Advances in Bayesian networks:
Gespeichert in:
Format: | Buch |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2004
|
Schriftenreihe: | Studies in fuzziness and soft computing
146 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturangaben |
Beschreibung: | XI, 328 S. graph. Darst. |
ISBN: | 3540208763 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022420592 | ||
003 | DE-604 | ||
005 | 20110627 | ||
007 | t | ||
008 | 070510s2004 gw d||| |||| 00||| eng d | ||
016 | 7 | |a 969735103 |2 DE-101 | |
020 | |a 3540208763 |c Pp. : EUR 106.95 |9 3-540-20876-3 | ||
035 | |a (OCoLC)54081846 | ||
035 | |a (DE-599)BVBBV022420592 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c DE | ||
049 | |a DE-706 |a DE-91 | ||
050 | 0 | |a QA279.5 | |
082 | 0 | |a 006.3/2 |2 22 | |
084 | |a SK 830 |0 (DE-625)143259: |2 rvk | ||
084 | |a MAT 622f |2 stub | ||
245 | 1 | 0 | |a Advances in Bayesian networks |c José A. Gámez ... (eds.) |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2004 | |
300 | |a XI, 328 S. |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Studies in fuzziness and soft computing |v 146 | |
500 | |a Literaturangaben | ||
650 | 4 | |a Apprentissage automatique | |
650 | 7 | |a Besliskunde |2 gtt | |
650 | 7 | |a Machine-learning |2 gtt | |
650 | 7 | |a Methode van Bayes |2 gtt | |
650 | 7 | |a Neurale netwerken |2 gtt | |
650 | 4 | |a Réseaux neuronaux (Informatique) | |
650 | 4 | |a Statistique bayésienne - Informatique | |
650 | 4 | |a Datenverarbeitung | |
650 | 4 | |a Bayesian statistical decision theory |x Data processing | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Neural networks (Computer science) | |
650 | 0 | 7 | |a Bayes-Netz |0 (DE-588)4567228-3 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Bayes-Netz |0 (DE-588)4567228-3 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Gámez, José A. |e Sonstige |4 oth | |
830 | 0 | |a Studies in fuzziness and soft computing |v 146 |w (DE-604)BV021858135 |9 146 | |
856 | 4 | 2 | |m HEBIS Datenaustausch Darmstadt |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015628917 |
Datensatz im Suchindex
_version_ | 1804136489475375104 |
---|---|
adam_text | JOSE A. GAMEZ SERAFIN MORAL ANTONIO SALMERON (EDS.) ADVANCES IN BAYESIAN
NETWORKS SPRINGER CONTENTS FOUNDATIONS HYPERCAUSALITY, RANDOMISATION
LOCAL AND GLOBAL INDEPENDENCE 1 ALIREZA DANESHKHAH, JIM. Q.SMITH 1
INTRODUCTION 1 2 RELATIONSHIPS BETWEEN CAUSALITY AND PARAMETER
INDEPENDENCE .... 4 3 THE MULTICAUSAL ESSENTIAL GRAPH 10 4 DISCUSSION 14
REFERENCES 17 INTERFACE VERIFICATION FOR MULTIAGENT PROBABILISTIC
INFERENCE .. 19 Y. XIANG, X. CHEN 1 INTRODUCTION 19 2 OVERVIEW OF
MAMSBNS 20 3 THE ISSUE OF COOPERATIVE VERIFICATION 23 4 CHECKING PRIVATE
PARENTS 24 5 PROCESSING PUBLIC PARENTS 25 6 COOPERATIVE VERIFICATION IN
A GENERAL HYPERTREE 33 7 COMPLEXITY 34 8 ALTERNATIVE METHODS OF
VERIFICATION 35 9 CONCLUSION 37 REFERENCES 38 PROPAGATION OPTIMAL
TIME-SPACE TRADEOFF IN PROBABILISTIC INFERENCE 39 DAVID ALLEN, ADNAN
DARWICHE 1 INTRODUCTION 39 2 ANY-SPACE INFERENCE 40 3 THE CACHE
ALLOCATION PROBLEM 44 4 TIME-SPACE TRADEOFF 48 5 CONCLUSIONS 54
REFERENCES 55 HIERARCHICAL JUNCTION TREES 57 ROBERTO 0. PUCH, JIM Q.
