Elementare Stochastik: eine Einführung in die Mathematik der Daten und des Zufalls
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | German |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
|
Ausgabe: | 2., überarb. und erw. Aufl. |
Schriftenreihe: | Mathematik für das Lehramt
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XII, 572 S. Ill., graph. Darst. |
ISBN: | 9783540453819 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022393195 | ||
003 | DE-604 | ||
005 | 20180328 | ||
007 | t | ||
008 | 070419s2007 gw ad|| |||| 00||| ger d | ||
015 | |a 04,N31,0417 |2 dnb | ||
020 | |a 9783540453819 |c : EUR 24.95, CHF 42.50 |9 978-3-540-45381-9 | ||
024 | 3 | |a 9783540222507 | |
028 | 5 | 2 | |a 11014768 |
035 | |a (OCoLC)180723915 | ||
035 | |a (DE-599)BVBBV022393195 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a ger | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-20 |a DE-355 |a DE-29 |a DE-859 |a DE-1051 |a DE-N2 |a DE-Di1 |a DE-1102 |a DE-824 |a DE-19 |a DE-91 |a DE-11 |a DE-83 |a DE-521 |a DE-29T |a DE-N32 |a DE-384 |a DE-739 |a DE-523 | ||
082 | 0 | |a 519.2 |2 22/ger | |
082 | 0 | |a 519.5 |2 22/ger | |
084 | |a QH 237 |0 (DE-625)141552: |2 rvk | ||
084 | |a SK 800 |0 (DE-625)143256: |2 rvk | ||
084 | |a SK 820 |0 (DE-625)143258: |2 rvk | ||
084 | |a MAT 600f |2 stub | ||
084 | |a 60-01 |2 msc | ||
084 | |a 510 |2 sdnb | ||
100 | 1 | |a Büchter, Andreas |d 1972- |e Verfasser |0 (DE-588)12986773X |4 aut | |
245 | 1 | 0 | |a Elementare Stochastik |b eine Einführung in die Mathematik der Daten und des Zufalls |c Andreas Büchter ; Hans-Wolfgang Henn |
250 | |a 2., überarb. und erw. Aufl. | ||
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
300 | |a XII, 572 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Mathematik für das Lehramt | |
650 | 0 | 7 | |a Stochastik |0 (DE-588)4121729-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Stochastik |0 (DE-588)4121729-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Henn, Hans-Wolfgang |d 1947-2024 |e Verfasser |0 (DE-588)136175171 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015601987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
Datensatz im Suchindex
_version_ | 1805081598966628352 |
---|---|
adam_text |
Inhaltsverzeichnis
1 Einleitung
1.1 Warum dieses Buch?. 4
1.2 Was ¡st „Elementare Stochastik"?. 5
1.3 Klassische Probleme und typische Fragen. 6
1.4 Historische Bemerkungen. 8
1.5 Zum Umgang mit diesem Buch. 9
2 Beschreibende Statistik
2.1 Verschiedene Arten von Daten. 17
2.1.1 Daten gewinnen als Messvorgang. 18
2.1.2 Skalenniveaus.· Nominal,
2.1.3 Skalenniveaus und Transformationen. 24
2.2 Reduktion und Darstellung von Daten. 27
2.2.1 Absolute und relative Häufigkeiten
sowie ihre Darstellung. 28
2.2.2 Kumulierte Häufigkeiten
und empirische Verteilungsfunktion. 33
2.2.3 Klassierte Daten und darauf basierende Darstellungen . 37
2.2.4 Weitere graphische Darstellungen. 44
2.2.5 Was ist eine gute Darstellung?. 49
2.3 Kennwerte von Datenreihen. 60
2.3.1 „Wo ist die Mitte der Welt?": Mittelwerte. 61
2.3.2 Vergleich der Mittelwerte. 71
2.3.3 Mittelwerte für klassierte Daten
und gewichtete Mittelwerte. 75
2.3.4 Mittelwerte anwenden. 79
2.3.5 Nicht nur die Mitte ¡st interessant: Weitere Lagemaße. 80
