Introduction
554
10.2
A complex representation of real polychromatic fields
557
10.3
The correlation functions of light beams
562
10.3.1
Interference of two partially coherent beams. The mutual coherence
function and the complex degree of coherence
562
10.3.2
Spectral representation of mutual coherence
566
10.4
Interference and diffraction with quasi-monochromatic light
569
10.4.1
Interference with quasi-monochromatic light. The mutual intensity
569
10.4.2
Calculation of mutual intensity and degree of coherence for light from
an extended incoherent quasi-monochromatic source
572
(a) The van Cittert-Zernike theorem
572
(b) Hopkins formula
577
10.4.3
An example
578
10.4.4
Propagation of mutual intensity
580
10.5
Interference with broad-band light and the spectral degree of coherence.
Correlation-induced spectral changes
585
10.6
Some applications
590
10.6.1
The degree of coherence in the image of an extended incoherent
quasi-monochromatic source
590
10.6.2
The influence of the condenser on resolution in a microscope
595
(a) Critical illumination
595
(b)
Köhler s
illumination
598
10.6.3
Imaging with partially coherent quasi-monochromatic illumination
599
(a) Transmission of mutual intensity through an optical system
599
(b) Images of transilluminated objects
602
10.7
Some theorems relating to mutual coherence
606
10.7.1
Calculation of mutual coherence for light from an incoherent source
606
10.7.2
Propagation of mutual coherence
609
10.8
Rigorous theory of partial coherence
610
10.8.1
Wave equations for mutual coherence
610
10.8.2
Rigorous formulation of the propagation law for mutual coherence
612
10.8.3
The coherence time and the effective spectral width
615
10.9
Polarization properties of quasi-monochromatic light
619
10.9.1
The coherency matrix of a quasi-monochromatic plane wave
619
(a) Completely unpolarized light (natural light)
624
(b) Complete polarized light
624
10.9.2
Some equivalent representations. The degree of polarization of a light
wave
626
10.9.3
The Stokes parameters of a quasi-monochromatic plane wave
630
XI Rigorous diffraction theory
633
11.1
Introduction
633
11.2
Boundary conditions and surface currents
635
11.3
Diffraction by a plane screen: electromagnetic form of Babinet s principle
636
11.4
Two-dimensional diffraction by a plane screen
638
11.4.1
The scalar nature of two-dimensional electromagnetic fields
638
11.4.2
An angular spectrum of plane waves
639
11.4.3
Formulation in terms of dual integral equations
642
11.5
Two-dimensional diffraction of
aplane
wave by a half-plane
643
11.5.1
Solution of the dual integral equations for ¿ -polarization
643
11.5.2
Expression of the solution in terms of Fresnel integrals
645
11.5.3
The nature of the solution
648
xxii Contents
11.5.4
The solution for
Я
-polarization
652
11.5.5
Some numerical calculations
653
11.5.6
Comparison with approximate theory and with experimental results
656
11.6
Three-dimensional diffraction of a plane wave by a half-plane
657
11.7
Diffraction of a field due to a localized source by a half-plane
659
11.7.1
A line-current parallel to the diffracting edge
659
11.7.2
A dipole
664
11.8
Other problems
667
11.8.1
Two parallel half-planes
667
11.8.2
An infinite stack of parallel, staggered half-planes
669
11.8.3
A strip
670
11.8.4
Further problems
671
11.9
Uniqueness of solution
672
XII
Diffraction of light by ultrasonic waves
674
12.1
Qualitative description of the phenomenon and summary of theories based on
Maxwell s differential equations
674
12.1.1
Qualitative description of the phenomenon
674
12.1.2
Summary of theories based on Maxwell s equations
677
12.2
Diffraction of light by ultrasonic waves as treated by the integral equation
method
680
12.2.1
Integral equation for E-polarization
682
12.2.2
The trial solution of the integral equation
682
12.2.3
Expressions for the amplitudes of the light waves in the diffracted and
reflected spectra
686
12.2.4
Solution of the equations by a method of successive approximations
686
12.2.5
Expressions for the intensities of the first and second order lines for
some special cases
689
12.2.6
Some qualitative results
691
12.2.7
The Raman-Nath approximation
693
XIII
Scattering from ¡nhomogeneous media
695
13.1
Elements of the scalar theory of scattering
695
13.1.1
Derivation of the basic integral equation
695
13.1.2
The first-order Born approximation
699
13.1.3
Scattering from periodic potentials
703
13.1.4
Multiple scattering
708
13.2
Principles of diffraction tomography for reconstruction of the scattering
potential
710
13.2.1
Angular spectrum representation of the scattered field
711
13.2.2
The basic theorem of diffraction tomography
713
13.3
The optical cross-section theorem
716
13.4
A reciprocity relation
724
13.5
The Rytov series
726
13.6
Scattering of electromagnetic waves
729
13.6.1