SMITH, CONCHA BIELZA 1 INTRODUCTION 57 2 BAYESIAN NETWORKS 59 3 JUNCTION
TREES 61 VIII 4 FORECASTING IN THE DYNAMIC SETTING USING JUNCTION TREES
62 5 HIERARCHICAL JUNCTION TREES 64 6 CONCLUSIONS 74 REFERENCES 74
ALGORITHMS FOR APPROXIMATE PROBABILITY PROPAGATION IN BAYESIAN NETWORKS
77 ANDRES CANO, SERAFIN MORAL, ANTONIO SALMERON 1 APPROXIMATE
PROBABILITY PROPAGATION 77 2 THE COMPLEXITY OF PROBABILITY PROPAGATION
78 3 THE VARIABLE ELIMINATION ALGORITHM 79 4 SHENOY-SHAFER PROPAGATION
81 5 MONTE CARLO ALGORITHMS FOR PROBABILITY PROPAGATION 88 6 CONCLUSIONS
97 REFERENCES 97 ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS: A REVIEW 101
JOSE A. GAMEZ 1 INTRODUCTION 101 2 ABDUCTIVE INFERENCE IN PROBABILISTIC
REASONING 102 3 SOLVING TOTAL ABDUCTION (MPE) IN BNS 105 4 SOLVING
PARTIAL ABDUCTION (MAP) IN BNS 109 5 COMPLEXITY RESULTS 115 6
CONCLUSIONS 116 REFERENCES 117 INFLUENCE DIAGRAMS CAUSAL MODELS, VALUE
OF INTERVENTION, AND SEARCH FOR OPPORTUNITIES 121 TSAI-CHING LU, MAREK
J. DRUZDZEL 1 INTRODUCTION 121 2 CAUSAL MODELS 123 3 AUGMENTED MODELS
126 4 VALUE OF INTERVENTION 128 5 SEARCH FOR OPPORTUNITIES 130 6
NON-INTERVENING ACTION 133 7 DISCUSSION 133 REFERENCES 135 ADVANCES IN
DECISION GRAPHS 137 THOMAS D. NIELSEN, FINN V. JENSEN 1 INTRODUCTION 137
2 INFLUENCE DIAGRAMS 138 3 MODELING DECISION PROBLEMS 142 IX 4
EVALUATING DECISION PROBLEMS 150 5 MODEL ANALYSIS 154 REFERENCES 156
REAL-WORLD APPLICATIONS OF INFLUENCE DIAGRAMS 161 MANUEL GOMEZ 1
DECISION MAKING UNDER UNCERTAINTY 161 2 ARTIFICIAL INTELLIGENCE, EXPERT
SYSTEMS AND DECISION SUPPORT SYSTEMS 162 3 TECHNIQUES TO BUILD COMPLEX
DSSS 163 4 REAL WORLD APPLICATIONS 167 5 CONCLUSIONS 173 REFERENCES 173
LEARNING LEARNING BAYESIAN NETWORKS BY FLOATING SEARCH METHODS 181 ROSA
BLANCO, INAKI INZA, PEDRO LARRANAGA 1 INTRODUCTION 181 2 LEARNING
BAYESIAN NETWORKS BY A SCORE+SEARCH APPROACH 182 3 FLOATING METHODS TO
LEARN BAYESIAN NETWORKS STRUCTURES 187 4 EXPERIMENTAL RESULTS 191 5
CONCLUSIONS 195 REFERENCES 196 A GRAPHICAL META-MODEL FOR REASONING
ABOUT BAYESIAN NETWORK STRUCTURE 201 LUIS M. DE CAMPOS, JOSE A. GAMEZ,
J. MIGUEL PUERTA 1 INTRODUCTION 201 2 LEARNING BAYESIAN NETWORKS 202 3
LEARNING A GRAPHICAL META-MODEL 206 4 EXAMPLES 209 5 CONCLUDING REMARKS
212 REFERENCES 214 RESTRICTED BAYESIAN NETWORK STRUCTURE LEARNING 217
PETER J.F. LUCAS 1 INTRODUCTION 217 2 BACKGROUND 219 3 FANS:
FOREST-AUGMENTED BAYESIAN NETWORKS 222 4 EVALUATION 225 5 DISCUSSION 230
REFERENCES 232 X SCALED CONJUGATE GRADIENTS FOR MAXIMUM LIKELIHOOD: AN
EMPIRICAL COMPARISON WITH THE EM ALGORITHM 235 KRISTIAN KERSTING, NIELS
LANDWEHR 1 INTRODUCTION 235 2 BAYESIAN NETWORKS 237 3 BASIC MAXIMUM
