Particle accelerator physics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 3. ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | 1. und 2. Aufl. mehrbändig |
Beschreibung: | XXVII, 948 S. |
ISBN: | 9783540490432 3540490434 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022430430 | ||
003 | DE-604 | ||
005 | 20131010 | ||
007 | t | ||
008 | 070521s2007 gw |||| 00||| eng d | ||
015 | |a 06,N45,0309 |2 dnb | ||
016 | 7 | |a 981567258 |2 DE-101 | |
020 | |a 9783540490432 |c Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.) |9 978-3-540-49043-2 | ||
020 | |a 3540490434 |c Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.) |9 3-540-49043-4 | ||
024 | 3 | |a 9783540490432 | |
028 | 5 | 2 | |a 11923084 |
035 | |a (OCoLC)127107180 | ||
035 | |a (DE-599)BVBBV022430430 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-703 |a DE-29T |a DE-355 |a DE-11 | ||
050 | 0 | |a QC793.3.B4 | |
082 | 0 | |a 539.73 |2 22/ger | |
084 | |a UN 6100 |0 (DE-625)146147: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
100 | 1 | |a Wiedemann, Helmut |e Verfasser |4 aut | |
245 | 1 | 0 | |a Particle accelerator physics |c Helmut Wiedemann |
250 | |a 3. ed. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XXVII, 948 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a 1. und 2. Aufl. mehrbändig | ||
650 | 4 | |a Accélérateurs linéaires | |
650 | 4 | |a Faisceaux de particules | |
650 | 4 | |a Faisceaux, Dynamique des | |
650 | 4 | |a Beam dynamics | |
650 | 4 | |a Linear accelerators | |
650 | 4 | |a Synchrotron radiation | |
650 | 0 | 7 | |a Strahldynamik |0 (DE-588)4263839-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Teilchenbeschleuniger |0 (DE-588)4059318-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Teilchenbeschleuniger |0 (DE-588)4059318-6 |D s |
689 | 0 | 1 | |a Strahldynamik |0 (DE-588)4263839-2 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638626&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015638626 |
Datensatz im Suchindex
_version_ | 1804136503193894912 |
---|---|
adam_text | HELMUT WIEDEMANN PARTICLE ACCELERATOR PHYSICS THIRD EDITION WITH 264
FIGURES ^J SPRINGER CONTENTS PART I TOOLS WE NEED OF FIELDS AND FORCES 3
1.1 ELECTROMAGNETIC FIELDS OF CHARGED PARTICLES 3 1.1.1 VECTOR AND
SCALAR POTENTIAL 5 1.1.2 WAVE EQUATION 5 1.1.3 INDUCTION 7 1.1.4 THE
LORENTZ FORCE 7 1.1.5 EQUATION OF MOTION 8 1.1.6 ENERGY CONSERVATION 10
1.2 PRIMER IN SPECIAL RELATIVITY 11 1.2.1 LORENTZ TRANSFORMATION 11
1.2.2 4-VECTORS 13 1.2.3 SPATIAL AND SPECTRAL DISTRIBUTION OF RADIATION
17 1.3 ELEMENTS OF CLASSICAL MECHANICS 18 1.3.1 HOW TO FORMULATE A
LAGRANGIAN? 20 1.3.2 THE LORENTZ FORCE 21 1.3.3 FRENET-SERRET
COORDINATES 22 1.4 HAMILTONIAN FORMULATION 23 1.4.1 CYCLIC VARIABLES 25
1.4.2 CANONICAL TRANSFORMATIONS 25 1.4.3 CURVILINEAR COORDINATES 28
1.4.4 EXTENDED HAMILTONIAN 30 1.4.5 CHANGE OF INDEPENDENT VARIABLE 30
PARTICLE DYNAMICS IN ELECTROMAGNETIC FIELDS 37 2.1 THE LORENTZ FORCE 37
2.2 FUNDAMENTALS OF CHARGED PARTICLE BEAM OPTICS . . 38 2.2.1 PARTICLE
BEAM GUIDANCE 38 2.2.2 PARTICLE BEAM FOCUSING 42 2.3 EQUATION OF MOTION
46 XVIII CONTENTS 2.4 EQUATIONS OF MOTION FROM THE LAGRANGIAN AND
HAMILTONIAN ... 49 2.4.1 EQUATIONS OF MOTION FROM LAGRANGIAN 49 2.4.2
CANONICAL MOMENTA 51 2.4.3 EQUATION OF MOTION FROM HAMILTONIAN 51 2.4.4
HARMONIC OSCILLATOR 53 2.4.5 ACTION-ANGLE VARIABLES 54 2.5 SOLUTIONS OF
THE LINEAR EQUATIONS OF MOTION 55 2.5.1 LINEAR UNPERTURBED EQUATION OF
MOTION 55 2.5.2 MATRIX FORMULATION 57 2.5.3 WRONSKIAN 57 2.5.4
PERTURBATION TERMS 59 3 ELECTROMAGNETIC FIELDS 63 3.1 PURE MULTIPOLE
FIELD EXPANSION 63 3.1.1 THE LAPLACE EQUATION 63 3.1.2 DEFLECTING
MAGNETS ; 65 3.1.3 FOCUSING DEVICE 66 3.1.4 MULTIPOLE MAGNETS 74 3.1.5
MULTIPOLE FIELDS FOR BEAM TRANSPORT SYSTEMS 77 3.2 GENERAL TRANSVERSE
MAGNETIC-FIELD EXPANSION 80 3.3 THIRD-ORDER DIFFERENTIAL EQUATION OF
MOTION 87 3.4 LONGITUDINAL FIELD DEVICES 92 3.5 AIR COIL MAGNETS 94 3.6
PERIODIC WIGGLER MAGNETS 99 3.6.1 WIGGLER FIELD CONFIGURATION 100 3.7
ELECTRIC FIELD COMPONENTS 104 3.7.1 ELECTROSTATIC DEFLECTORS 104 3.7.2
ELECTROSTATIC FOCUSING DEVICES 105 3.7.3 IRIS DOUBLET 107 3.7.4
EINZELLENS 108 3.7.5 ELECTROSTATIC QUADRUPOLE 109 PART II BEAM DYNAMICS
4 SINGLE PARTICLE DYNAMICS 115 4.1 LINEAR BEAM TRANSPORT SYSTEMS 116
4.1.1 NOMENCLATURE 117 4.2 MATRIX FORMALISM IN LINEAR BEAM DYNAMICS 118
4.2.1 DRIFT SPACE 120 4.2.2 QUADRUPOLE MAGNET 120 4.2.3 THIN LENS
APPROXIMATION 122 4.2.4 QUADRUPOLE END FIELD EFFECTS 125 4.3 FOCUSING IN
BENDING MAGNETS 129 4.3.1 SECTOR MAGNETS 130 CONTENTS XIX 4.3.2 FRINGE
FIELD EFFECTS 131 4.3.3 FINITE POLE GAP 133 4.3.4 WEDGE MAGNETS 135
4.3.5 RECTANGULAR MAGNET 137 4.3.6 FOCUSING IN A WIGGLER MAGNET 138
4.3.7 HARD EDGE MODEL OF WIGGLER MAGNETS 141 4.4 ELEMENTS OF BEAM
DYNAMICS 143 4.4.1 BUILDING BLOCKS FOR BEAM TRANSPORT LINES 143 4.4.2
