Mathematics: a discrete introduction
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Belmont, Calif.
Thomson Brooks/Cole
2006
|
Ausgabe: | 2. ed., internat. student ed. |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXVII, 561 S. Ill. |
ISBN: | 049501866X 0534398987 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022404802 | ||
003 | DE-604 | ||
005 | 20200123 | ||
007 | t | ||
008 | 070427s2006 a||| |||| 00||| eng d | ||
020 | |a 049501866X |c (international student ed. : pbk) |9 0-495-01866-X | ||
020 | |a 0534398987 |c (Student ed. : cased) |9 0-534-39898-7 | ||
035 | |a (OCoLC)441656122 | ||
035 | |a (DE-599)BVBBV022404802 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-473 |a DE-703 |a DE-634 | ||
080 | |a 51 | ||
084 | |a SK 110 |0 (DE-625)143215: |2 rvk | ||
084 | |a SK 130 |0 (DE-625)143216: |2 rvk | ||
100 | 1 | |a Scheinerman, Edward |e Verfasser |0 (DE-588)113762938X |4 aut | |
245 | 1 | 0 | |a Mathematics |b a discrete introduction |c Edward R. Scheinerman |
250 | |a 2. ed., internat. student ed. | ||
264 | 1 | |a Belmont, Calif. |b Thomson Brooks/Cole |c 2006 | |
300 | |a XXVII, 561 S. |b Ill. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Informatik |0 (DE-588)4026894-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Informatik |0 (DE-588)4026894-9 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m SWBplus Fremddatenuebernahme |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015613383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015613383 |
Datensatz im Suchindex
_version_ | 1804136467675480064 |
---|---|
adam_text | CONTENTS TO THE STUDENT XV HOW TO READ A MATHEMATICS BOOK XVI EXERCISES
XVII TO THE INSTRUCTOR XIX AUDIENCE AND PREREQUISITES XIX TOPICS COVERED
AND NAVIGATING THE SECTIONS XIX SAMPLE COURSE OUTLINES XXI SPECIAL
FEATURES XXI WHAT S NEW IN THIS SECOND EDITION XXIII ACKNOWLEDGMENTS XXV
THIS NEW EDITION XXV FROM THE FIRST EDITION XXV 1 FUNDAMENTALS 1 1 JOY 1
WHY ? 1 THE AGONY AND THE ECSTASY 2 EXERCISE 2 2 DEFINITION 2 RECAP 5
EXERCISES 5 3 THEOREM 8 THE N ITURE OF TRUTH X IF-THEN 9 IF AND ONLY IT
I I AND. OR. AND NOT 12 WHAT THEOREM ARE CALLED 13 VACUOUS TRUTH 14
RECAP 14 EXERC~ E 15 4 PROOF 16 A MORE INVOLVCD PROOF 70 PROVING
IF-AND-ONLY-IF THEOREMS 92 PROVING EQUATIONS AND INEQUALITIES 24 RECAP
25 EXERCISES 25 5 COUNTEREXAMPLE 25 RECAP 27 EXERCISES 27 6 BOOLEAN
ALGEBRA 27 MORE OPERATIONS 3 1 RECAP 32 EXERCISES 32 CHAPTER 1 SELF TEST
34 COLLECTIONS 37 7 LISTS 37 COUNTING TWO-ELEMENT LISTS 37 LONGER LISTS
40 RECAP 43 EXERCISES 43 8 FACTORIAL 45 MUCH ADO ABOUT O! 46 PRODUCT
NOTATION 47 RECAP 48 EXERCISES 48 9 SETS I: INTRODUCTION, SUBSETS 49
