Fluctuation theory for Lévy processes: École d'Été de Probabilités de Saint-Flour XXXV - 2005
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Schriftenreihe: | Lecture notes in mathematics
1897 : École d'Été de Probabilités de Saint-Flour |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | IX, 147 S. |
ISBN: | 9783540485100 3540485104 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV022419854 | ||
003 | DE-604 | ||
005 | 20070702 | ||
007 | t | ||
008 | 070510s2007 gw |||| 10||| eng d | ||
015 | |a 07,N08,1037 |2 dnb | ||
016 | 7 | |a 982861192 |2 DE-101 | |
020 | |a 9783540485100 |c Pb. : ca. EUR 32.05 (freier Pr.), ca. sfr 49.50 (freier Pr.) |9 978-3-540-48510-0 | ||
020 | |a 3540485104 |c Pb. : ca. EUR 32.05 (freier Pr.), ca. sfr 49.50 (freier Pr.) |9 3-540-48510-4 | ||
024 | 3 | |a 9783540485100 | |
028 | 5 | 2 | |a 11917915 |
035 | |a (OCoLC)255827770 | ||
035 | |a (DE-599)BVBBV022419854 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-824 |a DE-91G |a DE-19 |a DE-83 |a DE-11 |a DE-188 | ||
050 | 0 | |a QA274.73 | |
082 | 0 | |a 519.23 | |
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 60-06 |2 msc | ||
084 | |a 510 |2 sdnb | ||
084 | |a MAT 605f |2 stub | ||
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Doney, Ronald A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Fluctuation theory for Lévy processes |b École d'Été de Probabilités de Saint-Flour XXXV - 2005 |c Ronald A. Doney. Ed.: Jean Picard |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a IX, 147 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v 1897 : École d'Été de Probabilités de Saint-Flour | |
650 | 4 | |a Lévy-Prozess | |
650 | 4 | |a Lévy processes | |
650 | 0 | 7 | |a Lévy-Prozess |0 (DE-588)4463623-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Lévy-Prozess |0 (DE-588)4463623-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Picard, Jean |4 edt | |
830 | 0 | |a Lecture notes in mathematics |v 1897 : École d'Été de Probabilités de Saint-Flour |w (DE-604)BV000676446 |9 1897 | |
856 | 4 | 2 | |m Digitalisierung TU Muenchen |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628191&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015628191 |
Datensatz im Suchindex
_version_ | 1804136488511733760 |
---|---|
adam_text | Contents
Introduction
to Levy Processes
............................ 1
1.1
Notation
............................................... 1
1.2
Poisson
Point Processes
.................................. 3
1.3
The
Lévy-Itô
Decomposition
.............................. 5
1.4
Levy Processes as Markov Processes
....................... 7
Subordinators
............................................. 9
2.1
Introduction
............................................ 9
2.2
Basics
.................................................. 9
2.3
The Renewal Measure
.................................... 10
2.4
Passage Across a Level
................................... 13
2.5
Arc-Sine Laws for Subordinators
.......................... 15
2.6
Rates of Growth
........................................ 16
2.7
Killed Subordinators
..................................... 17
Local Times and Excursions
............................... 19
3.1
Introduction
............................................ 19
3.2
Local Time of a Markov Process
........................... 19
3.3
The Regular, Instantaneous Case
.......................... 20
3.4
The Excursion Process
................................... 22
3.5
The Case of Holding and Irregular Points
................... 23
Ladder Processes and the Wiener—
Hopf
Factorisation
...... 25
4.1
Introduction
............................................ 25
4.2
The Random Walk Case
.................................. 25
4.3
The Reflected and Ladder Processes
....................... 27
4.4
Applications
............................................ 30
4.5
A Stochastic Bound
...................................... 35
VIII Contents
5 Further Wiener-Hopf
Developments
....................... 41
5.1
Introduction
............................................ 41
5.2
Extensions of a Result due to Baxter
....................... 41
5.3
Les
Equations
Amicales
of Vigon
.......................... 43
5.4
A First Passage Quintuple Identity
........................ 49
6
Creeping and Related Questions
........................... 51
6.1
Introduction
............................................ 51
6.2
Notation and Preliminary Results
......................... 52
6.3
The Mean Ladder Height Problem
......................... 53
6.4
Creeping
............................................... 56
6.5
Limit Points of the Supremum Process
..................... 59
6.6
Regularity of the Half-Line
............................... 61
6.7
Summary: Four Integral Tests
............................. 64
7
Spitzer s Condition
........................................ 65
7.1
Introduction
............................................ 65
7.2
Proofs
................................................. 65
7.2.1
The Case
ρ
= 0,1 ................................. 66
7.2.2
A First Proof for the Case
0 <
ρ
< 1................. 66
7.2.3
A Second Proof for the Case
0 <
ρ
< 1............... 68
7.3
Further Results
......................................... 69
7.4
Tailpiece
............................................... 80
8
Levy Processes Conditioned to Stay Positive
.............. 81
8.1
Introduction
............................................ 81
8.2
Notation and Preliminaries
............................... 81
8.3
Definition and Path Decomposition
........................ 83
8.4
The Convergence Result
.................................. 86
8.5
Pathwise Constructions of (X,PT)
......................... 89
8.5.1
Tanaka s Construction
............................. 89
8.5.2
Bertoin s Construction
............................. 91
9
Spectrally Negative Levy Processes
........................ 95
9.1
Introduction
............................................ 95
9.2
Basics
.................................................. 95
9.3
The Random Walk Case
.................................
