Convex and discrete geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin
Springer
[2007]
|
Schriftenreihe: | Grundlehren der mathematischen Wissenschaften
336 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XIII, 578 Seiten Illustrationen, Diagramme 235 mm x 155 mm |
ISBN: | 9783540711322 3540711325 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022430476 | ||
003 | DE-604 | ||
005 | 20201202 | ||
007 | t | ||
008 | 070521s2007 gw a||| |||| 00||| eng d | ||
015 | |a 07,N08,1042 |2 dnb | ||
016 | 7 | |a 982862083 |2 DE-101 | |
020 | |a 9783540711322 |c Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.) |9 978-3-540-71132-2 | ||
020 | |a 3540711325 |c Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.) |9 3-540-71132-5 | ||
024 | 3 | |a 9783540711322 | |
028 | 5 | 2 | |a 11966739 |
035 | |a (OCoLC)123375612 | ||
035 | |a (DE-599)BVBBV022430476 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-20 |a DE-384 |a DE-703 |a DE-1051 |a DE-83 |a DE-11 |a DE-19 |a DE-188 |a DE-706 |a DE-2070s |a DE-29T |a DE-634 | ||
050 | 0 | |a QA639.5 | |
082 | 0 | |a 516.08 |2 22 | |
082 | 0 | |a 510 | |
084 | |a SK 380 |0 (DE-625)143235: |2 rvk | ||
084 | |a 52-01 |2 msc | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Gruber, Peter M. |d 1941-2017 |e Verfasser |0 (DE-588)11063814X |4 aut | |
245 | 1 | 0 | |a Convex and discrete geometry |c Peter M. Gruber |
264 | 1 | |a Berlin |b Springer |c [2007] | |
300 | |a XIII, 578 Seiten |b Illustrationen, Diagramme |c 235 mm x 155 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Grundlehren der mathematischen Wissenschaften |v 336 | |
650 | 4 | |a Géométrie convexe | |
650 | 4 | |a Géométrie discrète | |
650 | 4 | |a Convex geometry | |
650 | 4 | |a Discrete geometry | |
650 | 0 | 7 | |a Diskrete Geometrie |0 (DE-588)4130271-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Konvexe Geometrie |0 (DE-588)4407260-0 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Diskrete Geometrie |0 (DE-588)4130271-0 |D s |
689 | 1 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-540-71133-9 |
830 | 0 | |a Grundlehren der mathematischen Wissenschaften |v 336 |w (DE-604)BV000000395 |9 336 | |
856 | 4 | 2 | |m Digitalisierung UB Augsburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015638671 |
Datensatz im Suchindex
_version_ | 1804136503253663744 |
---|---|
adam_text | Contents
Preface
Convex
1
1.1
1.2
1.3
1.4
1.5
2
2.1
and a Heuristic Principle
2.2
2.3
2.4
2.5
in the Calculus of Variations
Convex Bodies
3
3.1
3.2
of
3.3
4
4.1
4.2
4.3
4.4
5
5.1
Contents
20 Linear
20.1
20.2
20.3
20.4
20.5
................................... 335
Preliminaries and Duality
The Simplex Algorithm
The Ellipsoid Algorithm
Lattice Polyhedra and Totally Dual Integral Systems
Hubert Bases and Totally Dual Integral Systems
Geometry of Numbers and Aspects of Discrete Geometry
. . 353
21
21.1
Equation
21.2
21.3
21.4
22
22.1
22.2
of Polynomials
23
23.1
Theorem
23.2
and Khintchine
24
24.
24.2
of Rogers-Schmidt
25
25.1
25.2
26
26.1
26.2
26.3
27
27.1
Matrices
27.2
27.3
28
28.1
28.2
Lattice Vector Problem
Contents
29
29.1
29.2
29.3
29.4
Packing
30
30.1
30.2
30.3
for
30.4
31
31.1
and the Covering Criterion of Wills
31.2
31.3
31.4
32
32.1
Complexes
32.2
of
32.3
and Keller
33
33.1
33.2
33.3
Principle
33.4
and Numerical Integration
34
34.1
and Scheinerman
34.2
References
Index
Author Index
513
567
577
Contents
XI
5.2 Extreme Points...................................
5.3 Birkhoff s Theorem
Mixed Volumes and
6.1
and Blaschke s Selection Theorem
6.2
Formula
6.3
6.4 Quermassintegrals
7
7.