EQUALITY OF SETS 5 1 SUBSET 53 COUNTING SUBSETS 55 POWER SET 57 RECAP 57
EXERCISES 57 10 QUANTIFIERS 58 THERE IS 58 FOR ALL 59 NEGATING
QUANTIFIED STATEMENTS 60 COMBINING QUANTIFIERS 61 RECAP 62 EXERCISES 63
11 SETS II: OPERATIONS 64 UNION AND INTERSECTION 64 THE SIZE OF A UNION
66 DIFFERENCE AND SYMMETRIC DIFFERENCE 68 CARTESIAN PRODUCT 73 RECAP 74
EXERCISES 74 12 COMBINATORIAL PROOF: T W O E X A M P L E S 76 RECAP X0
EXERCISES X0 CHAPTER 2 SELF TEST 80 3 COUNTING AND RELATIONS 83 13
RELATIONS 83 PROPERTIES OF RELATIONS 86 RECAP 87 EXERCISES 87 14
EQUIVALENCE RELATIONS 89 EQUIVALENCE CLA SCS 02 RECAP 05 EXERCI C 06 15
PARTITIONS 98 O 1 1 I 1 I E 1 ; R T 100 RECAP I02 EXCRCI CS 102 16
BINOMIAL COEFFICIENTS 104 CALCULATILIG (; J 107 PASCAL S TRIANGLE 109
AFORRNULAFOR(;) 1 1 1 RECAP 113 EXCRCI C I L3 17 COUNTING
MT~LTISI?TS 117 L~~LTI CL I 17 L:ORLLIILA 111R ( I: L ) I I0 KCC:TP
172 FI C~-C~ C 172 18 INCLCISIORI-EX~IIISIOI) I23 HOU TO
LT~CIU ~OI-~ CL~~IO~~ 120 I)ER;R~LPC~RLENL 129 A ;HA TL!
L ORILUL;~ 132 KEC:LP I32 TEE I32 CHAPTER 3 SELF TEST 133 4 MORE
PROOF 135 19 CONTRADICTION 135 PROOF BY CONTRAPOSITIVE 135 REDUCTIO AD
ABSURDUM 137 A MATTER OF STYLE 14 1 RECAP 141 EXERCISES 14 1 20 SMALLEST
COUNTEREXAMPLE 142 WELL-ORDERING 148 RECAP 153 EXERCISES 153 AND FINALLY
154 21 INDUCTION 155 THE INDUCTION MACHINE 155 THEORETICAL UNDERPINNINGS
157 PROOF BY INDUCTION 157 PROVING EQUATIONS AND INEQUALITIES 160 OTHER
EXAMPLES 162 STRONG INDUCTION 163 A MORE COMPLICATED EXAMPLE 165 A
MATTER OF STYLE 168 RECAP 168 EXERCISES 168 22 RECURRENCE RELATIONS 171
FIRST-ORDER RECURRENCE RELATIONS 172 SECOND-ORDER RECURRENCE RELATIONS
175 THE CASE OF THE REPEATED ROOT 178 SEQUENCES GENERATED BY POLYNOMIALS
180 RECAP 187 EXERCISES 188 CHAPTER 4 SELF TEST 190 5 FUNCTIONS 193 23
FUNCTIONS 193 DOMAIN AND IMAGE 195 PICTURES OF FUNCTIONS 196 COUNTING
FUNCTIONS 197 INVERSE FUNCTIONS 198 COUNTING FUNCTIONS, AGAIN RECAP 203
EXERCISES 203 24 THE PIGEONHOLE PRINCIPLE 205 CANTOR S THEOREM 208 RECAP
210 EXERCISES 2 10 25 COMPOSITION 211 IDENTITY FUNCTION 2 1 1 RECAP
215 EXERCISES 2 15 26 PERMUTATIONS 216 CYCLE NOTATION 2 17 CALCULATIONS
WITH PERMUTATIONS 220 TRANSPOSITIONS 22 1 A GRAPHICAL APPROACH 226 RECAP
228 EXERCISES 228 27 SYMMETRY 231 SYMMETRIES OF A SQUARE 23 1
SYMNIETRIES AS PERMUTATIONS 232 COMBINING SYMMCTRIES 233 FORMAL
I)ELINITION OF SYMMETR! 735 RECAP 236 EXERCISES 236 28 ASSORTED
NOTATION 236 BIG OH 236 R AND (-) 239 LITTLE OH 240 FLOOR AND CEILING
241 RECAP 212 EXERCISES 242 CHAPTER 5 SELF TEST 242 6 PROBABILITY 245 30
EVEL~TS 249 CONIH~N~LIG E CRLT 251 THE R~RTHD.T! I ROHLCNI 754 RCC IP
254 EXCRC~ C 255 31 CONDITIONAL PROBABILITY AND INDEPENDENCE 257