ISOCHRONOUS SYSTEMS 146 PARTICLE BEAMS AND PHASE SPACE 153 5.1 BEAM
EMITTANCE 154 5.1.1 LIOUVILLE S THEOREM 155 5.1.2 TRANSFORMATION IN
PHASE SPACE 158 5.1.3 BEAM MATRIX 161 5.2 BETATRON FUNCTIONS 166 5.2.1
BEAM ENVELOPE 169 5.3 BEAM DYNAMICS IN TERMS OF BETATRON FUNCTIONS 169
5.3.1 BEAM DYNAMICS IN NORMALIZED COORDINATES 172 5.4 DISPERSIVE SYSTEMS
175 5.4.1 ANALYTICAL SOLUTION 175 5.4.2 (3 X 3)-TRANSFORMATION MATRICES
177 5.4.3 LINEAR ACHROMAT 178 5.4.4 SPECTROMETER 183 5.4.5 MEASUREMENT
OF BEAM ENERGY SPECTRUM 184 5.4.6 PATH LENGTH AND MOMENTUM COMPACTION
187 LONGITUDINAL BEAM DYNAMICS 191 6.1 LONGITUDINAL PARTICLE MOTION 192
6.1.1 LONGITUDINAL PHASE SPACE DYNAMICS 194 6.2 EQUATION OF MOTION IN
PHASE SPACE 197 6.2.1 SMALL OSCILLATION AMPLITUDES 199 6.2.2 PHASE
STABILITY 203 6.2.3 ACCELERATION OF CHARGED PARTICLES 207 6.3
LONGITUDINAL PHASE SPACE PARAMETERS 211 6.3.1 SEPARATRIX PARAMETERS 211
6.3.2 MOMENTUM ACCEPTANCE 213 6.3.3 BUNCH LENGTH 216 6.3.4 LONGITUDINAL
BEAM EMITTANCE 218 6.3.5 PHASE SPACE MATCHING 219 6.4 HIGHER ORDER PHASE
FOCUSING 224 6.4.1 PATH LENGTH IN HIGHER ORDER 224 6.4.2 HIGHER ORDER
PHASE SPACE MOTION 226 6.4.3 STABILITY CRITERIA 231 XX CONTENTS 7
PERIODIC FOCUSING SYSTEMS 237 7.1 FODO LATTICE 238 7.1.1 SCALING OF FODO
PARAMETERS 239 7.1.2 BETATRON MOTION IN PERIODIC STRUCTURES 243 7.1.3
GENERAL FODO LATTICE 245 7.2 BEAM DYNAMICS IN PERIODIC CLOSED LATTICES
249 7.2.1 HILL S EQUATION 249 7.2.2 PERIODIC BETATRON FUNCTIONS 252
7.2.3 PERIODIC DISPERSION FUNCTION 255 7.2.4 PERIODIC LATTICES IN
CIRCULAR ACCELERATORS 263 7.3 FODO LATTICE AND ACCELERATION 275 7.3.1
LATTICE STRUCTURE 275 7.3.2 TRANSVERSE BEAM DYNAMICS AND ACCELERATION
276 7.3.3 ADIABATIC DAMPING 280 PART III BEAM PARAMETERS 8 PARTICLE BEAM
PARAMETERS 289 8.1 DEFINITION OF BEAM PARAMETERS 289 8.1.1 BEAM ENERGY
289 8.1.2 TIME STRUCTURE 290 8.1.3 BEAM CURRENT 290 8.1.4 BEAM
DIMENSIONS 292 8.2 DAMPING 293 8.2.1 ROBINSON CRITERION 294 8.3 PARTICLE
DISTRIBUTION IN LONGITUDINAL PHASE SPACE 301 8.3.1 ENERGY SPREAD 301
8.3.2 BUNCH LENGTH 303 8.4 TRANSVERSE BEAM EMITTANCE 303 8.4.1
EQUILIBRIUM BEAM EMITTANCE 304 8.4.2 EMITTANCE INCREASE IN A BEAM
TRANSPORT LINE 305 8.4.3 VERTICAL BEAM EMITTANCE 306 8.4.4 BEAM SIZES
307 8.4.5 BEAM DIVERGENCE 310 8.5 VARIATION OF THE DAMPING DISTRIBUTION
310 8.5.1 DAMPING PARTITION AND RF-FREQUENCY 310 8.6 VARIATION OF THE
EQUILIBRIUM BEAM EMITTANCE 312 8.6.1 BEAM EMITTANCE AND WIGGLER MAGNETS
312 8.6.2 DAMPING WIGGLERS 315 8.7 ROBINSON WIGGLER 317 8.7.1 DAMPING
PARTITION AND SYNCHROTRON OSCILLATION 317 8.7.2 CAN WE ELIMINATE THE
BEAM ENERGY SPREAD? 318 8.8 BEAM LIFE TIME 319 8.8.1 BEAM LIFETIME AND
VACUUM 321 CONTENTS XXI 8.8.2 ULTRA HIGH VACUUM SYSTEM 329 9 VLASOV AND
FOKKER*PLANCK EQUATIONS 335 9.1 THE VLASOV EQUATION 336 9.1.1 BETATRON
OSCILLATIONS AND PERTURBATIONS 341 9.1.2 DAMPING 343 9.2 DAMPING OF
OSCILLATIONS IN ELECTRON ACCELERATORS 345 9.2.1 DAMPING OF SYNCHROTRON
OSCILLATIONS 345 9.2.2 DAMPING OF VERTICAL BETATRON OSCILLATIONS 349
9.2.3 ROBINSON S DAMPING CRITERION 352 9.2.4 DAMPING OF HORIZONTAL
BETATRON OSCILLATIONS 355 9.3 THE FOKKER-PLANCK EQUATION 355 9.3.1
STATIONARY SOLUTION OF THE FOKKER-PLANCK EQUATION .... 358 9.3.2
PARTICLE DISTRIBUTION WITHIN A FINITE APERTURE 362 9.3.3 PARTICLE
DISTRIBUTION IN THE ABSENCE OF DAMPING 364 10 EQUILIBRIUM PARTICLE
DISTRIBUTION 369 10.1 PARTICLE DISTRIBUTION IN PHASE SPACE 369 10.1.1
DIFFUSION COEFFICIENT AND SYNCHROTRON RADIATION 369 10.1.2 QUANTUM
EXCITATION OF BEAM EMITTANCE 372 10.2 EQUILIBRIUM BEAM EMITTANCE 373
10.2.1 HORIZONTAL EQUILIBRIUM BEAM EMITTANCE 373 10.2.2 VERTICAL
EQUILIBRIUM BEAM EMITTANCE 374 10.3 EQUILIBRIUM ENERGY SPREAD AND BUNCH
LENGTH 375 10.3.1 EQUILIBRIUM BEAM ENERGY SPREAD 375 10.3.2 EQUILIBRIUM
BUNCH LENGTH 376 10.4 PHASE-SPACE MANIPULATION 377 10.4.1 EXCHANGE OF
TRANSVERSE PHASE-SPACE PARAMETERS 377 10.4.2 BUNCH COMPRESSION 378
10.4.3 ALPHA MAGNET 380 10.5 POLARIZATION OF A PARTICLE BEAM 383 11 BEAM
EMITTANCE AND LATTICE DESIGN 389 11.1 EQUILIBRIUM BEAM EMITTANCE IN
STORAGE RINGS 391 11.1.1 FODO LATTICE 391 11.1.2 MINIMUM BEAM EMITTANCE
392 11.2 BEAM EMITTANCE IN PERIODIC LATTICES 396 11.2.1 THE DOUBLE BEND
ACHROMAT LATTICE (DBA) 397 11.2.2 THE TRIPLE BEND ACHROMAT LATTICE (TBA)
399 11.2.3 THE TRIPLET ACHROMAT LATTICE (TAL) 400 11.2.4 LIMITING
EFFECTS 402 11.2.5 THE FODO LATTICE 404 11.2.6 OPTIMUM EMITTANCE FOR
COLLIDING BEAM STORAGE RINGS . 407 XXII CONTENTS PART IV PERTURBATIONS
12 PERTURBATIONS IN BEAM DYNAMICS 41 1 12.1 MAGNET FIELD AND ALIGNMENT
ERRORS 412 12.1.1 DIPOLE FIELD PERTURBATIONS 414 12.1.2 EXISTENCE OF
EQUILIBRIUM ORBITS 415 12.1.3 CLOSED ORBIT DISTORTION 418 12.1.4
QUADRUPOLE FIELD PERTURBATIONS 426 12.2 CHROMATIC EFFECTS IN A CIRCULAR
ACCELERATOR 435 12.2.1 CHROMATICITY 436 12.2.2 CHROMATICITY CORRECTION
439 12.3 KINEMATIC PERTURBATION TERMS 441 12.4 CONTROL OF THE CENTRAL