The integro-differential equations of electromagnetic scattering
theory
729
13.6.2
The far field
730
Î3.6.3
The optical cross-section theorem for scattering of electromagnetic
732
waves
XIV
Optics of metals
735
14.1
Wave propagation in a conductor
735
Contents xxiii
14.2
Refraction and reflection at
a metal
surface
739
14.3
Elementary electron theory of the optical constants of metals
749
14.4
Wave propagation in a stratified conducting medium. Theory of metallic
films
752
14.4.1
An absorbing film on a transparent substrate
752
14.4.2
A transparent film on an absorbing substrate
758
14.5
Diffraction by a conducting sphere; theory of
Mie
759
14.5.1
Mathematical solution of the problem
760
(a) Representation of the field in terms of Debye s potentials
760
(b) Series expansions for the field components
765
(c) Summary of formulae relating to the associated Legendre func¬
tions and to the cylindrical functions
772
14.5.2
Some consequences of Mie s formulae
774
(a) The partial waves
774
(b) Limiting cases
775
(c) Intensity and polarization of the scattered light
780
14.5.3
Total scattering and extinction
784
(a) Some general considerations
784
(b) Computational results
785
XV Optics of crystals
790
15.1
The dielectric tensor of an anisotropic medium
790
15.2
The structure of a monochromatic plane wave in an anisotropic medium
792
15.2.1
The phase velocity and the ray velocity
792
15.2.2
Fresnel s formulae for the propagation of light in crystals
795
15.2.3
Geometrical constructions for determining the velocities of
propagation and the directions of vibration
799
(a) The ellipsoid of wave normals
799
(b) The ray ellipsoid
802
(c) The normal surface and the ray surface
803
15.3
Optical properties of
uniaxial
and biaxial crystals
805
15.3.1
The optical classification of crystals
805
15.3.2
Light propagation in
uniaxial
crystals
806
15.3.3
Light propagation in biaxial crystals
808
15.3.4
Refraction in crystals
811
(a) Double refraction
811
(b) Conical refraction
813
15.4
Measurements in crystal optics
818
15.4.1
The
Nicol
prism
818
15.4.2
Compensators
820
(a) The quarter-wave plate
820
(b) Babinet s compensator
821
(c) Soleiľs
compensator
823
(d) Berek s compensator
823
15.4.3
Interference with crystal plates
823
15.4.4
Interference figures from
uniaxial
crystal plates
829
15.4.5
Interference figures from biaxial crystal plates
831
15.4.6
Location of optic axes and determination of the principal refractive
indices of a crystalline medium
833
15.5
Stress birefringence and form birefringence
834
15.5.1
Stress birefringence
834
15.5.2
Form birefringence
837
Contents
15.6
Absorbing crystals
840
15.6.1
Light propagation in an absorbing anisotropic medium
840
15.6.2
Interference figures from absorbing crystal plates
846
(a) Uniaxial
crystals
847
(b) Biaxial crystals
848
15.6.3
Dichroic polarizers
849
Appendices
853
I The Calculus of variations
853
1
Euler
s
equations as necessary conditions for an
extrémům
853
2
Hubert s independence integral and the Hamilton-Jacobi equation
855
3
The field of extremals
856
4
Determination of all extremals from the solution of the Hamilton-Jacobi equation
858
5
Hamilton s canonical equations
860
6
The special case when the independent variable does not appear explicitly in the integrand
861
7
Discontinuities
862
8
Weierstrass
and Legendre s conditions (sufficiency conditions for an
extrémům)
864
9
Minimum of the variational integral when one end point is constrained to a surface
866
10
Jacobi s criterion for a minimum
867
11
Example
1:
Optics
868
12
Example II: Mechanics of material points
870
II Light optics, electron optics and wave mechanics
873
1
The Hamiltonian analogy in elementary
főim
873
2
The Hamiltonian analogy in variational form
876
3
Wave mechanics of free electrons
879
4
The application of optical principles to electron optics
881
III Asymptotic approximations to integrals
883
1
The method of steepest descent
883
2
The method of stationary phase
888
3
Double integrals
890
IV The Dirac delta function
892
V A mathematical lemma used in the rigorous derivation of the
Lorentz-
Lorenz
formula
(§2-4.2) 898
VI Propagation of discontinuities in an electromagnetic field
(§3.1.1) 90
і
1
Relations connecting discontinuous changes in field vectors
901
2
The field on a moving discontinuity surface
903
VII
The circle polynomials of Zernike
(§9.2.1 ) 905
1
Some general considerations
905
2
Explicit expressions for the radial polynomials
Rí,
(μ)
907
VIII
Proof of
lhe
inequality
]/ii2(v)|
«s
1
for the spectral degree of coherence
(§10.5) 911
IX Proof of a reciprocity inequality
(§10.8.3) 912
X Evaluation of two integrals
(§12.2.2) 914
XI Energy conservation in scalar wavefields
(§13.3) 918
XII
Proof of Jones lemma
(§13.3) 921
Author index
925
Subject index
936
|
adam_txt |
Contents
Historical introduction xxv
1