LIKELIHOOD ESTIMATION 238 4 EM-HARD AND EM-EASY PROBLEMS 241 5
(SCALED) CONJUGATE GRADIENTS 241 6 EXPERIMENTS 244 7 RELATED WORK 252 8
CONCLUSIONS 252 REFERENCES 253 LEARNING ESSENTIAL GRAPH MARKOV MODELS
FROM DATA 255 ROBERT CASTELO, MICHAEL D. PERLMAN 1 INTRODUCTION 255 2
BACKGROUND CONCEPTS 256 3 FACTORIZATION OF A MULTIVARIATE DISTRIBUTION
ACCORDING TO AN ESSEN- TIAL GRAPH 257 4 BAYESIAN SCORING METRIC FOR
MULTINOMIAL DATA 259 5 EQUIVALENCE WITH RESPECT TO OTHER FACTORIZATIONS
263 6 LOCAL COMPUTATIONS AND BAYES FACTORS 264 7 CONCLUDING REMARKS 267
REFERENCES 268 APPLICATIONS FAST PROPAGATION ALGORITHMS FOR SINGLY
CONNECTED NETWORKS AND THEIR APPLICATIONS TO INFORMATION RETRIEVAL 271
LUIS M. DE CAMPOS, JUAN M. FERNANDEZ-LUNA, JUAN F. HUETE 1 INTRODUCTION
271 2 PRELIMINARIES: INFORMATION RETRIEVAL 273 3 THE BAYESIAN NETWORK
RETRIEVAL MODEL 273 4 PROPOSALS FOR REDUCING THE PROPAGATION TIME 276 5
EXPERIMENTS AND RESULTS 279 6 RELATED WORKS 282 7 CONCLUDING REMARKS
286 REFERENCES 287 CONTINUOUS SPEECH RECOGNITION USING DYNAMIC BAYESIAN
NETWORKS: A FAST DECODING ALGORITHM 289 MURAT DEVIREN, KHALID DAOUDI 1
INTRODUCTION 289 2 DYNAMIC BAYESIAN NETWORKS 290 XI 3 STRUCTURE SEARCH
CLASS 294 4 LEARNING ALGORITHM 296 5 DECODING ALGORITHM 299 6
EXPERIMENTS 304 REFERENCES 307 APPLICATIONS OF BAYESIAN NETWORKS IN
METEOROLOGY 309 RAFAEL CANO, CARMEN SORDO, JOSE M. GUTIERREZ 1
INTRODUCTION 309 2 AREA OF STUDY AND AVAILABLE DATA 310 3 SOME COMMON
PROBLEMS IN METEOROLOGY 312 4 BAYESIAN NETWORKS. LEARNING FROM DATA 314
5 APPLICATIONS OF BAYESIAN NETWORKS 320 REFERENCES 327
|
adam_txt |
JOSE A. GAMEZ SERAFIN MORAL ANTONIO SALMERON (EDS.) ADVANCES IN BAYESIAN
NETWORKS SPRINGER CONTENTS FOUNDATIONS HYPERCAUSALITY, RANDOMISATION
LOCAL AND GLOBAL INDEPENDENCE 1 ALIREZA DANESHKHAH, JIM. Q.SMITH 1
INTRODUCTION 1 2 RELATIONSHIPS BETWEEN CAUSALITY AND PARAMETER
INDEPENDENCE . 4 3 THE MULTICAUSAL ESSENTIAL GRAPH 10 4 DISCUSSION 14
REFERENCES 17 INTERFACE VERIFICATION FOR MULTIAGENT PROBABILISTIC
INFERENCE . 19 Y. XIANG, X. CHEN 1 INTRODUCTION 19 2 OVERVIEW OF
MAMSBNS 20 3 THE ISSUE OF COOPERATIVE VERIFICATION 23 4 CHECKING PRIVATE
PARENTS 24 5 PROCESSING PUBLIC PARENTS 25 6 COOPERATIVE VERIFICATION IN
A GENERAL HYPERTREE 33 7 COMPLEXITY 34 8 ALTERNATIVE METHODS OF
VERIFICATION 35 9 CONCLUSION 37 REFERENCES 38 PROPAGATION OPTIMAL
TIME-SPACE TRADEOFF IN PROBABILISTIC INFERENCE 39 DAVID ALLEN, ADNAN
DARWICHE 1 INTRODUCTION 39 2 ANY-SPACE INFERENCE 40 3 THE CACHE
ALLOCATION PROBLEM 44 4 TIME-SPACE TRADEOFF 48 5 CONCLUSIONS 54
REFERENCES 55 HIERARCHICAL JUNCTION TREES 57 ROBERTO 0. PUCH, JIM Q.