BEAM PATH 443 12.4.1 LAUNCHING ERROR 444 12.4.2 STATISTICAL ALIGNMENT
AND FIELD ERROR 445 12.5 DIPOLE FIELD ERRORS AND DISPERSION FUNCTION 450
12.5.1 SELF COMPENSATION OF PERTURBATIONS 451 12.5.2 PERTURBATIONS IN
OPEN TRANSPORT LINES 452 12.6 DISPERSION FUNCTION IN HIGHER ORDER 454
12.6.1 CHROMATICITY IN HIGHER APPROXIMATION 456 12.7 NONLINEAR
CHROMATICITY 458 12.8 PERTURBATION METHODS IN BEAM DYNAMICS 463 12.8.1
PERIODIC DISTRIBUTION OF STATISTICAL PERTURBATIONS 464 12.8.2 PERIODIC
PERTURBATIONS IN CIRCULAR ACCELERATORS 467 12.8.3 STATISTICAL METHODS TO
EVALUATE PERTURBATIONS 469 13 HAMILTONIAN RESONANCE THEORY 479 13.1
RESONANCES 479 13.1.1 RESONANCE CONDITIONS : 480 13.1.2 COUPLING
RESONANCES 484 13.1.3 RESONANCE DIAGRAM 485 13.2 NONLINEAR HAMILTONIAN
487 13.3 RESONANT TERMS 490 13.4 RESONANCE PATTERNS AND STOP-BAND WIDTH
492 13.4.1 HALF INTEGER STOP BAND 493 13.4.2 SEPARATRICES 495 13.5
GENERAL STOP-BAND WIDTH 497 13.6 THIRD-ORDER RESONANCE 498 13.6.1
PARTICLE MOTION IN PHASE SPACE 501 CONTENTS XXIII 14 HAMILTONIAN
NONLINEAR BEAM DYNAMICS 503 14.1 HIGHER ORDER BEAM DYNAMICS 503 14.1.1
MULTIPOLE ERRORS 503 14.1.2 NONLINEAR MATRIX FORMALISM 507 14.2
ABERRATIONS 512 14.2.1 GEOMETRIC ABERRATIONS 514 14.2.2 FILAMENTATION OF
PHASE SPACE 520 14.2.3 CHROMATIC ABERRATIONS 523 14.2.4 PARTICLE
TRACKING 526 14.3 HAMILTONIAN PERTURBATION THEORY 528 14.3.1 TUNE SHIFT
IN HIGHER ORDER 534 PART V ACCELERATION 15 CHARGED PARTICLE ACCELERATION
541 15.1 PREINJECTOR AND BEAM PREPARATION 541 15.1.1 PREBUNCHER 541
15.1.2 BEAM CHOPPER 544 15.2 RF-WAVEGUIDES AND CAVITIES 545 15.2.1 WAVE
EQUATION 545 15.2.2 RECTANGULAR WAVEGUIDE MODES 547 15.2.3 CYLINDRICAL
WAVEGUIDE MODES 551 15.3 LINEAR ACCELERATOR 554 15.3.1 BASIC WAVEGUIDE
PARAMETERS 555 15.3.2 PARTICLE CAPTURE IN A LINEAR ACCELERATOR FIELD 560
15.4 RF-CAVITIES 563 15.4.1 ENERGY GAIN 565 15.4.2 RF-CAVITY AS AN
OSCILLATOR 566 15.4.3 CAVITY LOSSES AND SHUNT IMPEDANCE 568 15.5
RF-PARAMETERS 572 15.5.1 SYNCHRONOUS PHASE AND RF-VOLTAGE 573 16
BEAM*CAVITY INTERACTION 577 16.1 COUPLING BETWEEN RF-FIELD AND PARTICLES
577 16.1.1 NETWORK MODELLING OF AN ACCELERATING CAVITY 578 16.2 BEAM
LOADING AND RF-SYSTEM 581 16.3 HIGHER ORDER MODE LOSSES IN AN RF-CAVITY
587 16.3.1 EFFICIENCY OF ENERGY TRANSFER FROM CAVITY TO BEAM .... 590
16.4 BEAM LOADING 591 16.5 PHASE OSCILLATION AND STABILITY 593 16.5.1
ROBINSON DAMPING 594 16.5.2 POTENTIAL WELL DISTORTION 598 XXIV CONTENTS
PART VI COUPLED MOTION 17 DYNAMICS OF COUPLED MOTION 605 17.1 EQUATIONS
OF MOTION IN COUPLED SYSTEMS 605 17.1.1 COUPLED BEAM DYNAMICS IN SKEW
QUADRUPOLES 606 17.1.2 PARTICLE MOTION IN A SOLENOIDAL FIELD 608 17.1.3
TRANSFORMATION MATRIX FOR A SOLENOID MAGNET 611 17.2 BETATRON FUNCTIONS
FOR COUPLED MOTION 614 17.3 CONJUGATE TRAJECTORIES 614 17.4 HAMILTONIAN
AND COUPLING 621 17.4.1 LINEARLY COUPLED MOTION 621 17.4.2 HIGHER ORDER
COUPLING RESONANCES 630 17.4.3 MULTIPLE RESONANCES 630 PART VII INTENSE
BEAMS 18 STATISTICAL AND COLLECTIVE EFFECTS 635 18.1 STATISTICAL EFFECTS
636 18.1.1 SCHOTTKY NOISE 636 18.1.2 STOCHASTIC COOLING 638 18.1.3
TOUSCHEK EFFECT 638 18.1.4 INTRABEAM SCATTERING 640 18.2 COLLECTIVE
SELF-FIELDS 642 18.2.1 STABILITY OF A CHARGED-PARTICLE BEAM 642 18.2.2
SELF-FIELD FOR PARTICLE BEAMS 644 18.2.3 BEAM-BEAM EFFECT 647 18.2.4
TRANSVERSE SELF-FIELDS 649 18.2.5 FIELDS FROM IMAGE CHARGES 650 18.2.6
SPACE-CHARGE EFFECTS 655 18.2.7 LONGITUDINAL SPACE-CHARGE FIELD 660 18.3
BEAM-CURRENT SPECTRUM 662 18.3.1 LONGITUDINAL BEAM SPECTRUM 662 18.3.2
TRANSVERSE BEAM SPECTRUM 665 19 WAKE FIELDS AND INSTABILITIES 671 19.1
DEFINITIONS OF WAKE FIELD AND IMPEDANCE 672 19.1.1 LONGITUDINAL WAKE
FIELDS 678 19.1.2 TRANSVERSE WAKE FIELDS 683 19.1.3 PANOFSKY-WENZEL
THEOREM 684 19.2 IMPEDANCES IN AN ACCELERATOR ENVIRONMENT 685 19.2.1
SPACE-CHARGE IMPEDANCE 686 19.2.2 RESISTIVE WALL IMPEDANCE 686 19.2.3
CAVITY-LIKE STRUCTURE IMPEDANCE 687 CONTENTS XXV 19.2.4 OVERALL
ACCELERATOR IMPEDANCE 19.2.5 BROAD-BAND WAKE FIELDS IN A LINEAR
ACCELERATOR 691 19.3 COASTING-BEAM INSTABILITIES 692 19.3.1
NEGATIVE-MASS INSTABILITY 692 19.3.2 DISPERSION RELATION 695 19.3.3
LANDAU DAMPING 701 19.3.4 TRANSVERSE COASTING-BEAM INSTABILITY 703 19.4
LONGITUDINAL SINGLE-BUNCH EFFECTS 705 19.4.1 POTENTIAL WELL DISTORTION
705 19.5 TRANSVERSE SINGLE-BUNCH INSTABILITIES 713 19.5.1 BEAM BREAK-UP
IN LINEAR ACCELERATORS 713 19.5.2 FAST HEAD-TAIL EFFECT 715 19.5.3
HEAD-TAIL INSTABILITY 719 19.6 MULTIBUNCH INSTABILITIES 722 PART VIII
SYNCHROTRON RADIATION 20 FUNDAMENTAL PROCESSES 731 20.1 RADIATION FROM
MOVING CHARGES 731 20.1.1 WHY DO CHARGED PARTICLES RADIATE? 732 20.1.2
SPONTANEOUS SYNCHROTRON RADIATION 733 20.1.3 STIMULATED RADIATION 734
20.1.4 ELECTRON BEAM 735 20.2 CONSERVATION LAWS AND RADIATION 736 20.2.1
CHERENKOV RADIATION 737 20.2.2 COMPTON RADIATION 738 20.3
ELECTROMAGNETIC RADIATION 739 20.3.1 COULOMB REGIME 740 20.3.2 RADIATION