9.4
The Scale Function
...................................... 100
9.5
Further Developments
....................................
I04
9.6
Exit Problems for the Reflected Process
..............
109
9.7
Addendum
........ ....... 112
Contents
IX
10
Small-Time Behaviour
.....................................115
10.1
Introduction
............................................115
10.2
Notation and Preliminary Results
.........................115
10.3
Convergence in Probability
...............................117
10.4
Almost Sure Results
.....................................126
10.5
Summary of Asymptotic Results
..........................131
10.5.1
Laws of Large Numbers
............................131
10.5.2
Central Limit Theorems
............................131
10.5.3
Exit from a Symmetric Interval
.....................132
References
.....................................................133
Index
..........................................................139
List of Participants
............................................141
List of Short Lectures
.........................................145
|
adam_txt |
Contents
Introduction
to Levy Processes
. 1
1.1
Notation
. 1
1.2
Poisson
Point Processes
. 3
1.3
The
Lévy-Itô
Decomposition
. 5
1.4
Levy Processes as Markov Processes
. 7
Subordinators
. 9
2.1
Introduction
. 9
2.2
Basics
. 9
2.3
The Renewal Measure
. 10
2.4
Passage Across a Level
. 13
2.5
Arc-Sine Laws for Subordinators
. 15
2.6
Rates of Growth
. 16
2.7
Killed Subordinators
. 17
Local Times and Excursions
. 19
3.1
Introduction
. 19
3.2
Local Time of a Markov Process
. 19
3.3
The Regular, Instantaneous Case
. 20
3.4
The Excursion Process
. 22
3.5
The Case of Holding and Irregular Points
. 23
Ladder Processes and the Wiener—
Hopf
Factorisation
. 25
4.1
Introduction
. 25
4.2
The Random Walk Case
. 25
4.3
The Reflected and Ladder Processes
. 27
4.4
Applications
. 30
4.5
A Stochastic Bound
. 35
VIII Contents
5 Further Wiener-Hopf
Developments
. 41
5.1
Introduction
. 41
5.2
Extensions of a Result due to Baxter
. 41
5.3
Les
Equations
Amicales
of Vigon
. 43
5.4
A First Passage Quintuple Identity
. 49
6
Creeping and Related Questions
. 51
6.1
Introduction
. 51
6.2
Notation and Preliminary Results
. 52
6.3
The Mean Ladder Height Problem
. 53
6.4
Creeping
. 56
6.5
Limit Points of the Supremum Process
. 59
6.6
Regularity of the Half-Line
. 61
6.7
Summary: Four Integral Tests
. 64
7
Spitzer's Condition
. 65
7.1
Introduction
. 65
7.2
Proofs
. 65
7.2.1
The Case
ρ
= 0,1 . 66
7.2.2
A First Proof for the Case
0 <
ρ
< 1. 66
7.2.3
A Second Proof for the Case
0 <
ρ
< 1. 68
7.3
Further Results
. 69
7.4
Tailpiece
. 80
8
Levy Processes Conditioned to Stay Positive
. 81
8.1
Introduction
. 81
8.2
Notation and Preliminaries
. 81
8.3
Definition and Path Decomposition
. 83
8.4
The Convergence Result
. 86
8.5
Pathwise Constructions of (X,PT)
. 89
8.5.1
Tanaka's Construction
. 89
8.5.2
Bertoin's Construction
. 91
9
Spectrally Negative Levy Processes
. 95
9.1
Introduction
. 95
9.2
Basics
. 95
9.3
The Random Walk Case
. "
9.4
The Scale Function
. 100
9.5
Further Developments
.
I04
9.6
Exit Problems for the Reflected Process
.