Basic properties of the electromagnetic field
1
1.1
The electromagnetic field
1
1.1.1
Maxwell's equations
1
1.1.2
Material equations
2
1.1.3
Boundary conditions at a surface of discontinuity
4
1.1.4
The energy law of the electromagnetic field
7
1.2
The wave equation and the velocity of light
11
1.3
Scalar waves
14
1.3.1
Plane waves
15
1.3.2
Spherical waves
16
1.3.3
Harmonic waves. The phase velocity
16
1.3.4
Wave packets. The group velocity
19
1.4
Vector waves
24
1.4.1
The general electromagnetic plane wave
24
1.4.2
The harmonic electromagnetic plane wave
25
(a) Elliptic polarization
25
(b) Linear and circular polarization
29
(c) Characterization of the state of polarization by Stokes parameters
31
1.4.3
Harmonic vector waves of arbitrary form
33
1.5
Reflection and refraction of a plane wave
38
1.5.1
The laws of reflection and refraction
38
1.5.2
Fresnel formulae
40
1.5.3
The reflectivity and transmissivity; polarization on reflection and refraction
43
1.5.4
Total reflection
49
1.6
Wave propagation in a stratified medium. Theory of dielectric films
54
1.6.1
The basic differential equations
55
1.6.2
The characteristic matrix of a stratified medium
58
(a) A homogeneous dielectric film
61
(b) A stratified medium as a pile of thin homogeneous films
62
і
.6.3
The reflection and transmission coefficients
63
1.6.4
A homogeneous dielectric film
64
1.6.5
Periodically stratified media
70
II Electromagnetic potentials and polarization
75
2.1
The electrodynamic potentials in the vacuum
76
xvi
Contents
2.1.1
The vector and scalar potentials
76
2.1.2
Retarded potentials
78
2.2
Polarization and magnetization
80
2.2.1
The potentials in terms of polarization and magnetization
80
2.2.2
Hertz vectors
84
2.2.3
The field of a linear electric
dipole
85
2.3
The Lorentz-Lorenz formula and elementary dispersion theory
89
2.3.1
The dielectric and magnetic susceptibilities
89
2.3.2
The effective field
90
2.3.3
The mean polarizability: the Lorentz-Lorenz formula
92
2.3.4
Elementary theory of dispersion
95
2.4
Propagation of electromagnetic waves treated by integral equations
103
2.4.1
The basic integral equation
104
2.4.2
The Ewald-Oseen extinction theorem and a rigorous derivation of the
Lorentz-Lorenz formula
105
2.4.3
Refraction and reflection of a plane wave, treated with the help of the
Ewald-Oseen extinction theorem
110
III Foundations of geometrical optics
116
3.1
Approximation for very short wavelengths
116
3.1.1
Derivation of the eikonal equation
117
3.1.2
The light rays and the intensity law of geometrical optics
120
3.1.3
Propagation of the amplitude vectors
125
3.1.4
Generalizations and the limits of validity of geometrical optics
127
3.2
General properties of rays
129
3.2.1
The differential equation of light rays
129
3.2.2
The laws of
refracţi
on and reflection
132
3.2.3
Ray congruences and their focal properties
134
3.3
Other basic theorems of geometrical optics
135
3.3.1
Lagrange's integral invariant
135
3.3.2
The principle of
Fermat
136
3.3.3
The theorem of
Malus
and
Dupin
and some related theorems
139
IV Geometrical theory of optical imaging
142
4.1
The characteristic functions of Hamilton
142
4.1.1
The point characteristic
142
4.1.2
The mixed characteristic
144
4.1.3
The angle characteristic
146
4.1.4
Approximate form of the angle characteristic of a refracting surface of
revolution
147
4.1.5
Approximate form of the angle characteristic of a reflecting surface of
revolution
151
4.2
Perfect imaging
152
4.2.1
General theorems
153
4.2.2
Maxwell's'fish-eye'
157
4.2.3
Stigmatic imaging of surfaces
159
4.3
Projective
transformation (collineation) with axial symmetry
160
4.3.1
General formulae
161
4.3.2
The telescopic case
164
4.3.3
Classification of
projective
transformations
165
4.3.4
Combination of prqjective transformations
166
4.4
Gaussian optics
167
4.4.1
Refracting surface of revolution
167
Contents
4.4.2
Reflecting
surface
of revolution
170
4.4.3
The thick lens
171
4.4.4
The thin lens
174
4.4.5
The general centred system
175
4.5
Stigmatic imaging with wide-angle pencils
178
4.5.1
The sine condition
179
4.5.2
The Herschel condition
180
4.6
Astigmatic pencils of rays
181
4.6.1
Focal properties of a thin pencil
181
4.6.2
Refraction of a thin pencil
182
4.7
Chromatic aberration. Dispersion by a prism
186
4.7.1
Chromatic aberration
186
4.7.2
Dispersion by a prism
190
4.8
Radiometry
and apertures
193
4.8.1
Basic concepts of
radiometry
194
4.8.2
Stops and pupils
199
4.8.3
Brightness and illumination of images
201
4.9
Ray tracing
204
4.9.1
Oblique meridional rays
204
4.9.2
Paraxial rays
207
4.9.3
Skew rays
208
4.10
Design of aspheric surfaces
211
4.10.1
Attainment of axial stigmatism
211
4.10.2
Attainment of aplanatism
214
4.11
Image-reconstruction from projections (computerized tomography)
217
4.11.1
Introduction
217
4.11.2