REGIME 741 21 OVERVIEW OF SYNCHROTRON RADIATION 749 21.1 RADIATION
SOURCES 750 21.1.1 BENDING MAGNET RADIATION 750 21.1.2 SUPERBENDS 751
21.1.3 WAVELENGTH SHIFTER 752 21.1.4 WIGGLER MAGNET RADIATION 753 21.1.5
UNDULATOR RADIATION 757 21.1.6 BACK SCATTERED PHOTONS 763 21.2 RADIATION
POWER 765 21.3 SPECTRUM 768 21.4 SPATIAL PHOTON DISTRIBUTION 773 21.5
FRAUNHOFER DIFFRACTION 775 21.6 SPATIAL COHERENCE 778 21.7 TEMPORAL
COHERENCE 780 XXVI CONTENTS 21.8 SPECTRAL BRIGHTNESS 782 21.8.1 MATCHING
783 21.9 PHOTON SOURCE PARAMETERS 785 22 THEORY OF SYNCHROTRON RADIATION
789 22.1 RADIATION FIELD 789 22.2 TOTAL RADIATION POWER AND ENERGY LOSS
796 22.2.1 TRANSITION RADIATION 796 22.2.2 SYNCHROTRON RADIATION POWER
799 22.3 SPATIAL AND SPECTRAL RADIATION DISTRIBUTION 802 22.3.1
RADIATION LOBES 802 22.3.2 SYNCHROTRON RADIATION SPECTRUM 807 22.4
RADIATION FIELD IN THE FREQUENCY DOMAIN 807 22A.I SPECTRAL DISTRIBUTION
IN SPACE AND POLARIZATION 812 22.4.2 SPECTRAL AND SPATIAL PHOTON FLUX
814 22.4.3 HARMONIC REPRESENTATION 815 22.4.4 SPATIAL RADIATION POWER
DISTRIBUTION 816 22.5 ASYMPTOTIC SOLUTIONS 818 22.5.1 LOW FREQUENCIES
AND SMALL OBSERVATION ANGLES 818 22.5.2 HIGH FREQUENCIES OR LARGE
OBSERVATION ANGLES 818 22.6 ANGLE-INTEGRATED SPECTRUM 819 22.7
STATISTICAL RADIATION PARAMETERS 825 23 INSERTION DEVICE RADIATION 829
23.1 PARTICLE DYNAMICS IN A PERIODIC FIELD MAGNET 831 23.2 UNDULATOR
RADIATION 833 23.2.1 FUNDAMENTAL WAVELENGTH 833 23.2.2 RADIATION POWER
834 23.2.3 SPATIAL AND SPECTRAL DISTRIBUTION 835 23.2.4 LINE SPECTRUM
847 23.2.5 SPECTRAL UNDULATOR BRIGHTNESS 851 23.3 ELLIPTICAL
POLARIZATION . 852 23.3.1 ELLIPTICAL POLARIZATION FROM BENDING MAGNET
RADIATION. 853 23.3.2 ELLIPTICAL POLARIZATION FROM PERIODIC INSERTION
DEVICES. . 855 24 FREE ELECTRON LASERS 861 24.1 SMALL GAIN REGIME 862
24.1.1 ENERGY TRANSFER 864 24.1.2 EQUATION OF MOTION 866 24.1.3 FEL-GAIN
868 SOLUTIONS 875 PART IX APPENDICES CONTENTS XXVII USEFUL MATHEMATICAL
FORMULAE 907 A.I VECTOR ALGEBRA 907 A. 1.1 DIFFERENTIAL VECTOR
EXPRESSIONS 907 A.I.2 ALGEBRAIC RELATIONS 908 A.1.3 DIFFERENTIAL
RELATIONS 909 A.I.4 INTEGRAL RELATIONS 909 A.1.5 SERIES EXPANSIONS 909
A.1.6 FOURIER TRANSFORM 909 A.1.7 PARCEVAL S THEOREM 910 A.1.8
COORDINATE TRANSFORMATIONS 910 PHYSICAL FORMULAE AND PARAMETERS 913 B.I
PHYSICAL CONSTANTS 913 B.2 RELATIONS OF FUNDAMENTAL PARAMETERS 914 B.3
UNIT CONVERSION 914 B.4 MAXWELL S EQUATIONS 914 B.5 WAVE AND FIELD
EQUATIONS 915 B.6 RELATIVISTIC RELATIONS 916 B.6.1 LORENTZ
TRANSFORMATION 916 B.6.2 FOUR-VECTORS 917 B.6.3 SQUARE OF THE
4-ACCELERATION 918 B.6.4 MISCELLANEOUS 4-VECTORS AND LORENTZ INVARIANT
PROPERTIES 918 TRANSFORMATION MATRICES IN BEAM DYNAMICS 919 C.I GENERAL
TRANSFORMATION MATRIX 920 C.I.I SYMMETRIC MAGNET ARRANGEMENT 920 C.1.2
INVERSE TRANSFORMATION MATRIX 920 C.2 SPECIFIC TRANSFORMATION MATRICES
921 C.2.1 DRIFT SPACE 921 C.2.2 BENDING MAGNETS 921 C.2.3 QUADRUPOL 923
REFERENCES 925 INDEX 937
|
adam_txt |
HELMUT WIEDEMANN PARTICLE ACCELERATOR PHYSICS THIRD EDITION WITH 264
FIGURES ^J SPRINGER CONTENTS PART I TOOLS WE NEED OF FIELDS AND FORCES 3
1.1 ELECTROMAGNETIC FIELDS OF CHARGED PARTICLES 3 1.1.1 VECTOR AND
SCALAR POTENTIAL 5 1.1.2 WAVE EQUATION 5 1.1.3 INDUCTION 7 1.1.4 THE
LORENTZ FORCE 7 1.1.5 EQUATION OF MOTION 8 1.1.6 ENERGY CONSERVATION 10
1.2 PRIMER IN SPECIAL RELATIVITY 11 1.2.1 LORENTZ TRANSFORMATION 11
1.2.2 4-VECTORS 13 1.2.3 SPATIAL AND SPECTRAL DISTRIBUTION OF RADIATION
17 1.3 ELEMENTS OF CLASSICAL MECHANICS 18 1.3.1 HOW TO FORMULATE A
LAGRANGIAN? 20 1.3.2 THE LORENTZ FORCE 21 1.3.3 FRENET-SERRET
COORDINATES 22 1.4 HAMILTONIAN FORMULATION 23 1.4.1 CYCLIC VARIABLES 25
1.4.2 CANONICAL TRANSFORMATIONS 25 1.4.3 CURVILINEAR COORDINATES 28
1.4.4 EXTENDED HAMILTONIAN 30 1.4.5 CHANGE OF INDEPENDENT VARIABLE 30
PARTICLE DYNAMICS IN ELECTROMAGNETIC FIELDS 37 2.1 THE LORENTZ FORCE 37
2.2 FUNDAMENTALS OF CHARGED PARTICLE BEAM OPTICS . . 38 2.2.1 PARTICLE
BEAM GUIDANCE 38 2.2.2 PARTICLE BEAM FOCUSING 42 2.3 EQUATION OF MOTION
46 XVIII CONTENTS 2.4 EQUATIONS OF MOTION FROM THE LAGRANGIAN AND
HAMILTONIAN . 49 2.4.1 EQUATIONS OF MOTION FROM LAGRANGIAN 49 2.4.2
CANONICAL MOMENTA 51 2.4.3 EQUATION OF MOTION FROM HAMILTONIAN 51 2.4.4
HARMONIC OSCILLATOR 53 2.4.5 ACTION-ANGLE VARIABLES 54 2.5 SOLUTIONS OF
THE LINEAR EQUATIONS OF MOTION 55 2.5.1 LINEAR UNPERTURBED EQUATION OF
MOTION 55 2.5.2 MATRIX FORMULATION 57 2.5.3 WRONSKIAN 57 2.5.4
PERTURBATION TERMS 59 3 ELECTROMAGNETIC FIELDS 63 3.1 PURE MULTIPOLE
FIELD EXPANSION 63 3.1.1 THE LAPLACE EQUATION 63 3.1.2 DEFLECTING
MAGNETS ; 65 3.1.3 FOCUSING DEVICE 66 3.1.4 MULTIPOLE MAGNETS 74 3.1.5
MULTIPOLE FIELDS FOR BEAM TRANSPORT SYSTEMS 77 3.2 GENERAL TRANSVERSE
MAGNETIC-FIELD EXPANSION 80 3.3 THIRD-ORDER DIFFERENTIAL EQUATION OF
MOTION 87 3.4 LONGITUDINAL FIELD DEVICES 92 3.5 AIR COIL MAGNETS 94 3.6
PERIODIC WIGGLER MAGNETS 99 3.6.1 WIGGLER FIELD CONFIGURATION 100 3.7