2.3.6 Verteilung von Daten um die Mitte: Streuungsmaße. 82
2.3.7 Die Tschebyscheff'sche Ungleichung für Datenreihen . 89
2.3.8 Darstellung von Datenreihen mit Kennwerten. 92
2.4 Datenreihen vergleichen: Standardisierung. 99
2.4.1 Wie verhalten sich Kennwerte bei Transformationen?. 100
2.4.2 Standardisierung von Datenreihen. 102
2.4.3 Normierung von Datenreihen. 108
2.5 Spezielle Kennwerte: Indexzahlen. 110
2.6 Zusammenhänge zweier Merkmale:
Korrelation und Regression. 117
2.6.1 Linearer Gleichklang zweier Merkmale:
Korrelationsrechnung. 118
2.6.2 Grenzen der Korrelationsrechnung. 128
Inhaltsverzeichnis
2.6.3 Ursache-Wirkungs-Vermutungen: Regressionsrechnung. 132
2.6.4 Nichtlineare Regression. 135
2.7 Das kann doch nicht wahr sein! Paradoxes. 1*3
2.8 Grenzen der beschreibenden Statistik. l*7
2.9 Weitere Übungen zu Kapitel 2. l*8
3 Wahrscheinlichkeitsrechnung
3.1 Entwicklung des Wahrscheinlichkeitsbegriffs. 160
3.1.1 Zufallsexperimente. 16°
3.1.2 Laplace-Wahrscheinlichkeiten. 167
3.1.3 Frequentistische Wahrscheinlichkeiten. 171
3.1.4 Subjektive Wahrscheinlichkeiten. 179
3.1.5 Vergleich der Ansätze. l82
3.1.6 Axiomatisierung für endliche Ergebnismengen. 183
3.1.7 Erweiterung auf abzählbar unendliche Ergebnismengen . 187
3.1.8 Ausblick auf überabzählbare Ergebnismengen. 189
3.1.9 Stochastische Modellbildung. l98
3.2 Rechnen mit Wahrscheinlichkeiten. 200
3.2.1 Bedingte Wahrscheinlichkeiten. 200
3.2.2 Stochastische Unabhängigkeit. 205
3.2.3 Baumdiagramme und Pfadregeln. 209
3.2.4 Satzvon
3.3 Hilfsmittel aus der Kombinatorik. 230
3.3.1 Toto Her-Wette. 230
3.3.2 Rennquintett. 232
3.3.3 Lotto. 233
3.3.4 Das Gummibärchen-Orakel. 238
3.3.5 Kombinatorische Formeln. 239
3.4 Tücken der stochastischen Modellbildung . 245
3.4.1 Stochastische Modellbildung. 245
3.4.2 Stochastische Paradoxa. 249
3.4.3 Schau genau hin: Interpretation von Fragestellungen. 260
3.4.4 Naheliegende, aber untaugliche Modellbildungen. 267
3.4.5 Lösungsansätze bei Urnen-Aufgaben. 269
3.4.6 Die Genueser Lotterie und die Keno-Lotterie. 272
3.5 Zufallsvariable. 276
3.5.1 Einführung von Zufallsvariablen. 277
3.5.2 Erwartungswert und Varianz von Zufallsvariablen. 283
3.5.3 Verknüpfungen von Zufallsvariablen. 290
3.5.4 Stochastische Unabhängigkeit von Zufallsvariablen. 294
Inhaltsverzeichnis
3.5.5 Erwartungswert und Varianz
von verknüpften Zufallsvariablen. 296
3.5.6 Standardisierte Zufallsvariable. 300
3.5.7 Korrelationsrechnung für Zufallsvariable. 301
3.6 Verteilungen von Zufallsvariablen. 303
3.6.1 Binomialverteilung. 303
3.6.2 Multinomialverteilung. 310
3.6.3 Hypergeometrische Verteilung. 311
3.6.4 Geometrische Verteilung. 314
3.6.5
3.7 Markov-Ketten. 321
3.7.1 Der
3.7.2 Markov-Ketten mit Grenzverteilung. 329
3.7.3 Absorbierende Markov-Ketten. 338
3.8 Gesetze der großen Zahlen. 344
3.8.1 Die Tschebyscheff'sehe Ungleichung für Zufallsvariable. 345
3.8.2 Das Bernoulli'sche Gesetz der großen Zahlen. 346
3.8.3 Empirisches und Bernoulli'sches Gesetz
der großen Zahlen . 348
3.9 Normalverteilung und Grenzwertsätze. 350
3.9.1 Grenzwertsatz von de Moivre und
3.9.2 Beweisidee des lokalen Grenzwertsatzes. 358
3.9.3 Stetige Zufallsvariable. 363
3.9.4 Zentraler Grenzwertsatz. 369
3.9.5 tr-Regeln für die Normalverteilung. 374