Beam propagation in an absorbing medium
218
4.11.3
Ray integrals and projections
219
4.11.4
The ¡V-dimensional Radon transform
221
4.11.5
Reconstruction of cross-sections and the projection-slice theorem of
computerized tomography
223
V Geometrical theory of aberrations
228
5.1
Wave and ray aberrations; the aberration function
229
5.2
The perturbation eikonal of
Schwarzschild 233
5.3
The primary
(Seidel)
aberrations
236
(a) Spherical aberration
(0^0) 238
(b) Coma(F^O)
238
(c
)
Astigmatism
(
С
φ
0)
and curvature of field
(
D
ƒ 0) 240
(d)
Distortion
(£^0) 243
5.4
Addition theorem for the primary aberrations
244
5.5
The primary aberration coefficients of a general centred lens system
246
5.5.1
The
Seidel
formulae in terms of two paraxial rays
246
5.5.2
The
Seidel
formulae in terms of one paraxial ray
251
5.5.3
Petzvaľs
theorem
253
5.6
Example: The
priman'
aberrations of a thin lens
254
5.7
The chromatic aberration of a general centred lens system
257
VI Image-forming instruments
261
6.1
The eye
261
6.2
The camera
263
6.3
The refracting telescope
267
6.4
The reflecting telescope
274
Contents xix
6.5 Instruments
of illumination
279
6.6
The microscope
281
VII
Elements of the theory of interference and interferometers
286
7.1
Introduction
286
7.2
Interference of two monochromatic waves
287
7.3
Two-beam interference: division of wave-front
290
7.3.1
Young's experiment
290
7.3.2
Fresnel's mirrors and similar arrangements
292
7.3.3
Fringes with quasi-monochromatic and white light
295
7.3.4
Use of slit sources; visibility of fringes
296
7.3.5
Application to the measurement of optical path difference: the Rayleigh
interferometer
299
7.3.6
Application to the measurement of angular dimensions of sources:
the Michelson stellar interferometer
302
7.4
Standing waves
308
7.5
Two-beam interference: division of amplitude
313
7.5.1
Fringes with a plane-parallel plate
ЗІЗ
7.5.2
Fringes with thin films; the Fizeau interferometer
318
7.5.3
Localization of fringes
325
7.5.4
The Michelson interferometer
334
7.5.5
The Twyman-Green and related interferometers
336
7.5.6
Fringes with two identical plates: the Jamin interferometer and
interference microscopes
341
7.5.7
The Mach-Zehnder interferometer; the Bates wave-front shearing inter¬
ferometer
348
7.5.8
The coherence length; the application of two-beam interference to the
study of the fine structure of spectral lines
352
7.6
Multiple-beam interference
359
7.6.1
Multiple-beam fringes with a plane-parallel plate
360
7.6.2
The Fabry-Perot interferometer
366
7.6.3
The application of the Fabry-Perot interferometer to the study of the
fine structure of spectral lines
370
7.6.4
The application of the Fabry-Perot interferometer to the comparison of
wavelengths
377
7.6.5
The Lummer-Gehrcke interferometer
380
7.6.6
Interference filters
386
7.6.7
Multiple-beam fringes with thin films
391
7.6.8
Multiple-beam fringes with two plane-parallel plates
401
(a) Fringes with monochromatic and quasi-monochromatic light
401
(b) Fringes of superposition
405
7.7
The comparison of wavelengths with the standard metre
409
VIII
Elements of the theory of diffraction
412
8.1
Introduction
412
8.2
The Huygens-Fresnel principle
413
8.3 Kirchhoff
s
diffraction theory
417
8.3.1
The integral theorem of
Kirchhoff 417
8.3.2
Kirchhoffs diffraction theory
421
8.3.3 Fraunhofer
and Fresnel diffraction
425
8.4
Transition to a scalar theory
430
8.4.1
The image field due to a monochromatic oscillator
431
8.4.2
The total image field
434
xx Contents
8.5 Fraunhofer
diffraction
at apertures of various forms
436
8.5.1
The rectangular aperture and the slit
436
8.5.2
The circular aperture
439
8.5.3
Other forms of aperture
443
8.6 Fraunhofer
diffraction in optical instruments
446
8.6.1
Diffraction gratings
446
(a) The principle of the diffraction grating
446
(b) Types of grating
453
(c) Grating spectrographs
458
8.6.2
Resolving power of image-forming systems
461
8.6.3
Image formation in the microscope
465
(a) Incoherent illumination
465
(b) Coherent illumination
-
Abbe's theory
467
(c) Coherent illumination
-
Zernike's phase contrast method of
observation
472
8.7
Fresnel diffraction at a straight edge
476
8.7.1
The diffraction integral
476
8.7.2
Fresnel's integrals
478
8.7.3
Fresnel diffraction at a straight edge
481
8.8
The three-dimensional light distribution near focus
484
8.8.1
Evaluation of the diffraction integral in terms of
Lömmel
functions
484
8.8.2
The distribution of intensity
489
(a) Intensity in the geometrical focal plane
490
(b) Intensity along the axis
491
(c) Intensity along the boundary of the geometrical shadow
491
8.8.3
The integrated intensity
492
8.8.4
The phase behaviour
494
8.9
The boundary diffraction wave
499
8.10
Gabor's method of imaging by reconstructed wave-fronts (holography)
504
8.10.1
Producing the positive hologram
504
8.10.2