INDEPENDENCE 259 INDEPENDENT REPEATED TRIALS 26 1 THE MONTY HALL PROBLEM
262 RECAP 263 EXERCISES 263 32 RANDOM VARIABLES 266 RANDOM VARIABLES AS
EVENTS 267 INDEPENDENT RANDOM VARIABLES 269 RECAP 270 EXERCISES 270 33
EXPECTATION 271 LINEARITY OF EXPECTATION 276 PRODUCT OF RANDOM VARIABLES
279 EXPECTED VALUE AS A MEASURE OF CENTRALITY 282 VARIANCE 283 RECAP 287
EXERCISES 287 CHAPTER 6 SELF TEST 289 7 NUMBER THEORY 293 34 DIVIDING
293 DIV AND MOD 296 RECAP 297 EXERCISE5 297 35 GREATEST COMMON DIVISOR
298 CALCULATING THE GCD 299 CORRECTNE5S 30 1 HOUI:;I T ? 302 AN
IMPORTANT THEORCM 304 RCCAP 307 EXCRCI ES 307 36 MODULAR ARITHMETIC 309
A NEW CONTEXT FOR BA IC OPERATION 309 MODULAR ADDITION AND
MULTIPLICATION 3 10 MODULAR SUBTRACTION 3 1 1 MODULAR DIVI ION 3 13 A
NOTE ON NOTATION 3 18 RECAP 318 EXERCISES 3 18 37 THE CHINESE REMAINDER
THEOREM 320 SOLVING ONE EQUATION 320 SOLVING TWO EQUATIONS 322 RECAP 324
EXERCISES 324 38 FACTORING 325 INFINITELY MANY PRIMES 327 A FORMULA FOR
GREATEST COMMON DIVISOR 328 IRRATIONALITY OF & 329 RECAP 331 EXERCISES
33 1 CHAPTER 7 SELF TEST 335 8 ALGEBRA 337 39 GROUPS 337 OPERATIONS 337
PROPERTIES OF OPERATIONS 338 GROUPS 340 EXAMPLES 342 RECAP 345 EXERCISES
345 40 GROUP ISOMORPHISM 347 THE SAME ? 347 CYCLIC GROUPS 349 RECAP 352
EXERCISES 352 41 SUBGROUPS 353 LAGRANGE S THEOREM 356 RECAP 359
EXERCISE5 359 42 FCRMAT S L-LTTLT. TTIEOITIN 367 FLR T PROOF 762 SECOND
PROOF 361 TH~RD PROOF 366 EULER ~ THEOREM 767 PR~MAL~TY TE5T1NG 368
RECAP 369 EUERC~CE 369 43 PUBLIC KEY CRYPTOYRDPTIY I IR~TRC~CLOCTIC~RI
370 THE PROBLEM PRNATE CORNMUNLCAT~ON IN PUHLLC 770 FACTORLNP 370 WORDS
TO NUMBERS 37 1 CRYPTOGRAPHY AND THE LAW 373 RECAP 373 EXERCISES 373 44
PUBLIC KEY CRYPTOGRAPHY II: RABIN S METHOD 373 SQUARE ROOTS MODULO N 374
THE ENCRYPTION AND DECRYPTION PROCEDURES 378 RECAP 379 EXERCISES 379 45
PUBLIC KEY CRYPTOGRAPHY ILL: RSA 380 THE RSA ENCRYPTION AND DECRYPTION
FUNCTIONS 38 1 SECURITY 383 RECAP 384 EXERCISES 384 CHAPTER 8 SELF TEST
385 9 GRAPHS 389 46 FUNDAMENTALS OF GRAPH THEORY 389 MAP COLORING 389
THREE UTILITIES 391 SEVEN BRIDGES 391 WHAT IS A GRAPH? 392 ADJACENCY 393
A MATTER OF DEGREE 394 FURTHER NOTATION AND VOCABULARY 396 RECAP 397
EXERCISES 397 47 SUBGRAPHS 399 INDUCED AND SPANNING SUBGRAPHS 400
CLIQUES AND INDEPENDENT SETS 402 COMPLEMENTS 403 RECAP 404 EXERCISE5 404
48 CONNECTION 406 WALKS 406 PATHS 407 DISCONNECTION 4 10 RECAP 41 1
EXERCISES 4 1 1 49 TREES 413 CYCLES 413 FORESTS AND TREES 413 PROPERTIES
OF TREES 4 14 LEAVES 416 SPANNING TREES 4 1 8 RECAP 419 EXERCISES 420 50
EULERIAN GRAPHS 421 NECESSARY CONDITIONS 422 MAIN THEOREMS 423
UNFINISHED BUSINESS 425 RECAP 426 EXERCISES 426 51 COLORING 427 CORE