7.2
7.3
Theorem
7.4
7.5
The Brunn-Minkowski Inequality
8.1
8.2
8.3
and Generalized Surface Area
8.4
in Crystallography
8.5
Brunn-Minkowski Inequality
8.6
of Measure
Symmetrization
9.1
9.2
Steiner
The Isodiametric, Isoperimetric, Brunn-Minkowski,
Blaschke-Santaló
9.3
9.4
9.5
Inequality
10
10.1
10.2
Surfaces
10.3
11
11.1
Inequality
11.2
Problem for Polytopes, and a Heuristic Principle
74
76
79
80
88
93
102
110
118
126
134
140
141
142
146
147
155
161
164
168
168
175
178
179
185
187
188
197
199
202
203
209
12
13
Special Convex Bodies
12.1
12.2
12.3
and Its Applications
The Space of Convex Bodies
13.1
13.2
13.3
13.4
Convex Polytopes
1
14.1
14.2
14.3
14.4
15
15.1
for
15.2
15.3
15.4
15.5
16
16.1
16.2
17
17.1
17.2
18
18.1
18.2
18.3
and
19
19.1
19.2
and Lattice Point Enumerators
19.3
Polytopes
19.4
19.5
and the Minding-Kouchnirenko-Bemstein Theorem
243
244
244
247
252
257
258
259
265
270
272
277
280
280
288
292
292
297
301
301
303
308
310
310
316
320
324
332
|
adam_txt |
Contents
Preface
Convex
1
1.1
1.2
1.3
1.4
1.5
2
2.1
and a Heuristic Principle
2.2
2.3
2.4
2.5
in the Calculus of Variations
Convex Bodies
3
3.1
3.2
of
3.3
4
4.1
4.2
4.3
4.4
5
5.1
Contents
20 Linear
20.1
20.2
20.3
20.4
20.5
. 335
Preliminaries and Duality
The Simplex Algorithm
The Ellipsoid Algorithm
Lattice Polyhedra and Totally Dual Integral Systems
Hubert Bases and Totally Dual Integral Systems
Geometry of Numbers and Aspects of Discrete Geometry
. . 353
21
21.1
Equation
21.2
21.3
21.4
22
22.1
22.2
of Polynomials
23
23.1
Theorem
23.2
and Khintchine
24
24.
24.2
of Rogers-Schmidt
25
25.1
25.2
26
26.1
26.2
26.3
27
27.1
Matrices
27.2
27.3
28
28.1
28.2
Lattice Vector Problem
Contents
29
29.1
29.2
29.3
29.4
Packing
30
30.1
30.2
30.3
for
30.4
31
31.1
and the Covering Criterion of Wills
31.2
31.3
31.4
32
32.1
Complexes
32.2
of
32.3
and Keller
33
33.1
33.2
33.3
Principle
33.4
and Numerical Integration
34
34.1
and Scheinerman
34.2
References
Index
Author Index
513
567
577
Contents
XI
5.2 Extreme Points.
5.3 Birkhoff 's Theorem
Mixed Volumes and
6.1
and Blaschke's Selection Theorem
6.2
Formula
6.3
6.4 Quermassintegrals
7
7.
7.2
7.3
Theorem
7.4
7.5
The Brunn-Minkowski Inequality
8.1
8.2
8.3
and Generalized Surface Area
8.4
in Crystallography
8.5
Brunn-Minkowski Inequality
8.6
of Measure
Symmetrization
9.1
9.2
Steiner
The Isodiametric, Isoperimetric, Brunn-Minkowski,
Blaschke-Santaló
9.3
9.4
9.5
Inequality
10
10.1
10.2
Surfaces
10.3
11
11.1
Inequality
11.2
Problem for Polytopes, and a Heuristic Principle
74
76
79
80
88
93
102
110
118
126
134
140
141
142
146
147
155
161
164
168
168
175
178
179
185
187
188
197
199
202
203
209
12
13
Special Convex Bodies
12.1
12.2
12.3
and Its Applications
The Space of Convex Bodies
13.1
13.2
13.3
13.4
Convex Polytopes
1
14.1
14.2
14.3
14.4
15
15.1
for
15.2
15.3
15.4
15.5
16
16.1
16.2
17
17.1
17.2
18
18.1
18.2
18.3
and
19
19.1
19.2
and Lattice Point Enumerators
19.3
Polytopes
19.4
19.5
and the Minding-Kouchnirenko-Bemstein Theorem
243
244
244
247
252
257
258
259
265
270
272
277
280
280
288
292
292
297
301
301
303
308
310
310
316
320
324
332 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Gruber, Peter M. 1941-2017 |
author_GND | (DE-588)11063814X |
author_facet | Gruber, Peter M. 1941-2017 |
author_role | aut |
author_sort | Gruber, Peter M. 1941-2017 |
author_variant | p m g pm pmg |
building | Verbundindex |
bvnumber | BV022430476 |
callnumber-first | Q - Science |
callnumber-label | QA639 |
callnumber-raw | QA639.5 |
callnumber-search | QA639.5 |
callnumber-sort | QA 3639.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 380 |
ctrlnum | (OCoLC)123375612 (DE-599)BVBBV022430476 |
dewey-full | 516.08 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry 510 - Mathematics |
dewey-raw | 516.08 510 |
dewey-search | 516.08 510 |
dewey-sort | 3516.08 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02268nam a2200565 cb4500</leader><controlfield tag="001">BV022430476</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20201202 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070521s2007 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N08,1042</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982862083</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540711322</subfield><subfield code="c">Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)</subfield><subfield code="9">978-3-540-71132-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540711325</subfield><subfield code="c">Gb. : ca. EUR 96.25 (freier Pr.), ca. sfr 147.50 (freier Pr.)