3.10 Zufall und Pseudozufall. 376
3.10.1 Was ist „Zufall"?. 376
3.10.2 Computererzeugte Pseudozufallszahlen. 377
3.10.3 Zufallszahlen und Simulation. 383
3.11 Weitere Übungen zu Kapitel 3. 386
4 Beurteilende Statistik
4.1 Parameterschätzungen. 398
4.1.1 Stich proben
4.1.2 Punktschätzungen: Maximum-Likelihood-Methode. 406
4.1.3 Gütekriterien für Punktschätzungen. 413
4.1.4 Intervallschätzungen: Konfidenzintervalle für Parameter. 415
4.2 Hypothesentests. 429
4.2.1 Klassische Hypothesentests. 430
4.2.2 Hypothesentests anwenden. 442
4.2.3 Historische und wissenschaftstheoretische Bemerkungen. 453
XII Inhaltsverzeichnis
4.2.4 Tests mit der Chi-Quadrat-Verteilung. 457
4.3 Bayes-Stafistik. 464
4.3.1 Bayes'sche Hypothesentests. 465
4.3.2 Bayes'sche Parameterschätzungen. 474
4.3.3 Klassische und Bayes'sche Sichtweise im Vergleich . 478
4.4 Weitere Übungen zu Kapitel 4. 482
5 Statistik anwenden
5.1 Unterschiede in den Anwendungsdisziplinen. 488
5.2 Exploratives und hypothesengeleitetes Vorgehen. 490
5.3 Untersuchungsplanung und-auswertung. 492
5.3.1 Erhebungsdesign. 494
5.3.2 Grundgesamtheit und Stichprobe. 495
5.3.3 Auswahl der Auswertungsverfahren. 497
5.3.4 Darstellung und Interpretation der Ergebnisse. 497
A
A.l Aufgaben aus Kapitel 2. 503
A.2 Aufgaben aus Kapitel 3. 520
A.3 Aufgaben aus Kapitel 4 . 546
Literaturverzeichnis. 559
Index. 567 |
adam_txt |
Inhaltsverzeichnis
1 Einleitung
1.1 Warum dieses Buch?. 4
1.2 Was ¡st „Elementare Stochastik"?. 5
1.3 Klassische Probleme und typische Fragen. 6
1.4 Historische Bemerkungen. 8
1.5 Zum Umgang mit diesem Buch. 9
2 Beschreibende Statistik
2.1 Verschiedene Arten von Daten. 17
2.1.1 Daten gewinnen als Messvorgang. 18
2.1.2 Skalenniveaus.· Nominal,
2.1.3 Skalenniveaus und Transformationen. 24
2.2 Reduktion und Darstellung von Daten. 27
2.2.1 Absolute und relative Häufigkeiten
sowie ihre Darstellung. 28
2.2.2 Kumulierte Häufigkeiten
und empirische Verteilungsfunktion. 33
2.2.3 Klassierte Daten und darauf basierende Darstellungen . 37
2.2.4 Weitere graphische Darstellungen. 44
2.2.5 Was ist eine gute Darstellung?. 49
2.3 Kennwerte von Datenreihen. 60
2.3.1 „Wo ist die Mitte der Welt?": Mittelwerte. 61
2.3.2 Vergleich der Mittelwerte. 71
2.3.3 Mittelwerte für klassierte Daten
und gewichtete Mittelwerte. 75
2.3.4 Mittelwerte anwenden. 79
2.3.5 Nicht nur die Mitte ¡st interessant: Weitere Lagemaße. 80
2.3.6 Verteilung von Daten um die Mitte: Streuungsmaße. 82
2.3.7 Die Tschebyscheff'sche Ungleichung für Datenreihen . 89
2.3.8 Darstellung von Datenreihen mit Kennwerten. 92
2.4 Datenreihen vergleichen: Standardisierung. 99
2.4.1 Wie verhalten sich Kennwerte bei Transformationen?. 100
2.4.2 Standardisierung von Datenreihen. 102
2.4.3 Normierung von Datenreihen. 108
2.5 Spezielle Kennwerte: Indexzahlen. 110
2.6 Zusammenhänge zweier Merkmale:
Korrelation und Regression. 117
2.6.1 Linearer Gleichklang zweier Merkmale:
Korrelationsrechnung. 118
2.6.2 Grenzen der Korrelationsrechnung. 128
Inhaltsverzeichnis
2.6.3 Ursache-Wirkungs-Vermutungen: Regressionsrechnung. 132
2.6.4 Nichtlineare Regression. 135
2.7 Das kann doch nicht wahr sein! Paradoxes. 1*3
2.8 Grenzen der beschreibenden Statistik. l*7
2.9 Weitere Übungen zu Kapitel 2. l*8
3 Wahrscheinlichkeitsrechnung