CONCEPTS 427 BIPARTITE GRAPHS 429 THE EASE OF TWO-COLORING AND THE
DIFFICULTY OF THREE-COLORING 433 RECAP 434 EXERCISES 434 52 PLANAR
GRAPHS 435 DA~LGEROUS CURVES 435 EMBEDDING 436 EULER S FORMULA 437
NONPLANAR GRAPHS 440 COLORING PLANAR GRAPHS 441 RECAP 444 EXERCISES 444
CHAPTER 9 SELF TEST 446 10 PARTIALLY ORDERED SETS 449 53 FUNDAMENTALS OF
PART~ALLY ORDERED SETS 449 WHAT IS ,I POXT 4-49 NOTATION ,~ND
LD,LNYUAPR 451 RCCAP 454 EXCRC~SC 455 54 MAX AND MLN 455 RECAP 457
EXERCISES 457 55 LINEAR ORDERS 458 RECAP 460 EXERCISES 461 56 LINEAR
EXTENSIONS 461 SORTING 465 LINEAR EXTENSIONS OF INFINITE POSETS 467
RECAP 468 EXERCISES 468 57 DIMENSION 469 REALIZERS 469 DIMENSION 47 1
EMBEDDING 473 RECAP 476 EXERCISES 476 58 LATTICES 477 MEET AND JOIN 477
LATTICES 479 RECAP 481 EXERCISES 482 CHAPTER 10 SELF TEST 483 APPENDICES
487 A LOTS OF HINTS AND COMMENTS; SOME ANSWERS 487 B SOLUTIONS TO SELF
TESTS 515 CHAPTER 1 515 CHAPTER 2 516 CHAPTER 3 5 18 CHAPTER 4 520
CHAPTER 5 524 CHAPTER 6 526 CHAPTER 7 530 CHAPTER 8 532 CHAPTER 9 535
CHAPTER L0 539 C GLOSSARY 544 D FUNDAMENTALS 552 NUMBERS 552 OPERATIONS
552 ORDERING 553 COMPLEX NUMBERS 553 SUBSTITUTION 553 INDEX 555
|
adam_txt |
CONTENTS TO THE STUDENT XV HOW TO READ A MATHEMATICS BOOK XVI EXERCISES
XVII TO THE INSTRUCTOR XIX AUDIENCE AND PREREQUISITES XIX TOPICS COVERED
AND NAVIGATING THE SECTIONS XIX SAMPLE COURSE OUTLINES XXI SPECIAL
FEATURES XXI WHAT'S NEW IN THIS SECOND EDITION XXIII ACKNOWLEDGMENTS XXV
THIS NEW EDITION XXV FROM THE FIRST EDITION XXV 1 FUNDAMENTALS 1 1 JOY 1
WHY'? 1 THE AGONY AND THE ECSTASY 2 EXERCISE 2 2 DEFINITION 2 RECAP 5
EXERCISES 5 3 THEOREM 8 THE N'ITURE OF TRUTH X IF-THEN 9 IF AND ONLY IT
I I AND. OR. AND NOT 12 WHAT THEOREM\ ARE CALLED 13 VACUOUS TRUTH 14
RECAP 14 EXERC~\E\ 15 4 PROOF 16 A MORE INVOLVCD PROOF 70 PROVING
IF-AND-ONLY-IF THEOREMS 92 PROVING EQUATIONS AND INEQUALITIES 24 RECAP
25 EXERCISES 25 5 COUNTEREXAMPLE 25 RECAP 27 EXERCISES 27 6 BOOLEAN
ALGEBRA 27 MORE OPERATIONS 3 1 RECAP 32 EXERCISES 32 CHAPTER 1 SELF TEST
34 COLLECTIONS 37 7 LISTS 37 COUNTING TWO-ELEMENT LISTS 37 LONGER LISTS
40 RECAP 43 EXERCISES 43 8 FACTORIAL 45 MUCH ADO ABOUT O! 46 PRODUCT
NOTATION 47 RECAP 48 EXERCISES 48 9 SETS I: INTRODUCTION, SUBSETS 49
EQUALITY OF SETS 5 1 SUBSET 53 COUNTING SUBSETS 55 POWER SET 57 RECAP 57
EXERCISES 57 10 QUANTIFIERS 58 THERE IS 58 FOR ALL 59 NEGATING
QUANTIFIED STATEMENTS 60 COMBINING QUANTIFIERS 61 RECAP 62 EXERCISES 63
11 SETS II: OPERATIONS 64 UNION AND INTERSECTION 64 THE SIZE OF A UNION
66 DIFFERENCE AND SYMMETRIC DIFFERENCE 68 CARTESIAN PRODUCT 73 RECAP 74
EXERCISES 74 12 COMBINATORIAL PROOF: T W O E X A M P L E S 76 RECAP X0