</subfield><subfield code="9">3-540-71132-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540711322</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11966739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)123375612</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022430476</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-2070s</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA639.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.08</subfield><subfield code="2">22</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 380</subfield><subfield code="0">(DE-625)143235:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gruber, Peter M.</subfield><subfield code="d">1941-2017</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)11063814X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex and discrete geometry</subfield><subfield code="c">Peter M. Gruber</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">Springer</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIII, 578 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">235 mm x 155 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">336</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie convexe</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Géométrie discrète</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Geometrie</subfield><subfield code="0">(DE-588)4407260-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Diskrete Geometrie</subfield><subfield code="0">(DE-588)4130271-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-540-71133-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Grundlehren der mathematischen Wissenschaften</subfield><subfield code="v">336</subfield><subfield code="w">(DE-604)BV000000395</subfield><subfield code="9">336</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Augsburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015638671</subfield></datafield></record></collection> |
id | DE-604.BV022430476 |
illustrated | Illustrated |
index_date | 2024-07-02T17:29:07Z |
indexdate | 2024-07-09T20:57:26Z |
institution | BVB |
isbn | 9783540711322 3540711325 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015638671 |
oclc_num | 123375612 |
open_access_boolean | |
owner | DE-824 DE-20 DE-384 DE-703 DE-1051 DE-83 DE-11 DE-19 DE-BY-UBM DE-188 DE-706 DE-2070s DE-29T DE-634 |
owner_facet | DE-824 DE-20 DE-384 DE-703 DE-1051 DE-83 DE-11 DE-19 DE-BY-UBM DE-188 DE-706 DE-2070s DE-29T DE-634 |
physical | XIII, 578 Seiten Illustrationen, Diagramme 235 mm x 155 mm |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series | Grundlehren der mathematischen Wissenschaften |
series2 | Grundlehren der mathematischen Wissenschaften |
spelling | Gruber, Peter M. 1941-2017 Verfasser (DE-588)11063814X aut Convex and discrete geometry Peter M. Gruber Berlin Springer [2007] XIII, 578 Seiten Illustrationen, Diagramme 235 mm x 155 mm txt rdacontent n rdamedia nc rdacarrier Grundlehren der mathematischen Wissenschaften 336 Géométrie convexe Géométrie discrète Convex geometry Discrete geometry Diskrete Geometrie (DE-588)4130271-0 gnd rswk-swf Konvexe Geometrie (DE-588)4407260-0 gnd rswk-swf Konvexe Geometrie (DE-588)4407260-0 s DE-604 Diskrete Geometrie (DE-588)4130271-0 s Erscheint auch als Online-Ausgabe 978-3-540-71133-9 Grundlehren der mathematischen Wissenschaften 336 (DE-604)BV000000395 336 Digitalisierung UB Augsburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Gruber, Peter M. 1941-2017 Convex and discrete geometry Grundlehren der mathematischen Wissenschaften Géométrie convexe Géométrie discrète Convex geometry Discrete geometry Diskrete Geometrie (DE-588)4130271-0 gnd Konvexe Geometrie (DE-588)4407260-0 gnd |
subject_GND | (DE-588)4130271-0 (DE-588)4407260-0 |
title | Convex and discrete geometry |
title_auth | Convex and discrete geometry |
title_exact_search | Convex and discrete geometry |
title_exact_search_txtP | Convex and discrete geometry |
title_full | Convex and discrete geometry Peter M. Gruber |
title_fullStr | Convex and discrete geometry Peter M. Gruber |
title_full_unstemmed | Convex and discrete geometry Peter M. Gruber |
title_short | Convex and discrete geometry |
title_sort | convex and discrete geometry |
topic | Géométrie convexe Géométrie discrète Convex geometry Discrete geometry Diskrete Geometrie (DE-588)4130271-0 gnd Konvexe Geometrie (DE-588)4407260-0 gnd |
topic_facet | Géométrie convexe Géométrie discrète Convex geometry Discrete geometry Diskrete Geometrie Konvexe Geometrie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638671&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000000395 |
work_keys_str_mv | AT gruberpeterm convexanddiscretegeometry |