3.1 Entwicklung des Wahrscheinlichkeitsbegriffs. 160
3.1.1 Zufallsexperimente. 16°
3.1.2 Laplace-Wahrscheinlichkeiten. 167
3.1.3 Frequentistische Wahrscheinlichkeiten. 171
3.1.4 Subjektive Wahrscheinlichkeiten. 179
3.1.5 Vergleich der Ansätze. l82
3.1.6 Axiomatisierung für endliche Ergebnismengen. 183
3.1.7 Erweiterung auf abzählbar unendliche Ergebnismengen . 187
3.1.8 Ausblick auf überabzählbare Ergebnismengen. 189
3.1.9 Stochastische Modellbildung. l98
3.2 Rechnen mit Wahrscheinlichkeiten. 200
3.2.1 Bedingte Wahrscheinlichkeiten. 200
3.2.2 Stochastische Unabhängigkeit. 205
3.2.3 Baumdiagramme und Pfadregeln. 209
3.2.4 Satzvon
3.3 Hilfsmittel aus der Kombinatorik. 230
3.3.1 Toto Her-Wette. 230
3.3.2 Rennquintett. 232
3.3.3 Lotto. 233
3.3.4 Das Gummibärchen-Orakel. 238
3.3.5 Kombinatorische Formeln. 239
3.4 Tücken der stochastischen Modellbildung . 245
3.4.1 Stochastische Modellbildung. 245
3.4.2 Stochastische Paradoxa. 249
3.4.3 Schau genau hin: Interpretation von Fragestellungen. 260
3.4.4 Naheliegende, aber untaugliche Modellbildungen. 267
3.4.5 Lösungsansätze bei Urnen-Aufgaben. 269
3.4.6 Die Genueser Lotterie und die Keno-Lotterie. 272
3.5 Zufallsvariable. 276
3.5.1 Einführung von Zufallsvariablen. 277
3.5.2 Erwartungswert und Varianz von Zufallsvariablen. 283
3.5.3 Verknüpfungen von Zufallsvariablen. 290
3.5.4 Stochastische Unabhängigkeit von Zufallsvariablen. 294
Inhaltsverzeichnis
3.5.5 Erwartungswert und Varianz
von verknüpften Zufallsvariablen. 296
3.5.6 Standardisierte Zufallsvariable. 300
3.5.7 Korrelationsrechnung für Zufallsvariable. 301
3.6 Verteilungen von Zufallsvariablen. 303
3.6.1 Binomialverteilung. 303
3.6.2 Multinomialverteilung. 310
3.6.3 Hypergeometrische Verteilung. 311
3.6.4 Geometrische Verteilung. 314
3.6.5
3.7 Markov-Ketten. 321
3.7.1 Der
3.7.2 Markov-Ketten mit Grenzverteilung. 329
3.7.3 Absorbierende Markov-Ketten. 338
3.8 Gesetze der großen Zahlen. 344
3.8.1 Die Tschebyscheff'sehe Ungleichung für Zufallsvariable. 345
3.8.2 Das Bernoulli'sche Gesetz der großen Zahlen. 346
3.8.3 Empirisches und Bernoulli'sches Gesetz
der großen Zahlen . 348
3.9 Normalverteilung und Grenzwertsätze. 350
3.9.1 Grenzwertsatz von de Moivre und
3.9.2 Beweisidee des lokalen Grenzwertsatzes. 358
3.9.3 Stetige Zufallsvariable. 363
3.9.4 Zentraler Grenzwertsatz. 369
3.9.5 tr-Regeln für die Normalverteilung. 374
3.10 Zufall und Pseudozufall. 376
3.10.1 Was ist „Zufall"?. 376
3.10.2 Computererzeugte Pseudozufallszahlen. 377
3.10.3 Zufallszahlen und Simulation. 383
3.11 Weitere Übungen zu Kapitel 3. 386
4 Beurteilende Statistik
4.1 Parameterschätzungen. 398
4.1.1 Stich proben
4.1.2 Punktschätzungen: Maximum-Likelihood-Methode. 406
4.1.3 Gütekriterien für Punktschätzungen. 413
4.1.4 Intervallschätzungen: Konfidenzintervalle für Parameter. 415
4.2 Hypothesentests. 429
4.2.1 Klassische Hypothesentests. 430
4.2.2 Hypothesentests anwenden. 442
4.2.3 Historische und wissenschaftstheoretische Bemerkungen. 453
XII Inhaltsverzeichnis
4.2.4 Tests mit der Chi-Quadrat-Verteilung. 457
4.3 Bayes-Stafistik. 464
4.3.1 Bayes'sche Hypothesentests. 465
4.3.2 Bayes'sche Parameterschätzungen. 474
4.3.3 Klassische und Bayes'sche Sichtweise im Vergleich . 478
4.4 Weitere Übungen zu Kapitel 4. 482
5 Statistik anwenden