SMITH, CONCHA BIELZA 1 INTRODUCTION 57 2 BAYESIAN NETWORKS 59 3 JUNCTION
TREES 61 VIII 4 FORECASTING IN THE DYNAMIC SETTING USING JUNCTION TREES
62 5 HIERARCHICAL JUNCTION TREES 64 6 CONCLUSIONS 74 REFERENCES 74
ALGORITHMS FOR APPROXIMATE PROBABILITY PROPAGATION IN BAYESIAN NETWORKS
77 ANDRES CANO, SERAFIN MORAL, ANTONIO SALMERON 1 APPROXIMATE
PROBABILITY PROPAGATION 77 2 THE COMPLEXITY OF PROBABILITY PROPAGATION
78 3 THE VARIABLE ELIMINATION ALGORITHM 79 4 SHENOY-SHAFER PROPAGATION
81 5 MONTE CARLO ALGORITHMS FOR PROBABILITY PROPAGATION 88 6 CONCLUSIONS
97 REFERENCES 97 ABDUCTIVE INFERENCE IN BAYESIAN NETWORKS: A REVIEW 101
JOSE A. GAMEZ 1 INTRODUCTION 101 2 ABDUCTIVE INFERENCE IN PROBABILISTIC
REASONING 102 3 SOLVING TOTAL ABDUCTION (MPE) IN BNS 105 4 SOLVING
PARTIAL ABDUCTION (MAP) IN BNS 109 5 COMPLEXITY RESULTS 115 6
CONCLUSIONS 116 REFERENCES 117 INFLUENCE DIAGRAMS CAUSAL MODELS, VALUE
OF INTERVENTION, AND SEARCH FOR OPPORTUNITIES 121 TSAI-CHING LU, MAREK
J. DRUZDZEL 1 INTRODUCTION 121 2 CAUSAL MODELS 123 3 AUGMENTED MODELS
126 4 VALUE OF INTERVENTION 128 5 SEARCH FOR OPPORTUNITIES 130 6
NON-INTERVENING ACTION 133 7 DISCUSSION 133 REFERENCES 135 ADVANCES IN
DECISION GRAPHS 137 THOMAS D. NIELSEN, FINN V. JENSEN 1 INTRODUCTION 137
2 INFLUENCE DIAGRAMS 138 3 MODELING DECISION PROBLEMS 142 IX 4
EVALUATING DECISION PROBLEMS 150 5 MODEL ANALYSIS 154 REFERENCES 156
REAL-WORLD APPLICATIONS OF INFLUENCE DIAGRAMS 161 MANUEL GOMEZ 1
DECISION MAKING UNDER UNCERTAINTY 161 2 ARTIFICIAL INTELLIGENCE, EXPERT
SYSTEMS AND DECISION SUPPORT SYSTEMS 162 3 TECHNIQUES TO BUILD COMPLEX
DSSS 163 4 REAL WORLD APPLICATIONS 167 5 CONCLUSIONS 173 REFERENCES 173
LEARNING LEARNING BAYESIAN NETWORKS BY FLOATING SEARCH METHODS 181 ROSA
BLANCO, INAKI INZA, PEDRO LARRANAGA 1 INTRODUCTION 181 2 LEARNING
BAYESIAN NETWORKS BY A SCORE+SEARCH APPROACH 182 3 FLOATING METHODS TO
LEARN BAYESIAN NETWORKS STRUCTURES 187 4 EXPERIMENTAL RESULTS 191 5
CONCLUSIONS 195 REFERENCES 196 A GRAPHICAL META-MODEL FOR REASONING
ABOUT BAYESIAN NETWORK STRUCTURE 201 LUIS M. DE CAMPOS, JOSE A. GAMEZ,
J. MIGUEL PUERTA 1 INTRODUCTION 201 2 LEARNING BAYESIAN NETWORKS 202 3
LEARNING A GRAPHICAL META-MODEL 206 4 EXAMPLES 209 5 CONCLUDING REMARKS
212 REFERENCES 214 RESTRICTED BAYESIAN NETWORK STRUCTURE LEARNING 217
PETER J.F. LUCAS 1 INTRODUCTION 217 2 BACKGROUND 219 3 FANS:'
FOREST-AUGMENTED BAYESIAN NETWORKS 222 4 EVALUATION 225 5 DISCUSSION 230
REFERENCES 232 X SCALED CONJUGATE GRADIENTS FOR MAXIMUM LIKELIHOOD: AN
EMPIRICAL COMPARISON WITH THE EM ALGORITHM 235 KRISTIAN KERSTING, NIELS
LANDWEHR 1 INTRODUCTION 235 2 BAYESIAN NETWORKS 237 3 BASIC MAXIMUM
LIKELIHOOD ESTIMATION 238 4 "EM-HARD" AND "EM-EASY" PROBLEMS 241 5
(SCALED) CONJUGATE GRADIENTS 241 6 EXPERIMENTS 244 7 RELATED WORK 252 8
CONCLUSIONS 252 REFERENCES 253 LEARNING ESSENTIAL GRAPH MARKOV MODELS
FROM DATA 255 ROBERT CASTELO, MICHAEL D. PERLMAN 1 INTRODUCTION 255 2
BACKGROUND CONCEPTS 256 3 FACTORIZATION OF A MULTIVARIATE DISTRIBUTION
ACCORDING TO AN ESSEN- TIAL GRAPH 257 4 BAYESIAN SCORING METRIC FOR
MULTINOMIAL DATA 259 5 EQUIVALENCE WITH RESPECT TO OTHER FACTORIZATIONS
263 6 LOCAL COMPUTATIONS AND BAYES FACTORS 264 7 CONCLUDING REMARKS 267
REFERENCES 268 APPLICATIONS FAST PROPAGATION ALGORITHMS FOR SINGLY
CONNECTED NETWORKS AND THEIR APPLICATIONS TO INFORMATION RETRIEVAL 271
LUIS M. DE CAMPOS, JUAN M. FERNANDEZ-LUNA, JUAN F. HUETE 1 INTRODUCTION
271 2 PRELIMINARIES: INFORMATION RETRIEVAL 273 3 THE BAYESIAN NETWORK