ELECTRIC FIELD COMPONENTS 104 3.7.1 ELECTROSTATIC DEFLECTORS 104 3.7.2
ELECTROSTATIC FOCUSING DEVICES 105 3.7.3 IRIS DOUBLET 107 3.7.4
EINZELLENS 108 3.7.5 ELECTROSTATIC QUADRUPOLE 109 PART II BEAM DYNAMICS
4 SINGLE PARTICLE DYNAMICS 115 4.1 LINEAR BEAM TRANSPORT SYSTEMS 116
4.1.1 NOMENCLATURE 117 4.2 MATRIX FORMALISM IN LINEAR BEAM DYNAMICS 118
4.2.1 DRIFT SPACE 120 4.2.2 QUADRUPOLE MAGNET 120 4.2.3 THIN LENS
APPROXIMATION 122 4.2.4 QUADRUPOLE END FIELD EFFECTS 125 4.3 FOCUSING IN
BENDING MAGNETS 129 4.3.1 SECTOR MAGNETS 130 CONTENTS XIX 4.3.2 FRINGE
FIELD EFFECTS 131 4.3.3 FINITE POLE GAP 133 4.3.4 WEDGE MAGNETS 135
4.3.5 RECTANGULAR MAGNET 137 4.3.6 FOCUSING IN A WIGGLER MAGNET 138
4.3.7 HARD EDGE MODEL OF WIGGLER MAGNETS 141 4.4 ELEMENTS OF BEAM
DYNAMICS 143 4.4.1 BUILDING BLOCKS FOR BEAM TRANSPORT LINES 143 4.4.2
ISOCHRONOUS SYSTEMS 146 PARTICLE BEAMS AND PHASE SPACE 153 5.1 BEAM
EMITTANCE 154 5.1.1 LIOUVILLE'S THEOREM 155 5.1.2 TRANSFORMATION IN
PHASE SPACE 158 5.1.3 BEAM MATRIX 161 5.2 BETATRON FUNCTIONS 166 5.2.1
BEAM ENVELOPE 169 5.3 BEAM DYNAMICS IN TERMS OF BETATRON FUNCTIONS 169
5.3.1 BEAM DYNAMICS IN NORMALIZED COORDINATES 172 5.4 DISPERSIVE SYSTEMS
175 5.4.1 ANALYTICAL SOLUTION 175 5.4.2 (3 X 3)-TRANSFORMATION MATRICES
177 5.4.3 LINEAR ACHROMAT 178 5.4.4 SPECTROMETER 183 5.4.5 MEASUREMENT
OF BEAM ENERGY SPECTRUM 184 5.4.6 PATH LENGTH AND MOMENTUM COMPACTION
187 LONGITUDINAL BEAM DYNAMICS 191 6.1 LONGITUDINAL PARTICLE MOTION 192
6.1.1 LONGITUDINAL PHASE SPACE DYNAMICS 194 6.2 EQUATION OF MOTION IN
PHASE SPACE 197 6.2.1 SMALL OSCILLATION AMPLITUDES 199 6.2.2 PHASE
STABILITY 203 6.2.3 ACCELERATION OF CHARGED PARTICLES 207 6.3
LONGITUDINAL PHASE SPACE PARAMETERS 211 6.3.1 SEPARATRIX PARAMETERS 211
6.3.2 MOMENTUM ACCEPTANCE 213 6.3.3 BUNCH LENGTH 216 6.3.4 LONGITUDINAL
BEAM EMITTANCE 218 6.3.5 PHASE SPACE MATCHING 219 6.4 HIGHER ORDER PHASE
FOCUSING 224 6.4.1 PATH LENGTH IN HIGHER ORDER 224 6.4.2 HIGHER ORDER
PHASE SPACE MOTION 226 6.4.3 STABILITY CRITERIA 231 XX CONTENTS 7
PERIODIC FOCUSING SYSTEMS 237 7.1 FODO LATTICE 238 7.1.1 SCALING OF FODO
PARAMETERS 239 7.1.2 BETATRON MOTION IN PERIODIC STRUCTURES 243 7.1.3
GENERAL FODO LATTICE 245 7.2 BEAM DYNAMICS IN PERIODIC CLOSED LATTICES
249 7.2.1 HILL'S EQUATION 249 7.2.2 PERIODIC BETATRON FUNCTIONS 252
7.2.3 PERIODIC DISPERSION FUNCTION 255 7.2.4 PERIODIC LATTICES IN
CIRCULAR ACCELERATORS 263 7.3 FODO LATTICE AND ACCELERATION 275 7.3.1
LATTICE STRUCTURE 275 7.3.2 TRANSVERSE BEAM DYNAMICS AND ACCELERATION
276 7.3.3 ADIABATIC DAMPING 280 PART III BEAM PARAMETERS 8 PARTICLE BEAM
PARAMETERS 289 8.1 DEFINITION OF BEAM PARAMETERS 289 8.1.1 BEAM ENERGY
289 8.1.2 TIME STRUCTURE 290 8.1.3 BEAM CURRENT 290 8.1.4 BEAM
DIMENSIONS 292 8.2 DAMPING 293 8.2.1 ROBINSON CRITERION 294 8.3 PARTICLE
DISTRIBUTION IN LONGITUDINAL PHASE SPACE 301 8.3.1 ENERGY SPREAD 301
8.3.2 BUNCH LENGTH 303 8.4 TRANSVERSE BEAM EMITTANCE 303 8.4.1
EQUILIBRIUM BEAM EMITTANCE 304 8.4.2 EMITTANCE INCREASE IN A BEAM
TRANSPORT LINE 305 8.4.3 VERTICAL BEAM EMITTANCE 306 8.4.4 BEAM SIZES
307 8.4.5 BEAM DIVERGENCE 310 8.5 VARIATION OF THE DAMPING DISTRIBUTION
310 8.5.1 DAMPING PARTITION AND RF-FREQUENCY 310 8.6 VARIATION OF THE
EQUILIBRIUM BEAM EMITTANCE 312 8.6.1 BEAM EMITTANCE AND WIGGLER MAGNETS
312 8.6.2 DAMPING WIGGLERS 315 8.7 ROBINSON WIGGLER 317 8.7.1 DAMPING
PARTITION AND SYNCHROTRON OSCILLATION 317 8.7.2 CAN WE ELIMINATE THE
BEAM ENERGY SPREAD? 318 8.8 BEAM LIFE TIME 319 8.8.1 BEAM LIFETIME AND
VACUUM 321 CONTENTS XXI 8.8.2 ULTRA HIGH VACUUM SYSTEM 329 9 VLASOV AND
FOKKER*PLANCK EQUATIONS 335 9.1 THE VLASOV EQUATION 336 9.1.1 BETATRON
OSCILLATIONS AND PERTURBATIONS 341 9.1.2 DAMPING 343 9.2 DAMPING OF
OSCILLATIONS IN ELECTRON ACCELERATORS 345 9.2.1 DAMPING OF SYNCHROTRON
OSCILLATIONS 345 9.2.2 DAMPING OF VERTICAL BETATRON OSCILLATIONS 349
9.2.3 ROBINSON'S DAMPING CRITERION 352 9.2.4 DAMPING OF HORIZONTAL
BETATRON OSCILLATIONS 355 9.3 THE FOKKER-PLANCK EQUATION 355 9.3.1
STATIONARY SOLUTION OF THE FOKKER-PLANCK EQUATION . 358 9.3.2
PARTICLE DISTRIBUTION WITHIN A FINITE APERTURE 362 9.3.3 PARTICLE
DISTRIBUTION IN THE ABSENCE OF DAMPING 364 10 EQUILIBRIUM PARTICLE
DISTRIBUTION 369 10.1 PARTICLE DISTRIBUTION IN PHASE SPACE 369 10.1.1
DIFFUSION COEFFICIENT AND SYNCHROTRON RADIATION 369 10.1.2 QUANTUM
EXCITATION OF BEAM EMITTANCE 372 10.2 EQUILIBRIUM BEAM EMITTANCE 373
10.2.1 HORIZONTAL EQUILIBRIUM BEAM EMITTANCE 373 10.2.2 VERTICAL
EQUILIBRIUM BEAM EMITTANCE 374 10.3 EQUILIBRIUM ENERGY SPREAD AND BUNCH
LENGTH 375 10.3.1 EQUILIBRIUM BEAM ENERGY SPREAD 375 10.3.2 EQUILIBRIUM
BUNCH LENGTH 376 10.4 PHASE-SPACE MANIPULATION 377 10.4.1 EXCHANGE OF
TRANSVERSE PHASE-SPACE PARAMETERS 377 10.4.2 BUNCH COMPRESSION 378
10.4.3 ALPHA MAGNET 380 10.5 POLARIZATION OF A PARTICLE BEAM 383 11 BEAM
EMITTANCE AND LATTICE DESIGN 389 11.1 EQUILIBRIUM BEAM EMITTANCE IN