5.1 Unterschiede in den Anwendungsdisziplinen. 488
5.2 Exploratives und hypothesengeleitetes Vorgehen. 490
5.3 Untersuchungsplanung und-auswertung. 492
5.3.1 Erhebungsdesign. 494
5.3.2 Grundgesamtheit und Stichprobe. 495
5.3.3 Auswahl der Auswertungsverfahren. 497
5.3.4 Darstellung und Interpretation der Ergebnisse. 497
A
A.l Aufgaben aus Kapitel 2. 503
A.2 Aufgaben aus Kapitel 3. 520
A.3 Aufgaben aus Kapitel 4 . 546
Literaturverzeichnis. 559
Index. 567 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Büchter, Andreas 1972- Henn, Hans-Wolfgang 1947-2024 |
author_GND | (DE-588)12986773X (DE-588)136175171 |
author_facet | Büchter, Andreas 1972- Henn, Hans-Wolfgang 1947-2024 |
author_role | aut aut |
author_sort | Büchter, Andreas 1972- |
author_variant | a b ab h w h hwh |
building | Verbundindex |
bvnumber | BV022393195 |
classification_rvk | QH 237 SK 800 SK 820 |
classification_tum | MAT 600f |
ctrlnum | (OCoLC)180723915 (DE-599)BVBBV022393195 |
dewey-full | 519.2 519.5 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 519.5 |
dewey-search | 519.2 519.5 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik Wirtschaftswissenschaften |
discipline_str_mv | Mathematik Wirtschaftswissenschaften |
edition | 2., überarb. und erw. Aufl. |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022393195</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180328</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070419s2007 gw ad|| |||| 00||| ger d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">04,N31,0417</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540453819</subfield><subfield code="c">: EUR 24.95, CHF 42.50</subfield><subfield code="9">978-3-540-45381-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783540222507</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11014768</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)180723915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022393195</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-N2</subfield><subfield code="a">DE-Di1</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-N32</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-523</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">22/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QH 237</subfield><subfield code="0">(DE-625)141552:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 800</subfield><subfield code="0">(DE-625)143256:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 600f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">60-01</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">510</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Büchter, Andreas</subfield><subfield code="d">1972-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12986773X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elementare Stochastik</subfield><subfield code="b">eine Einführung in die Mathematik der Daten und des Zufalls</subfield><subfield code="c">Andreas Büchter ; Hans-Wolfgang Henn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2., überarb. und erw. Aufl.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XII, 572 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematik für das Lehramt</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastik</subfield><subfield code="0">(DE-588)4121729-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henn, Hans-Wolfgang</subfield><subfield code="d">1947-2024</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)136175171</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015601987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield></record></collection> |