The reconstruction
506
8.11
The Rayleigh-Sommerfeld diffraction integrals
512
8.11.1
The Rayleigh diffraction integrals
512
8.11.2
The Rayleigh-Sommerfeld diffraction integrals
514
IX The diffraction theory of aberrations
517
9.1
The diffraction integral in the presence of aberrations
518
9.1.1
The diffraction integral
518
9.1.2.
The displacement theorem. Change of reference sphere
520
9.1.3.
A relation between the intensity and the average deformation of
wave-fronts
522
9.2
Expansion of the aberration function
523
9.2.1
The circle polynomials of Zernike
523
9.2.2
Expansion of the aberration function
525
9.3
Tolerance conditions for primary aberrations
527
9.4
The diffraction pattern associated with a single aberration
532
9.4.1
Primary spherical aberration
536
9.4.2
Primary coma
538
9.4.3
Primary astigmatism
539
9.5
Imaging of extended objects
543
9.5.1
Coherent illumination
543
9.5.2
Incoherent illumination
547
Contents xxi
X Interference and diffraction with partially coherent light
554
10.1
Introduction
554
10.2
A complex representation of real polychromatic fields
557
10.3
The correlation functions of light beams
562
10.3.1
Interference of two partially coherent beams. The mutual coherence
function and the complex degree of coherence
562
10.3.2
Spectral representation of mutual coherence
566
10.4
Interference and diffraction with quasi-monochromatic light
569
10.4.1
Interference with quasi-monochromatic light. The mutual intensity
569
10.4.2
Calculation of mutual intensity and degree of coherence for light from
an extended incoherent quasi-monochromatic source
572
(a) The van Cittert-Zernike theorem
572
(b) Hopkins' formula
577
10.4.3
An example
578
10.4.4
Propagation of mutual intensity
580
10.5
Interference with broad-band light and the spectral degree of coherence.
Correlation-induced spectral changes
585
10.6
Some applications
590
10.6.1
The degree of coherence in the image of an extended incoherent
quasi-monochromatic source
590
10.6.2
The influence of the condenser on resolution in a microscope
595
(a) Critical illumination
595
(b)
Köhler's
illumination
598
10.6.3
Imaging with partially coherent quasi-monochromatic illumination
599
(a) Transmission of mutual intensity through an optical system
599
(b) Images of transilluminated objects
602
10.7
Some theorems relating to mutual coherence
606
10.7.1
Calculation of mutual coherence for light from an incoherent source
606
10.7.2
Propagation of mutual coherence
609
10.8
Rigorous theory of partial coherence
610
10.8.1
Wave equations for mutual coherence
610
10.8.2
Rigorous formulation of the propagation law for mutual coherence
612
10.8.3
The coherence time and the effective spectral width
615
10.9
Polarization properties of quasi-monochromatic light
619
10.9.1
The coherency matrix of a quasi-monochromatic plane wave
619
(a) Completely unpolarized light (natural light)
624
(b) Complete polarized light
624
10.9.2
Some equivalent representations. The degree of polarization of a light
wave
626
10.9.3
The Stokes parameters of a quasi-monochromatic plane wave
630
XI Rigorous diffraction theory
633
11.1
Introduction
633
11.2
Boundary conditions and surface currents
635
11.3
Diffraction by a plane screen: electromagnetic form of Babinet's principle
636
11.4
Two-dimensional diffraction by a plane screen
638
11.4.1
The scalar nature of two-dimensional electromagnetic fields
638
11.4.2
An angular spectrum of plane waves
639
11.4.3
Formulation in terms of dual integral equations
642
11.5
Two-dimensional diffraction of
aplane
wave by a half-plane
643
11.5.1
Solution of the dual integral equations for ¿"-polarization
643
11.5.2
Expression of the solution in terms of Fresnel integrals
645
11.5.3
The nature of the solution
648
xxii Contents
11.5.4
The solution for
Я
-polarization
652
11.5.5
Some numerical calculations
653
11.5.6
Comparison with approximate theory and with experimental results
656
11.6
Three-dimensional diffraction of a plane wave by a half-plane
657
11.7
Diffraction of a field due to a localized source by a half-plane
659
11.7.1
A line-current parallel to the diffracting edge
659
11.7.2
A dipole
664
11.8
Other problems
667
11.8.1
Two parallel half-planes
667
11.8.2
An infinite stack of parallel, staggered half-planes
669
11.8.3
A strip
670
11.8.4
Further problems
671
11.9
Uniqueness of solution
672
XII
Diffraction of light by ultrasonic waves
674
12.1
Qualitative description of the phenomenon and summary of theories based on
Maxwell's differential equations
674
12.1.1
Qualitative description of the phenomenon
674
12.1.2
Summary of theories based on Maxwell's equations
677
12.2
Diffraction of light by ultrasonic waves as treated by the integral equation
method
680
12.2.1
Integral equation for E-polarization
682
12.2.2
The trial solution of the integral equation
682