EXERCISES X0 CHAPTER 2 SELF TEST 80 3 COUNTING AND RELATIONS 83 13
RELATIONS 83 PROPERTIES OF RELATIONS 86 RECAP 87 EXERCISES 87 14
EQUIVALENCE RELATIONS 89 EQUIVALENCE CLA\SCS 02 RECAP 05 EXERCI\C\ 06 15
PARTITIONS 98 O 1 1 I 1 I E 1 ; R T 100 RECAP I02 EXCRCI\CS 102 16
BINOMIAL COEFFICIENTS 104 CALCULATILIG (; J 107 PASCAL'S TRIANGLE 109
AFORRNULAFOR(;) 1 1 1 RECAP 113 EXCRCI\C\ I L3 17 COUNTING
MT~LTISI?TS 117 \L~~LTI\CL\ I 17 L:ORLLIILA\ 111R ( I: L ) I I0 KCC:TP
172 FI\C~-C~\C\ 172 18 INCLCISIORI-EX~IIISIOI) I23 HOU TO
LT~CIU\~OI-~ \CL~~IO~~ 120 I)ER;R~LPC~RLENL\ 129 A ;HA\TL!
L'ORILUL;~ 132 KEC:LP I32 TEE\\ I32 CHAPTER 3 SELF TEST 133 4 MORE
PROOF 135 19 CONTRADICTION 135 PROOF BY CONTRAPOSITIVE 135 REDUCTIO AD
ABSURDUM 137 A MATTER OF STYLE 14 1 RECAP 141 EXERCISES 14 1 20 SMALLEST
COUNTEREXAMPLE 142 WELL-ORDERING 148 RECAP 153 EXERCISES 153 AND FINALLY
154 21 INDUCTION 155 THE INDUCTION MACHINE 155 THEORETICAL UNDERPINNINGS
157 PROOF BY INDUCTION 157 PROVING EQUATIONS AND INEQUALITIES 160 OTHER
EXAMPLES 162 STRONG INDUCTION 163 A MORE COMPLICATED EXAMPLE 165 A
MATTER OF STYLE 168 RECAP 168 EXERCISES 168 22 RECURRENCE RELATIONS 171
FIRST-ORDER RECURRENCE RELATIONS 172 SECOND-ORDER RECURRENCE RELATIONS
175 THE CASE OF THE REPEATED ROOT 178 SEQUENCES GENERATED BY POLYNOMIALS
180 RECAP 187 EXERCISES 188 CHAPTER 4 SELF TEST 190 5 FUNCTIONS 193 23
FUNCTIONS 193 DOMAIN AND IMAGE 195 PICTURES OF FUNCTIONS 196 COUNTING
FUNCTIONS 197 INVERSE FUNCTIONS 198 COUNTING FUNCTIONS, AGAIN RECAP 203
EXERCISES 203 24 THE PIGEONHOLE PRINCIPLE 205 CANTOR'S THEOREM 208 RECAP
210 EXERCISES 2 10 25 COMPOSITION 211 IDENTITY FUNCTION 2 1 1 RECAP
215 EXERCISES 2 15 26 PERMUTATIONS 216 CYCLE NOTATION 2 17 CALCULATIONS
WITH PERMUTATIONS 220 TRANSPOSITIONS 22 1 A GRAPHICAL APPROACH 226 RECAP
228 EXERCISES 228 27 SYMMETRY 231 SYMMETRIES OF A SQUARE 23 1
SYMNIETRIES AS PERMUTATIONS 232 COMBINING SYMMCTRIES 233 FORMAL
I)ELINITION OF SYMMETR! '735 RECAP 236 EXERCISES 236 28 ASSORTED
NOTATION 236 BIG OH 236 R AND (-) 239 LITTLE OH 240 FLOOR AND CEILING
241 RECAP 212 EXERCISES 242 CHAPTER 5 SELF TEST 242 6 PROBABILITY 245 30
EVEL~TS 249 CONIH~N~LIG E\CRLT\ 251 THE R~RTHD.T! I'ROHLCNI 754 RCC'IP
254 EXCRC~\C\ 255 31 CONDITIONAL PROBABILITY AND INDEPENDENCE 257
INDEPENDENCE 259 INDEPENDENT REPEATED TRIALS 26 1 THE MONTY HALL PROBLEM
262 RECAP 263 EXERCISES 263 32 RANDOM VARIABLES 266 RANDOM VARIABLES AS
EVENTS 267 INDEPENDENT RANDOM VARIABLES 269 RECAP 270 EXERCISES 270 33
EXPECTATION 271 LINEARITY OF EXPECTATION 276 PRODUCT OF RANDOM VARIABLES
279 EXPECTED VALUE AS A MEASURE OF CENTRALITY 282 VARIANCE 283 RECAP 287
EXERCISES 287 CHAPTER 6 SELF TEST 289 7 NUMBER THEORY 293 34 DIVIDING