109
9.7
Addendum
. . 112
Contents
IX
10
Small-Time Behaviour
.115
10.1
Introduction
.115
10.2
Notation and Preliminary Results
.115
10.3
Convergence in Probability
.117
10.4
Almost Sure Results
.126
10.5
Summary of Asymptotic Results
.131
10.5.1
Laws of Large Numbers
.131
10.5.2
Central Limit Theorems
.131
10.5.3
Exit from a Symmetric Interval
.132
References
.133
Index
.139
List of Participants
.141
List of Short Lectures
.145 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Doney, Ronald A. |
author2 | Picard, Jean |
author2_role | edt |
author2_variant | j p jp |
author_facet | Doney, Ronald A. Picard, Jean |
author_role | aut |
author_sort | Doney, Ronald A. |
author_variant | r a d ra rad |
building | Verbundindex |
bvnumber | BV022419854 |
callnumber-first | Q - Science |
callnumber-label | QA274 |
callnumber-raw | QA274.73 |
callnumber-search | QA274.73 |
callnumber-sort | QA 3274.73 |
callnumber-subject | QA - Mathematics |
classification_rvk | SI 850 |
classification_tum | MAT 605f |
ctrlnum | (OCoLC)255827770 (DE-599)BVBBV022419854 |
dewey-full | 519.23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.23 |
dewey-search | 519.23 |
dewey-sort | 3519.23 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02121nam a2200529 cb4500</leader><controlfield tag="001">BV022419854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070702 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070510s2007 gw |||| 10||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N08,1037</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982861192</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540485100</subfield><subfield code="c">Pb. : ca. EUR 32.05 (freier Pr.), ca. sfr 49.50 (freier Pr.)</subfield><subfield code="9">978-3-540-48510-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540485104</subfield><subfield code="c">Pb. : ca. EUR 32.05 (freier Pr.), ca. sfr 49.50 (freier Pr.)</subfield><subfield code="9">3-540-48510-4</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540485100</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11917915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255827770</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022419854</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-91G</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA274.73</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-06</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 605f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Doney, Ronald A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fluctuation theory for Lévy processes</subfield><subfield code="b">École d'Été de Probabilités de Saint-Flour XXXV - 2005</subfield><subfield code="c">Ronald A. Doney. Ed.: Jean Picard</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">IX, 147 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1897 : École d'Été de Probabilités de Saint-Flour</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy-Prozess</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lévy processes</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lévy-Prozess</subfield><subfield code="0">(DE-588)4463623-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lévy-Prozess</subfield><subfield code="0">(DE-588)4463623-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Picard, Jean</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">1897 : École d'Été de Probabilités de Saint-Flour</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">1897</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung TU Muenchen</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628191&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015628191</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV022419854 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:25:19Z |
indexdate | 2024-07-09T20:57:12Z |
institution | BVB |
isbn | 9783540485100 3540485104 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015628191 |
oclc_num | 255827770 |
open_access_boolean | |
owner | DE-824 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
owner_facet | DE-824 DE-91G DE-BY-TUM DE-19 DE-BY-UBM DE-83 DE-11 DE-188 |
physical | IX, 147 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Doney, Ronald A. Verfasser aut Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 Ronald A. Doney. Ed.: Jean Picard Berlin [u.a.] Springer 2007 IX, 147 S. txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics 1897 : École d'Été de Probabilités de Saint-Flour Lévy-Prozess Lévy processes Lévy-Prozess (DE-588)4463623-4 gnd rswk-swf (DE-588)1071861417 Konferenzschrift gnd-content Lévy-Prozess (DE-588)4463623-4 s DE-604 Picard, Jean edt Lecture notes in mathematics 1897 : École d'Été de Probabilités de Saint-Flour (DE-604)BV000676446 1897 Digitalisierung TU Muenchen application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628191&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Doney, Ronald A. Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 Lecture notes in mathematics Lévy-Prozess Lévy processes Lévy-Prozess (DE-588)4463623-4 gnd |
subject_GND | (DE-588)4463623-4 (DE-588)1071861417 |
title | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 |
title_auth | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 |
title_exact_search | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 |
title_exact_search_txtP | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 |
title_full | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 Ronald A. Doney. Ed.: Jean Picard |
title_fullStr | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 Ronald A. Doney. Ed.: Jean Picard |
title_full_unstemmed | Fluctuation theory for Lévy processes École d'Été de Probabilités de Saint-Flour XXXV - 2005 Ronald A. Doney. Ed.: Jean Picard |
title_short | Fluctuation theory for Lévy processes |
title_sort | fluctuation theory for levy processes ecole d ete de probabilites de saint flour xxxv 2005 |
title_sub | École d'Été de Probabilités de Saint-Flour XXXV - 2005 |
topic | Lévy-Prozess Lévy processes Lévy-Prozess (DE-588)4463623-4 gnd |
topic_facet | Lévy-Prozess Lévy processes Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015628191&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT doneyronalda fluctuationtheoryforlevyprocessesecoledetedeprobabilitesdesaintflourxxxv2005 AT picardjean fluctuationtheoryforlevyprocessesecoledetedeprobabilitesdesaintflourxxxv2005 |