STORAGE RINGS 391 11.1.1 FODO LATTICE 391 11.1.2 MINIMUM BEAM EMITTANCE
392 11.2 BEAM EMITTANCE IN PERIODIC LATTICES 396 11.2.1 THE DOUBLE BEND
ACHROMAT LATTICE (DBA) 397 11.2.2 THE TRIPLE BEND ACHROMAT LATTICE (TBA)
399 11.2.3 THE TRIPLET ACHROMAT LATTICE (TAL) 400 11.2.4 LIMITING
EFFECTS 402 11.2.5 THE FODO LATTICE 404 11.2.6 OPTIMUM EMITTANCE FOR
COLLIDING BEAM STORAGE RINGS . 407 XXII CONTENTS PART IV PERTURBATIONS
12 PERTURBATIONS IN BEAM DYNAMICS 41 1 12.1 MAGNET FIELD AND ALIGNMENT
ERRORS 412 12.1.1 DIPOLE FIELD PERTURBATIONS 414 12.1.2 EXISTENCE OF
EQUILIBRIUM ORBITS 415 12.1.3 CLOSED ORBIT DISTORTION 418 12.1.4
QUADRUPOLE FIELD PERTURBATIONS 426 12.2 CHROMATIC EFFECTS IN A CIRCULAR
ACCELERATOR 435 12.2.1 CHROMATICITY 436 12.2.2 CHROMATICITY CORRECTION
439 12.3 KINEMATIC PERTURBATION TERMS 441 12.4 CONTROL OF THE CENTRAL
BEAM PATH 443 12.4.1 LAUNCHING ERROR 444 12.4.2 STATISTICAL ALIGNMENT
AND FIELD ERROR 445 12.5 DIPOLE FIELD ERRORS AND DISPERSION FUNCTION 450
12.5.1 SELF COMPENSATION OF PERTURBATIONS 451 12.5.2 PERTURBATIONS IN
OPEN TRANSPORT LINES 452 12.6 DISPERSION FUNCTION IN HIGHER ORDER 454
12.6.1 CHROMATICITY IN HIGHER APPROXIMATION 456 12.7 NONLINEAR
CHROMATICITY 458 12.8 PERTURBATION METHODS IN BEAM DYNAMICS 463 12.8.1
PERIODIC DISTRIBUTION OF STATISTICAL PERTURBATIONS 464 12.8.2 PERIODIC
PERTURBATIONS IN CIRCULAR ACCELERATORS 467 12.8.3 STATISTICAL METHODS TO
EVALUATE PERTURBATIONS 469 13 HAMILTONIAN RESONANCE THEORY 479 13.1
RESONANCES 479 13.1.1 RESONANCE CONDITIONS : 480 13.1.2 COUPLING
RESONANCES 484 13.1.3 RESONANCE DIAGRAM 485 13.2 NONLINEAR HAMILTONIAN
487 13.3 RESONANT TERMS 490 13.4 RESONANCE PATTERNS AND STOP-BAND WIDTH
492 13.4.1 HALF INTEGER STOP BAND 493 13.4.2 SEPARATRICES 495 13.5
GENERAL STOP-BAND WIDTH 497 13.6 THIRD-ORDER RESONANCE 498 13.6.1
PARTICLE MOTION IN PHASE SPACE 501 CONTENTS XXIII 14 HAMILTONIAN
NONLINEAR BEAM DYNAMICS 503 14.1 HIGHER ORDER BEAM DYNAMICS 503 14.1.1
MULTIPOLE ERRORS 503 14.1.2 NONLINEAR MATRIX FORMALISM 507 14.2
ABERRATIONS 512 14.2.1 GEOMETRIC ABERRATIONS 514 14.2.2 FILAMENTATION OF
PHASE SPACE 520 14.2.3 CHROMATIC ABERRATIONS 523 14.2.4 PARTICLE
TRACKING 526 14.3 HAMILTONIAN PERTURBATION THEORY 528 14.3.1 TUNE SHIFT
IN HIGHER ORDER 534 PART V ACCELERATION 15 CHARGED PARTICLE ACCELERATION
541 15.1 PREINJECTOR AND BEAM PREPARATION 541 15.1.1 PREBUNCHER 541
15.1.2 BEAM CHOPPER 544 15.2 RF-WAVEGUIDES AND CAVITIES 545 15.2.1 WAVE
EQUATION 545 15.2.2 RECTANGULAR WAVEGUIDE MODES 547 15.2.3 CYLINDRICAL
WAVEGUIDE MODES 551 15.3 LINEAR ACCELERATOR 554 15.3.1 BASIC WAVEGUIDE
PARAMETERS 555 15.3.2 PARTICLE CAPTURE IN A LINEAR ACCELERATOR FIELD 560
15.4 RF-CAVITIES 563 15.4.1 ENERGY GAIN 565 15.4.2 RF-CAVITY AS AN
OSCILLATOR 566 15.4.3 CAVITY LOSSES AND SHUNT IMPEDANCE 568 15.5
RF-PARAMETERS 572 15.5.1 SYNCHRONOUS PHASE AND RF-VOLTAGE 573 16
BEAM*CAVITY INTERACTION 577 16.1 COUPLING BETWEEN RF-FIELD AND PARTICLES
577 16.1.1 NETWORK MODELLING OF AN ACCELERATING CAVITY 578 16.2 BEAM
LOADING AND RF-SYSTEM 581 16.3 HIGHER ORDER MODE LOSSES IN AN RF-CAVITY
587 16.3.1 EFFICIENCY OF ENERGY TRANSFER FROM CAVITY TO BEAM . 590
16.4 BEAM LOADING 591 16.5 PHASE OSCILLATION AND STABILITY 593 16.5.1
ROBINSON DAMPING 594 16.5.2 POTENTIAL WELL DISTORTION 598 XXIV CONTENTS
PART VI COUPLED MOTION 17 DYNAMICS OF COUPLED MOTION 605 17.1 EQUATIONS
OF MOTION IN COUPLED SYSTEMS 605 17.1.1 COUPLED BEAM DYNAMICS IN SKEW
QUADRUPOLES 606 17.1.2 PARTICLE MOTION IN A SOLENOIDAL FIELD 608 17.1.3
TRANSFORMATION MATRIX FOR A SOLENOID MAGNET 611 17.2 BETATRON FUNCTIONS
FOR COUPLED MOTION 614 17.3 CONJUGATE TRAJECTORIES 614 17.4 HAMILTONIAN
AND COUPLING 621 17.4.1 LINEARLY COUPLED MOTION 621 17.4.2 HIGHER ORDER
COUPLING RESONANCES 630 17.4.3 MULTIPLE RESONANCES 630 PART VII INTENSE
BEAMS 18 STATISTICAL AND COLLECTIVE EFFECTS 635 18.1 STATISTICAL EFFECTS
636 18.1.1 SCHOTTKY NOISE 636 18.1.2 STOCHASTIC COOLING 638 18.1.3
TOUSCHEK EFFECT 638 18.1.4 INTRABEAM SCATTERING 640 18.2 COLLECTIVE
SELF-FIELDS 642 18.2.1 STABILITY OF A CHARGED-PARTICLE BEAM 642 18.2.2
SELF-FIELD FOR PARTICLE BEAMS 644 18.2.3 BEAM-BEAM EFFECT 647 18.2.4
TRANSVERSE SELF-FIELDS 649 18.2.5 FIELDS FROM IMAGE CHARGES 650 18.2.6
SPACE-CHARGE EFFECTS 655 18.2.7 LONGITUDINAL SPACE-CHARGE FIELD 660 18.3
BEAM-CURRENT SPECTRUM 662 18.3.1 LONGITUDINAL BEAM SPECTRUM 662 18.3.2
TRANSVERSE BEAM SPECTRUM 665 19 WAKE FIELDS AND INSTABILITIES 671 19.1
DEFINITIONS OF WAKE FIELD AND IMPEDANCE 672 19.1.1 LONGITUDINAL WAKE
FIELDS 678 19.1.2 TRANSVERSE WAKE FIELDS 683 19.1.3 PANOFSKY-WENZEL
THEOREM 684 19.2 IMPEDANCES IN AN ACCELERATOR ENVIRONMENT 685 19.2.1
SPACE-CHARGE IMPEDANCE 686 19.2.2 RESISTIVE WALL IMPEDANCE 686 19.2.3
CAVITY-LIKE STRUCTURE IMPEDANCE 687 CONTENTS XXV 19.2.4 OVERALL
ACCELERATOR IMPEDANCE 19.2.5 BROAD-BAND WAKE FIELDS IN A LINEAR
ACCELERATOR 691 19.3 COASTING-BEAM INSTABILITIES 692 19.3.1