293 DIV AND MOD 296 RECAP 297 EXERCISE5 297 35 GREATEST COMMON DIVISOR
298 CALCULATING THE GCD 299 CORRECTNE5S 30 1 HOUI:;I\T'? 302 AN
IMPORTANT THEORCM 304 RCCAP 307 EXCRCI\ES 307 36 MODULAR ARITHMETIC 309
A NEW CONTEXT FOR BA\IC OPERATION\ 309 MODULAR ADDITION AND
MULTIPLICATION 3 10 MODULAR SUBTRACTION 3 1 1 MODULAR DIVI\ION 3 13 A
NOTE ON NOTATION 3 18 RECAP 318 EXERCISES 3 18 37 THE CHINESE REMAINDER
THEOREM 320 SOLVING ONE EQUATION 320 SOLVING TWO EQUATIONS 322 RECAP 324
EXERCISES 324 38 FACTORING 325 INFINITELY MANY PRIMES 327 A FORMULA FOR
GREATEST COMMON DIVISOR 328 IRRATIONALITY OF & 329 RECAP 331 EXERCISES
33 1 CHAPTER 7 SELF TEST 335 8 ALGEBRA 337 39 GROUPS 337 OPERATIONS 337
PROPERTIES OF OPERATIONS 338 GROUPS 340 EXAMPLES 342 RECAP 345 EXERCISES
345 40 GROUP ISOMORPHISM 347 THE SAME'? 347 CYCLIC GROUPS 349 RECAP 352
EXERCISES 352 41 SUBGROUPS 353 LAGRANGE'S THEOREM 356 RECAP 359
EXERCISE5 359 42 FCRMAT S L-LTTLT. TTIEOITIN 367 FLR\T PROOF 762 SECOND
PROOF 361 TH~RD PROOF 366 EULER'~ THEOREM 767 PR~MAL~TY TE5T1NG 368
RECAP 369 EUERC~CE\ 369 43 PUBLIC KEY CRYPTOYRDPTIY I IR~TRC~CLOCTIC~RI
370 THE PROBLEM PRNATE CORNMUNLCAT~ON IN PUHLLC 770 FACTORLNP 370 WORDS
TO NUMBERS 37 1 CRYPTOGRAPHY AND THE LAW 373 RECAP 373 EXERCISES 373 44
PUBLIC KEY CRYPTOGRAPHY II: RABIN'S METHOD 373 SQUARE ROOTS MODULO N 374
THE ENCRYPTION AND DECRYPTION PROCEDURES 378 RECAP 379 EXERCISES 379 45
PUBLIC KEY CRYPTOGRAPHY ILL: RSA 380 THE RSA ENCRYPTION AND DECRYPTION
FUNCTIONS 38 1 SECURITY 383 RECAP 384 EXERCISES 384 CHAPTER 8 SELF TEST
385 9 GRAPHS 389 46 FUNDAMENTALS OF GRAPH THEORY 389 MAP COLORING 389
THREE UTILITIES 391 SEVEN BRIDGES 391 WHAT IS A GRAPH? 392 ADJACENCY 393
A MATTER OF DEGREE 394 FURTHER NOTATION AND VOCABULARY 396 RECAP 397
EXERCISES 397 47 SUBGRAPHS 399 INDUCED AND SPANNING SUBGRAPHS 400
CLIQUES AND INDEPENDENT SETS 402 COMPLEMENTS 403 RECAP 404 EXERCISE5 404
48 CONNECTION 406 WALKS 406 PATHS 407 DISCONNECTION 4 10 RECAP 41 1
EXERCISES 4 1 1 49 TREES 413 CYCLES 413 FORESTS AND TREES 413 PROPERTIES
OF TREES 4 14 LEAVES 416 SPANNING TREES 4 1 8 RECAP 419 EXERCISES 420 50
EULERIAN GRAPHS 421 NECESSARY CONDITIONS 422 MAIN THEOREMS 423
UNFINISHED BUSINESS 425 RECAP 426 EXERCISES 426 51 COLORING 427 CORE
CONCEPTS 427 BIPARTITE GRAPHS 429 THE EASE OF TWO-COLORING AND THE
DIFFICULTY OF THREE-COLORING 433 RECAP 434 EXERCISES 434 52 PLANAR
GRAPHS 435 DA~LGEROUS CURVES 435 EMBEDDING 436 EULER'S FORMULA 437
NONPLANAR GRAPHS 440 COLORING PLANAR GRAPHS 441 RECAP 444 EXERCISES 444
CHAPTER 9 SELF TEST 446 10 PARTIALLY ORDERED SETS 449 53 FUNDAMENTALS OF
PART~ALLY ORDERED SETS 449 WHAT IS ,I POXT" 4-49 NOTATION ,~ND