RETRIEVAL MODEL 273 4 PROPOSALS FOR REDUCING THE PROPAGATION TIME 276 5
EXPERIMENTS AND RESULTS 279 6 RELATED WORKS 282 7 CONCLUDING REMARKS '
286 REFERENCES 287 CONTINUOUS SPEECH RECOGNITION USING DYNAMIC BAYESIAN
NETWORKS: A FAST DECODING ALGORITHM 289 MURAT DEVIREN, KHALID DAOUDI 1
INTRODUCTION 289 2 DYNAMIC BAYESIAN NETWORKS 290 XI 3 STRUCTURE SEARCH
CLASS 294 4 LEARNING ALGORITHM 296 5 DECODING ALGORITHM 299 6
EXPERIMENTS 304 REFERENCES 307 APPLICATIONS OF BAYESIAN NETWORKS IN
METEOROLOGY 309 RAFAEL CANO, CARMEN SORDO, JOSE M. GUTIERREZ 1
INTRODUCTION 309 2 AREA OF STUDY AND AVAILABLE DATA 310 3 SOME COMMON
PROBLEMS IN METEOROLOGY 312 4 BAYESIAN NETWORKS. LEARNING FROM DATA 314
5 APPLICATIONS OF BAYESIAN NETWORKS 320 REFERENCES 327 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
building | Verbundindex |
bvnumber | BV022420592 |
callnumber-first | Q - Science |
callnumber-label | QA279 |
callnumber-raw | QA279.5 |
callnumber-search | QA279.5 |
callnumber-sort | QA 3279.5 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 830 |
classification_tum | MAT 622f |
ctrlnum | (OCoLC)54081846 (DE-599)BVBBV022420592 |
dewey-full | 006.3/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/2 |
dewey-search | 006.3/2 |
dewey-sort | 16.3 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02040nam a2200553 cb4500</leader><controlfield tag="001">BV022420592</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20110627 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070510s2004 gw d||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">969735103</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540208763</subfield><subfield code="c">Pp. : EUR 106.95</subfield><subfield code="9">3-540-20876-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)54081846</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022420592</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-706</subfield><subfield code="a">DE-91</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA279.5</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 830</subfield><subfield code="0">(DE-625)143259:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 622f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Advances in Bayesian networks</subfield><subfield code="c">José A. Gámez ... (eds.)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XI, 328 S.</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Studies in fuzziness and soft computing</subfield><subfield code="v">146</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturangaben</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Apprentissage automatique</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Besliskunde</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Machine-learning</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Methode van Bayes</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neurale netwerken</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Réseaux neuronaux (Informatique)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistique bayésienne - Informatique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Datenverarbeitung</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian statistical decision theory</subfield><subfield code="x">Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bayes-Netz</subfield><subfield code="0">(DE-588)4567228-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gámez, José A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Studies in fuzziness and soft computing</subfield><subfield code="v">146</subfield><subfield code="w">(DE-604)BV021858135</subfield><subfield code="9">146</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch Darmstadt</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015628917</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV022420592 |