NEGATIVE-MASS INSTABILITY 692 19.3.2 DISPERSION RELATION 695 19.3.3
LANDAU DAMPING 701 19.3.4 TRANSVERSE COASTING-BEAM INSTABILITY 703 19.4
LONGITUDINAL SINGLE-BUNCH EFFECTS 705 19.4.1 POTENTIAL WELL DISTORTION
705 19.5 TRANSVERSE SINGLE-BUNCH INSTABILITIES 713 19.5.1 BEAM BREAK-UP
IN LINEAR ACCELERATORS 713 19.5.2 FAST HEAD-TAIL EFFECT 715 19.5.3
HEAD-TAIL INSTABILITY 719 19.6 MULTIBUNCH INSTABILITIES 722 PART VIII
SYNCHROTRON RADIATION 20 FUNDAMENTAL PROCESSES 731 20.1 RADIATION FROM
MOVING CHARGES 731 20.1.1 WHY DO CHARGED PARTICLES RADIATE? 732 20.1.2
SPONTANEOUS SYNCHROTRON RADIATION 733 20.1.3 STIMULATED RADIATION 734
20.1.4 ELECTRON BEAM 735 20.2 CONSERVATION LAWS AND RADIATION 736 20.2.1
CHERENKOV RADIATION 737 20.2.2 COMPTON RADIATION 738 20.3
ELECTROMAGNETIC RADIATION 739 20.3.1 COULOMB REGIME 740 20.3.2 RADIATION
REGIME 741 21 OVERVIEW OF SYNCHROTRON RADIATION 749 21.1 RADIATION
SOURCES 750 21.1.1 BENDING MAGNET RADIATION 750 21.1.2 SUPERBENDS 751
21.1.3 WAVELENGTH SHIFTER 752 21.1.4 WIGGLER MAGNET RADIATION 753 21.1.5
UNDULATOR RADIATION 757 21.1.6 BACK SCATTERED PHOTONS 763 21.2 RADIATION
POWER 765 21.3 SPECTRUM 768 21.4 SPATIAL PHOTON DISTRIBUTION 773 21.5
FRAUNHOFER DIFFRACTION 775 21.6 SPATIAL COHERENCE 778 21.7 TEMPORAL
COHERENCE 780 XXVI CONTENTS 21.8 SPECTRAL BRIGHTNESS 782 21.8.1 MATCHING
783 21.9 PHOTON SOURCE PARAMETERS 785 22 THEORY OF SYNCHROTRON RADIATION
789 22.1 RADIATION FIELD 789 22.2 TOTAL RADIATION POWER AND ENERGY LOSS
796 22.2.1 TRANSITION RADIATION 796 22.2.2 SYNCHROTRON RADIATION POWER
799 22.3 SPATIAL AND SPECTRAL RADIATION DISTRIBUTION 802 22.3.1
RADIATION LOBES 802 22.3.2 SYNCHROTRON RADIATION SPECTRUM 807 22.4
RADIATION FIELD IN THE FREQUENCY DOMAIN 807 22A.I SPECTRAL DISTRIBUTION
IN SPACE AND POLARIZATION 812 22.4.2 SPECTRAL AND SPATIAL PHOTON FLUX
814 22.4.3 HARMONIC REPRESENTATION 815 22.4.4 SPATIAL RADIATION POWER
DISTRIBUTION 816 22.5 ASYMPTOTIC SOLUTIONS 818 22.5.1 LOW FREQUENCIES
AND SMALL OBSERVATION ANGLES 818 22.5.2 HIGH FREQUENCIES OR LARGE
OBSERVATION ANGLES 818 22.6 ANGLE-INTEGRATED SPECTRUM 819 22.7
STATISTICAL RADIATION PARAMETERS 825 23 INSERTION DEVICE RADIATION 829
23.1 PARTICLE DYNAMICS IN A PERIODIC FIELD MAGNET 831 23.2 UNDULATOR
RADIATION 833 23.2.1 FUNDAMENTAL WAVELENGTH 833 23.2.2 RADIATION POWER
834 23.2.3 SPATIAL AND SPECTRAL DISTRIBUTION 835 23.2.4 LINE SPECTRUM
847 23.2.5 SPECTRAL UNDULATOR BRIGHTNESS 851 23.3 ELLIPTICAL
POLARIZATION '. 852 23.3.1 ELLIPTICAL POLARIZATION FROM BENDING MAGNET
RADIATION. 853 23.3.2 ELLIPTICAL POLARIZATION FROM PERIODIC INSERTION
DEVICES. . 855 24 FREE ELECTRON LASERS 861 24.1 SMALL GAIN REGIME 862
24.1.1 ENERGY TRANSFER 864 24.1.2 EQUATION OF MOTION 866 24.1.3 FEL-GAIN
868 SOLUTIONS 875 PART IX APPENDICES CONTENTS XXVII USEFUL MATHEMATICAL
FORMULAE 907 A.I VECTOR ALGEBRA 907 A. 1.1 DIFFERENTIAL VECTOR
EXPRESSIONS 907 A.I.2 ALGEBRAIC RELATIONS 908 A.1.3 DIFFERENTIAL
RELATIONS 909 A.I.4 INTEGRAL RELATIONS 909 A.1.5 SERIES EXPANSIONS 909
A.1.6 FOURIER TRANSFORM 909 A.1.7 PARCEVAL'S THEOREM 910 A.1.8
COORDINATE TRANSFORMATIONS 910 PHYSICAL FORMULAE AND PARAMETERS 913 B.I
PHYSICAL CONSTANTS 913 B.2 RELATIONS OF FUNDAMENTAL PARAMETERS 914 B.3
UNIT CONVERSION 914 B.4 MAXWELL'S EQUATIONS 914 B.5 WAVE AND FIELD
EQUATIONS 915 B.6 RELATIVISTIC RELATIONS 916 B.6.1 LORENTZ
TRANSFORMATION 916 B.6.2 FOUR-VECTORS 917 B.6.3 SQUARE OF THE
4-ACCELERATION 918 B.6.4 MISCELLANEOUS 4-VECTORS AND LORENTZ INVARIANT
PROPERTIES 918 TRANSFORMATION MATRICES IN BEAM DYNAMICS 919 C.I GENERAL
TRANSFORMATION MATRIX 920 C.I.I SYMMETRIC MAGNET ARRANGEMENT 920 C.1.2
INVERSE TRANSFORMATION MATRIX 920 C.2 SPECIFIC TRANSFORMATION MATRICES
921 C.2.1 DRIFT SPACE 921 C.2.2 BENDING MAGNETS 921 C.2.3 QUADRUPOL 923
REFERENCES 925 INDEX 937 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Wiedemann, Helmut |
author_facet | Wiedemann, Helmut |
author_role | aut |
author_sort | Wiedemann, Helmut |
author_variant | h w hw |
building | Verbundindex |
bvnumber | BV022430430 |
callnumber-first | Q - Science |
callnumber-label | QC793 |
callnumber-raw | QC793.3.B4 |
callnumber-search | QC793.3.B4 |
callnumber-sort | QC 3793.3 B4 |
callnumber-subject | QC - Physics |
classification_rvk | UN 6100 |
ctrlnum | (OCoLC)127107180 (DE-599)BVBBV022430430 |
dewey-full | 539.73 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 539 - Modern physics |
dewey-raw | 539.73 |
dewey-search | 539.73 |
dewey-sort | 3539.73 |
dewey-tens | 530 - Physics |
discipline | Physik |
discipline_str_mv | Physik |