12.2.3
Expressions for the amplitudes of the light waves in the diffracted and
reflected spectra
686
12.2.4
Solution of the equations by a method of successive approximations
686
12.2.5
Expressions for the intensities of the first and second order lines for
some special cases
689
12.2.6
Some qualitative results
691
12.2.7
The Raman-Nath approximation
693
XIII
Scattering from ¡nhomogeneous media
695
13.1
Elements of the scalar theory of scattering
695
13.1.1
Derivation of the basic integral equation
695
13.1.2
The first-order Born approximation
699
13.1.3
Scattering from periodic potentials
703
13.1.4
Multiple scattering
708
13.2
Principles of diffraction tomography for reconstruction of the scattering
potential
710
13.2.1
Angular spectrum representation of the scattered field
711
13.2.2
The basic theorem of diffraction tomography
713
13.3
The optical cross-section theorem
716
13.4
A reciprocity relation
724
13.5
The Rytov series
726
13.6
Scattering of electromagnetic waves
729
13.6.1
The integro-differential equations of electromagnetic scattering
theory
729
13.6.2
The far field
730
Î3.6.3
The optical cross-section theorem for scattering of electromagnetic
732
waves
XIV
Optics of metals
735
14.1
Wave propagation in a conductor
735
Contents xxiii
14.2
Refraction and reflection at
a metal
surface
739
14.3
Elementary electron theory of the optical constants of metals
749
14.4
Wave propagation in a stratified conducting medium. Theory of metallic
films
752
14.4.1
An absorbing film on a transparent substrate
752
14.4.2
A transparent film on an absorbing substrate
758
14.5
Diffraction by a conducting sphere; theory of
Mie
759
14.5.1
Mathematical solution of the problem
760
(a) Representation of the field in terms of Debye's potentials
760
(b) Series expansions for the field components
765
(c) Summary of formulae relating to the associated Legendre func¬
tions and to the cylindrical functions
772
14.5.2
Some consequences of Mie's formulae
774
(a) The partial waves
774
(b) Limiting cases
775
(c) Intensity and polarization of the scattered light
780
14.5.3
Total scattering and extinction
784
(a) Some general considerations
784
(b) Computational results
785
XV Optics of crystals
790
15.1
The dielectric tensor of an anisotropic medium
790
15.2
The structure of a monochromatic plane wave in an anisotropic medium
792
15.2.1
The phase velocity and the ray velocity
792
15.2.2
Fresnel's formulae for the propagation of light in crystals
795
15.2.3
Geometrical constructions for determining the velocities of
propagation and the directions of vibration
799
(a) The ellipsoid of wave normals
799
(b) The ray ellipsoid
802
(c) The normal surface and the ray surface
803
15.3
Optical properties of
uniaxial
and biaxial crystals
805
15.3.1
The optical classification of crystals
805
15.3.2
Light propagation in
uniaxial
crystals
806
15.3.3
Light propagation in biaxial crystals
808
15.3.4
Refraction in crystals
811
(a) Double refraction
811
(b) Conical refraction
813
15.4
Measurements in crystal optics
818
15.4.1
The
Nicol
prism
818
15.4.2
Compensators
820
(a) The quarter-wave plate
820
(b) Babinet's compensator
821
(c) Soleiľs
compensator
823
(d) Berek's compensator
823
15.4.3
Interference with crystal plates
823
15.4.4
Interference figures from
uniaxial
crystal plates
829
15.4.5
Interference figures from biaxial crystal plates
831
15.4.6
Location of optic axes and determination of the principal refractive
indices of a crystalline medium
833
15.5
Stress birefringence and form birefringence
834
15.5.1
Stress birefringence
834
15.5.2
Form birefringence
837
Contents
15.6
Absorbing crystals
840
15.6.1
Light propagation in an absorbing anisotropic medium
840
15.6.2
Interference figures from absorbing crystal plates
846
(a) Uniaxial
crystals
847
(b) Biaxial crystals
848
15.6.3
Dichroic polarizers
849
Appendices
853
I The Calculus of variations
853
1
Euler
's
equations as necessary conditions for an
extrémům
853
2
Hubert's independence integral and the Hamilton-Jacobi equation
855
3
The field of extremals
856
4
Determination of all extremals from the solution of the Hamilton-Jacobi equation
858
5
Hamilton's canonical equations
860
6
The special case when the independent variable does not appear explicitly in the integrand
861
7
Discontinuities
862
8
Weierstrass'
and Legendre's conditions (sufficiency conditions for an
extrémům)
864
9
Minimum of the variational integral when one end point is constrained to a surface
866
10
Jacobi's criterion for a minimum
867
11
Example
1:
Optics
868
12
Example II: Mechanics of material points
870
II Light optics, electron optics and wave mechanics
873
1
The Hamiltonian analogy in elementary
főim
873
2
The Hamiltonian analogy in variational form
876
3
Wave mechanics of free electrons
879
4
The application of optical principles to electron optics