genre | (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV022393195 |
illustrated | Illustrated |
index_date | 2024-07-02T17:15:35Z |
indexdate | 2024-07-20T07:19:19Z |
institution | BVB |
isbn | 9783540453819 |
language | German |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015601987 |
oclc_num | 180723915 |
open_access_boolean | |
owner | DE-20 DE-355 DE-BY-UBR DE-29 DE-859 DE-1051 DE-N2 DE-Di1 DE-1102 DE-824 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-11 DE-83 DE-521 DE-29T DE-N32 DE-384 DE-739 DE-523 |
owner_facet | DE-20 DE-355 DE-BY-UBR DE-29 DE-859 DE-1051 DE-N2 DE-Di1 DE-1102 DE-824 DE-19 DE-BY-UBM DE-91 DE-BY-TUM DE-11 DE-83 DE-521 DE-29T DE-N32 DE-384 DE-739 DE-523 |
physical | XII, 572 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
series2 | Mathematik für das Lehramt |
spelling | Büchter, Andreas 1972- Verfasser (DE-588)12986773X aut Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls Andreas Büchter ; Hans-Wolfgang Henn 2., überarb. und erw. Aufl. Berlin [u.a.] Springer 2007 XII, 572 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Mathematik für das Lehramt Stochastik (DE-588)4121729-9 gnd rswk-swf (DE-588)4123623-3 Lehrbuch gnd-content Stochastik (DE-588)4121729-9 s DE-604 Henn, Hans-Wolfgang 1947-2024 Verfasser (DE-588)136175171 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015601987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Büchter, Andreas 1972- Henn, Hans-Wolfgang 1947-2024 Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls Stochastik (DE-588)4121729-9 gnd |
subject_GND | (DE-588)4121729-9 (DE-588)4123623-3 |
title | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls |
title_auth | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls |
title_exact_search | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls |
title_exact_search_txtP | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls |
title_full | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls Andreas Büchter ; Hans-Wolfgang Henn |
title_fullStr | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls Andreas Büchter ; Hans-Wolfgang Henn |
title_full_unstemmed | Elementare Stochastik eine Einführung in die Mathematik der Daten und des Zufalls Andreas Büchter ; Hans-Wolfgang Henn |
title_short | Elementare Stochastik |
title_sort | elementare stochastik eine einfuhrung in die mathematik der daten und des zufalls |
title_sub | eine Einführung in die Mathematik der Daten und des Zufalls |
topic | Stochastik (DE-588)4121729-9 gnd |
topic_facet | Stochastik Lehrbuch |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015601987&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT buchterandreas elementarestochastikeineeinfuhrungindiemathematikderdatenunddeszufalls AT hennhanswolfgang elementarestochastikeineeinfuhrungindiemathematikderdatenunddeszufalls |