LD,LNYUAPR 451 RCCAP 454 EXCRC~SC\ 455 54 MAX AND MLN 455 RECAP 457
EXERCISES 457 55 LINEAR ORDERS 458 RECAP 460 EXERCISES 461 56 LINEAR
EXTENSIONS 461 SORTING 465 LINEAR EXTENSIONS OF INFINITE POSETS 467
RECAP 468 EXERCISES 468 57 DIMENSION 469 REALIZERS 469 DIMENSION 47 1
EMBEDDING 473 RECAP 476 EXERCISES 476 58 LATTICES 477 MEET AND JOIN 477
LATTICES 479 RECAP 481 EXERCISES 482 CHAPTER 10 SELF TEST 483 APPENDICES
487 A LOTS OF HINTS AND COMMENTS; SOME ANSWERS 487 B SOLUTIONS TO SELF
TESTS 515 CHAPTER 1 515 CHAPTER 2 516 CHAPTER 3 5 18 CHAPTER 4 520
CHAPTER 5 524 CHAPTER 6 526 CHAPTER 7 530 CHAPTER 8 532 CHAPTER 9 535
CHAPTER L0 539 C GLOSSARY 544 D FUNDAMENTALS 552 NUMBERS 552 OPERATIONS
552 ORDERING 553 COMPLEX NUMBERS 553 SUBSTITUTION 553 INDEX 555 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Scheinerman, Edward |
author_GND | (DE-588)113762938X |
author_facet | Scheinerman, Edward |
author_role | aut |
author_sort | Scheinerman, Edward |
author_variant | e s es |
building | Verbundindex |
bvnumber | BV022404802 |
classification_rvk | SK 110 SK 130 |
ctrlnum | (OCoLC)441656122 (DE-599)BVBBV022404802 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2. ed., internat. student ed. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01573nam a2200397 c 4500</leader><controlfield tag="001">BV022404802</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070427s2006 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">049501866X</subfield><subfield code="c">(international student ed. : pbk)</subfield><subfield code="9">0-495-01866-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0534398987</subfield><subfield code="c">(Student ed. : cased)</subfield><subfield code="9">0-534-39898-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)441656122</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022404802</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="080" ind1=" " ind2=" "><subfield code="a">51</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 110</subfield><subfield code="0">(DE-625)143215:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 130</subfield><subfield code="0">(DE-625)143216:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scheinerman, Edward</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113762938X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematics</subfield><subfield code="b">a discrete introduction</subfield><subfield code="c">Edward R. Scheinerman</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2. ed., internat. student ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Belmont, Calif.</subfield><subfield code="b">Thomson Brooks/Cole</subfield><subfield code="c">2006</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXVII, 561 S.