881
III Asymptotic approximations to integrals
883
1
The method of steepest descent
883
2
The method of stationary phase
888
3
Double integrals
890
IV The Dirac delta function
892
V A mathematical lemma used in the rigorous derivation of the
Lorentz-
Lorenz
formula
(§2-4.2) 898
VI Propagation of discontinuities in an electromagnetic field
(§3.1.1) 90
і
1
Relations connecting discontinuous changes in field vectors
901
2
The field on a moving discontinuity surface
903
VII
The circle polynomials of Zernike
(§9.2.1 ) 905
1
Some general considerations
905
2
Explicit expressions for the radial polynomials
Rí,
"'(μ)
907
VIII
Proof of
lhe
inequality
]/ii2(v)|
«s
1
for the spectral degree of coherence
(§10.5) 911
IX Proof of a reciprocity inequality
(§10.8.3) 912
X Evaluation of two integrals
(§12.2.2) 914
XI Energy conservation in scalar wavefields
(§13.3) 918
XII
Proof of Jones' lemma
(§13.3) 921
Author index
925
Subject index
936 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Born, Max 1882-1970 Wolf, Emil 1922-2018 |
author_GND | (DE-588)118513621 (DE-588)124170498 |
author_facet | Born, Max 1882-1970 Wolf, Emil 1922-2018 |
author_role | aut aut |
author_sort | Born, Max 1882-1970 |
author_variant | m b mb e w ew |
building | Verbundindex |
bvnumber | BV022452629 |
classification_rvk | UH 5000 |
classification_tum | PHY 350f |
ctrlnum | (OCoLC)180019541 (DE-599)BVBBV022452629 |
dewey-full | 535.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 535 - Light and related radiation |
dewey-raw | 535.2 |
dewey-search | 535.2 |
dewey-sort | 3535.2 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 7. (expanded) ed., repr. with corr. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03363nam a2200745 c 4500</leader><controlfield tag="001">BV022452629</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070605s2002 ad|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521642221</subfield><subfield code="9">0-521-64222-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521642224</subfield><subfield code="9">978-0-521-64222-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180019541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022452629</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">535.2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 5000</subfield><subfield code="0">(DE-625)145647:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">PHY 350f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Born, Max</subfield><subfield code="d">1882-1970</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)118513621</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Principles of optics</subfield><subfield code="b">electromagnetic theory of propagation, interference and diffraction of light</subfield><subfield code="c">Max Born and Emil Wolf</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">7. (expanded) ed., repr. with corr.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge [u.a.]</subfield><subfield code="b">Cambridge Univ. Press</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXIII, 952 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hier auch später erschienene unveränderte Nachdrucke</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kristalloptik</subfield><subfield code="0">(DE-588)4165767-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Interferenz</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4162000-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Licht</subfield><subfield code="0">(DE-588)4035596-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wellenoptik</subfield><subfield code="0">(DE-588)4189552-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lichtstreuung</subfield><subfield code="0">(DE-588)4167602-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Optik</subfield><subfield code="0">(DE-588)4043650-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wellenoptik</subfield><subfield code="0">(DE-588)4189552-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Beugung</subfield><subfield code="0">(DE-588)4145094-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Licht</subfield><subfield code="0">(DE-588)4035596-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Interferenz</subfield><subfield code="g">Physik</subfield><subfield code="0">(DE-588)4162000-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Lichtstreuung</subfield><subfield code="0">(DE-588)4167602-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Kristalloptik</subfield><subfield code="0">(DE-588)4165767-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="7" ind2="0"><subfield code="a">Elektromagnetisches Feld</subfield><subfield code="0">(DE-588)4014305-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="7" ind2=" "><subfield code="8">8\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wolf, Emil</subfield><subfield code="d">1922-2018</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)124170498</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015660463&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015660463</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">8\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022452629 |