edition | 3. ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01995nam a2200541 c 4500</leader><controlfield tag="001">BV022430430</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20131010 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070521s2007 gw |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,N45,0309</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">981567258</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540490432</subfield><subfield code="c">Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.)</subfield><subfield code="9">978-3-540-49043-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540490434</subfield><subfield code="c">Gb. : ca. EUR 106.95 (freier Pr.), ca. sfr 169.00 (freier Pr.)</subfield><subfield code="9">3-540-49043-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540490432</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11923084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)127107180</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022430430</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC793.3.B4</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.73</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UN 6100</subfield><subfield code="0">(DE-625)146147:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiedemann, Helmut</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Particle accelerator physics</subfield><subfield code="c">Helmut Wiedemann</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">3. ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 948 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. und 2. Aufl. mehrbändig</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Accélérateurs linéaires</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faisceaux de particules</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Faisceaux, Dynamique des</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Beam dynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear accelerators</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synchrotron radiation</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strahldynamik</subfield><subfield code="0">(DE-588)4263839-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teilchenbeschleuniger</subfield><subfield code="0">(DE-588)4059318-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Teilchenbeschleuniger</subfield><subfield code="0">(DE-588)4059318-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Strahldynamik</subfield><subfield code="0">(DE-588)4263839-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638626&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015638626</subfield></datafield></record></collection> |
id | DE-604.BV022430430 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:29:06Z |
indexdate | 2024-07-09T20:57:26Z |
institution | BVB |
isbn | 9783540490432 3540490434 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015638626 |
oclc_num | 127107180 |
open_access_boolean | |
owner | DE-703 DE-29T DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-703 DE-29T DE-355 DE-BY-UBR DE-11 |
physical | XXVII, 948 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Wiedemann, Helmut Verfasser aut Particle accelerator physics Helmut Wiedemann 3. ed. Berlin [u.a.] Springer 2007 XXVII, 948 S. txt rdacontent n rdamedia nc rdacarrier 1. und 2. Aufl. mehrbändig Accélérateurs linéaires Faisceaux de particules Faisceaux, Dynamique des Beam dynamics Linear accelerators Synchrotron radiation Strahldynamik (DE-588)4263839-2 gnd rswk-swf Teilchenbeschleuniger (DE-588)4059318-6 gnd rswk-swf Teilchenbeschleuniger (DE-588)4059318-6 s Strahldynamik (DE-588)4263839-2 s DE-604 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638626&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Wiedemann, Helmut Particle accelerator physics Accélérateurs linéaires Faisceaux de particules Faisceaux, Dynamique des Beam dynamics Linear accelerators Synchrotron radiation Strahldynamik (DE-588)4263839-2 gnd Teilchenbeschleuniger (DE-588)4059318-6 gnd |
subject_GND | (DE-588)4263839-2 (DE-588)4059318-6 |
title | Particle accelerator physics |
title_auth | Particle accelerator physics |
title_exact_search | Particle accelerator physics |
title_exact_search_txtP | Particle accelerator physics |
title_full | Particle accelerator physics Helmut Wiedemann |
title_fullStr | Particle accelerator physics Helmut Wiedemann |
title_full_unstemmed | Particle accelerator physics Helmut Wiedemann |
title_short | Particle accelerator physics |
title_sort | particle accelerator physics |
topic | Accélérateurs linéaires Faisceaux de particules Faisceaux, Dynamique des Beam dynamics Linear accelerators Synchrotron radiation Strahldynamik (DE-588)4263839-2 gnd Teilchenbeschleuniger (DE-588)4059318-6 gnd |
topic_facet | Accélérateurs linéaires Faisceaux de particules Faisceaux, Dynamique des Beam dynamics Linear accelerators Synchrotron radiation Strahldynamik Teilchenbeschleuniger |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015638626&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT wiedemannhelmut particleacceleratorphysics |