illustrated | Illustrated |
index_date | 2024-07-02T17:25:33Z |
indexdate | 2024-07-09T20:57:13Z |
institution | BVB |
isbn | 3540208763 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015628917 |
oclc_num | 54081846 |
open_access_boolean | |
owner | DE-706 DE-91 DE-BY-TUM |
owner_facet | DE-706 DE-91 DE-BY-TUM |
physical | XI, 328 S. graph. Darst. |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer |
record_format | marc |
series | Studies in fuzziness and soft computing |
series2 | Studies in fuzziness and soft computing |
spelling | Advances in Bayesian networks José A. Gámez ... (eds.) Berlin [u.a.] Springer 2004 XI, 328 S. graph. Darst. txt rdacontent n rdamedia nc rdacarrier Studies in fuzziness and soft computing 146 Literaturangaben Apprentissage automatique Besliskunde gtt Machine-learning gtt Methode van Bayes gtt Neurale netwerken gtt Réseaux neuronaux (Informatique) Statistique bayésienne - Informatique Datenverarbeitung Bayesian statistical decision theory Data processing Machine learning Neural networks (Computer science) Bayes-Netz (DE-588)4567228-3 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Bayes-Netz (DE-588)4567228-3 s DE-604 Gámez, José A. Sonstige oth Studies in fuzziness and soft computing 146 (DE-604)BV021858135 146 HEBIS Datenaustausch Darmstadt application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Advances in Bayesian networks Studies in fuzziness and soft computing Apprentissage automatique Besliskunde gtt Machine-learning gtt Methode van Bayes gtt Neurale netwerken gtt Réseaux neuronaux (Informatique) Statistique bayésienne - Informatique Datenverarbeitung Bayesian statistical decision theory Data processing Machine learning Neural networks (Computer science) Bayes-Netz (DE-588)4567228-3 gnd |
subject_GND | (DE-588)4567228-3 (DE-588)4143413-4 |
title | Advances in Bayesian networks |
title_auth | Advances in Bayesian networks |
title_exact_search | Advances in Bayesian networks |
title_exact_search_txtP | Advances in Bayesian networks |
title_full | Advances in Bayesian networks José A. Gámez ... (eds.) |
title_fullStr | Advances in Bayesian networks José A. Gámez ... (eds.) |
title_full_unstemmed | Advances in Bayesian networks José A. Gámez ... (eds.) |
title_short | Advances in Bayesian networks |
title_sort | advances in bayesian networks |
topic | Apprentissage automatique Besliskunde gtt Machine-learning gtt Methode van Bayes gtt Neurale netwerken gtt Réseaux neuronaux (Informatique) Statistique bayésienne - Informatique Datenverarbeitung Bayesian statistical decision theory Data processing Machine learning Neural networks (Computer science) Bayes-Netz (DE-588)4567228-3 gnd |
topic_facet | Apprentissage automatique Besliskunde Machine-learning Methode van Bayes Neurale netwerken Réseaux neuronaux (Informatique) Statistique bayésienne - Informatique Datenverarbeitung Bayesian statistical decision theory Data processing Machine learning Neural networks (Computer science) Bayes-Netz Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628917&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV021858135 |
work_keys_str_mv | AT gamezjosea advancesinbayesiannetworks |