illustrated | Illustrated |
index_date | 2024-07-02T17:37:09Z |
indexdate | 2024-07-09T20:57:54Z |
institution | BVB |
isbn | 0521642221 9780521642224 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015660463 |
oclc_num | 180019541 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-703 DE-29T DE-20 DE-706 DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM DE-898 DE-BY-UBR DE-703 DE-29T DE-20 DE-706 DE-355 DE-BY-UBR DE-91 DE-BY-TUM |
physical | XXXIII, 952 S. Ill., graph. Darst. |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Cambridge Univ. Press |
record_format | marc |
spelling | Born, Max 1882-1970 Verfasser (DE-588)118513621 aut Principles of optics electromagnetic theory of propagation, interference and diffraction of light Max Born and Emil Wolf 7. (expanded) ed., repr. with corr. Cambridge [u.a.] Cambridge Univ. Press 2002 XXXIII, 952 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Hier auch später erschienene unveränderte Nachdrucke Kristalloptik (DE-588)4165767-6 gnd rswk-swf Interferenz Physik (DE-588)4162000-8 gnd rswk-swf Beugung (DE-588)4145094-2 gnd rswk-swf Licht (DE-588)4035596-2 gnd rswk-swf Optik (DE-588)4043650-0 gnd rswk-swf Wellenoptik (DE-588)4189552-6 gnd rswk-swf Elektromagnetisches Feld (DE-588)4014305-3 gnd rswk-swf Lichtstreuung (DE-588)4167602-6 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Optik (DE-588)4043650-0 s DE-604 Wellenoptik (DE-588)4189552-6 s 2\p DE-604 Beugung (DE-588)4145094-2 s 3\p DE-604 Licht (DE-588)4035596-2 s 4\p DE-604 Interferenz Physik (DE-588)4162000-8 s 5\p DE-604 Lichtstreuung (DE-588)4167602-6 s 6\p DE-604 Kristalloptik (DE-588)4165767-6 s 7\p DE-604 Elektromagnetisches Feld (DE-588)4014305-3 s 8\p DE-604 Wolf, Emil 1922-2018 Verfasser (DE-588)124170498 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015660463&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 8\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Born, Max 1882-1970 Wolf, Emil 1922-2018 Principles of optics electromagnetic theory of propagation, interference and diffraction of light Kristalloptik (DE-588)4165767-6 gnd Interferenz Physik (DE-588)4162000-8 gnd Beugung (DE-588)4145094-2 gnd Licht (DE-588)4035596-2 gnd Optik (DE-588)4043650-0 gnd Wellenoptik (DE-588)4189552-6 gnd Elektromagnetisches Feld (DE-588)4014305-3 gnd Lichtstreuung (DE-588)4167602-6 gnd |
subject_GND | (DE-588)4165767-6 (DE-588)4162000-8 (DE-588)4145094-2 (DE-588)4035596-2 (DE-588)4043650-0 (DE-588)4189552-6 (DE-588)4014305-3 (DE-588)4167602-6 (DE-588)4123623-3 |
title | Principles of optics electromagnetic theory of propagation, interference and diffraction of light |
title_auth | Principles of optics electromagnetic theory of propagation, interference and diffraction of light |
title_exact_search | Principles of optics electromagnetic theory of propagation, interference and diffraction of light |
title_exact_search_txtP | Principles of optics electromagnetic theory of propagation, interference and diffraction of light |
title_full | Principles of optics electromagnetic theory of propagation, interference and diffraction of light Max Born and Emil Wolf |
title_fullStr | Principles of optics electromagnetic theory of propagation, interference and diffraction of light Max Born and Emil Wolf |
title_full_unstemmed | Principles of optics electromagnetic theory of propagation, interference and diffraction of light Max Born and Emil Wolf |
title_short | Principles of optics |
title_sort | principles of optics electromagnetic theory of propagation interference and diffraction of light |
title_sub | electromagnetic theory of propagation, interference and diffraction of light |
topic | Kristalloptik (DE-588)4165767-6 gnd Interferenz Physik (DE-588)4162000-8 gnd Beugung (DE-588)4145094-2 gnd Licht (DE-588)4035596-2 gnd Optik (DE-588)4043650-0 gnd Wellenoptik (DE-588)4189552-6 gnd Elektromagnetisches Feld (DE-588)4014305-3 gnd Lichtstreuung (DE-588)4167602-6 gnd |
topic_facet | Kristalloptik Interferenz Physik Beugung Licht Optik Wellenoptik Elektromagnetisches Feld Lichtstreuung Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015660463&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT bornmax principlesofopticselectromagnetictheoryofpropagationinterferenceanddiffractionoflight AT wolfemil principlesofopticselectromagnetictheoryofpropagationinterferenceanddiffractionoflight |