</subfield><subfield code="b">Ill.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Informatik</subfield><subfield code="0">(DE-588)4026894-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">SWBplus Fremddatenuebernahme</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015613383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015613383</subfield></datafield></record></collection> |
genre | (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV022404802 |
illustrated | Illustrated |
index_date | 2024-07-02T17:19:40Z |
indexdate | 2024-07-09T20:56:52Z |
institution | BVB |
isbn | 049501866X 0534398987 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015613383 |
oclc_num | 441656122 |
open_access_boolean | |
owner | DE-473 DE-BY-UBG DE-703 DE-634 |
owner_facet | DE-473 DE-BY-UBG DE-703 DE-634 |
physical | XXVII, 561 S. Ill. |
publishDate | 2006 |
publishDateSearch | 2006 |
publishDateSort | 2006 |
publisher | Thomson Brooks/Cole |
record_format | marc |
spelling | Scheinerman, Edward Verfasser (DE-588)113762938X aut Mathematics a discrete introduction Edward R. Scheinerman 2. ed., internat. student ed. Belmont, Calif. Thomson Brooks/Cole 2006 XXVII, 561 S. Ill. txt rdacontent n rdamedia nc rdacarrier Informatik (DE-588)4026894-9 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf (DE-588)4151278-9 Einführung gnd-content Informatik (DE-588)4026894-9 s Mathematik (DE-588)4037944-9 s DE-604 SWBplus Fremddatenuebernahme application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015613383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Scheinerman, Edward Mathematics a discrete introduction Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4026894-9 (DE-588)4037944-9 (DE-588)4151278-9 |
title | Mathematics a discrete introduction |
title_auth | Mathematics a discrete introduction |
title_exact_search | Mathematics a discrete introduction |
title_exact_search_txtP | Mathematics a discrete introduction |
title_full | Mathematics a discrete introduction Edward R. Scheinerman |
title_fullStr | Mathematics a discrete introduction Edward R. Scheinerman |
title_full_unstemmed | Mathematics a discrete introduction Edward R. Scheinerman |
title_short | Mathematics |
title_sort | mathematics a discrete introduction |
title_sub | a discrete introduction |
topic | Informatik (DE-588)4026894-9 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Informatik Mathematik Einführung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015613383&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT scheinermanedward mathematicsadiscreteintroduction |