Handbook of mathematics for engineers and scientists:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Boca Raton, Fla. [u.a.]
Chapman & Hall/CRC
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XXXII, 1509 S. |
ISBN: | 1584885025 9781584885023 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022388587 | ||
003 | DE-604 | ||
005 | 20081223 | ||
007 | t | ||
008 | 070416s2007 |||| 00||| eng d | ||
020 | |a 1584885025 |9 1-58488-502-5 | ||
020 | |a 9781584885023 |9 978-1-58488-502-3 | ||
035 | |a (OCoLC)255390859 | ||
035 | |a (DE-599)GBV515670944 | ||
040 | |a DE-604 |b ger | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-703 | ||
084 | |a SK 950 |0 (DE-625)143273: |2 rvk | ||
100 | 1 | |a Poljanin, Andrej D. |d 1951- |e Verfasser |0 (DE-588)128391251 |4 aut | |
245 | 1 | 0 | |a Handbook of mathematics for engineers and scientists |c Andrei D. Polyanin ; Alexander V. Manzhirov |
264 | 1 | |a Boca Raton, Fla. [u.a.] |b Chapman & Hall/CRC |c 2007 | |
300 | |a XXXII, 1509 S. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Manžirov, Aleksandr V. |e Verfasser |0 (DE-588)120620758 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Bayreuth |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015597454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015597454 |
Datensatz im Suchindex
_version_ | 1804136446017142784 |
---|---|
adam_text | CONTENTS
Authors
.................................................................. xxv
Preface
...................................................................xxvii
Main Notation
............................................................. xxix
Part I. Definitions, Formulas, Methods, and Theorems
1
1.
Arithmetic and Elementary Algebra
......................................... 3
1.1.
Real Numbers
........................................................... 3
1.1.1.
Integer Numbers
................................................... 3
1.1.2.
Real, Rational, and Irrational Numbers
................................. 4
1.2.
Equalities and Inequalities. Arithmetic Operations. Absolute Value
................ 5
1.2.1.
Equalities and Inequalities
........................................... 5
1.2.2.
Addition and Multiplication of Numbers
................................ 6
1.2.3.
Ratios and Proportions
.............................................. 6
1.2.4.
Percentage
....................................................... 7
1.2.5.
Absolute Value of a Number (Modulus of a Number)
...................... 8
1.3.
Powers and Logarithms
................................................... 8
1.3.1.
Powers and Roots
.................................................. 8
1.3.2.
Logarithms
....................................................... 9
1.4.
Binomial Theorem and Related Formulas
..................................... 10
1.4.1.
Factorials. Binomial Coefficients. Binomial Theorem
..................... 10
1.4.2.
Related Formulas
.................................................. 10
1.5.
Arithmetic and Geometric Progressions. Finite Sums and Products
................. 11
1.5.1.
Arithmetic and Geometric Progressions
................................ 11
1.5.2.
Finite Series and Products
........................................... 12
1.6.
Mean Values and Inequalities of General Form
................................. 13
1.6.1.
Arithmetic Mean, Geometric Mean, and Other Mean Values. Inequalities for
Mean Values
...................................................... 13
1.6.2.
Inequalities of General Form
......................................... 14
1.7.
Some Mathematical Methods
.............................................. 15
1.7.1.
Proof by Contradiction
.............................................. 15
1.7.2.
Mathematical Induction
............................................. 16
1.7.3.
Proof by Counterexample
........................................... 17
1.7.4.
Method of Undetermined Coefficients
.................................. 17
References for Chapter
1 ...................................................... 18
2.
Elementary Functions
..................................................... 19
2.1.
Power, Exponential, and Logarithmic Functions
................................ 19
2.1.1.
Power Function:
y
=
xa
............................................ 19
2.1.2.
Exponential Function: y = ax
........................................ 21
2.1.3.
Logarithmic Function:
y
=
loga
χ
..................................... 22
2.2.
Trigonometric Functions
.................................................. 24
2.2.1.
Trigonometric Circle. Definition of Trigonometric Functions
............... 24
2.2.2.
Graphs of Trigonometric Functions
.................................... 25
í
2.2.3.
Properties of Trigonometric Functions
...........,,.,
...і.
............ 27
vi
Contents
2.3.
Inverse Trigonometrie
Functions............................................
30
2.3.1.
Definitions. Graphs of Inverse Trigonometric Functions
................... 30
2.3.2.
Properties of Inverse Trigonometric Functions
........................... 33
2.4.
Hyperbolic Functions
..................................................... 34
2.4.1.
Definitions. Graphs of Hyperbolic Functions
............................ 34
2.4.2.
Properties of Hyperbolic Functions
.................................... 36
2.5.
Inverse Hyperbolic Functions
.............................................. 39
2.5.1.
Definitions. Graphs of Inverse Hyperbolic Functions
...................... 39
2.5.2.
Properties of Inverse Hyperbolic Functions
.............................. 41
References for Chapter
2 ...................................................... 42
3.
Elementary Geometry
.................................................... 43
3.1.
Plane Geometry
......................................................... 43
3.1.1.
Triangles
......................................................... 43
3.1.2.
Polygons
......................................................... 51
3.1.3.
Circle
........................................................... 56
3.2.
Solid Geometry
......................................................... 59
3.2.1.
Straight Lines, Planes, and Angles in Space
............................. 59
3.2.2.
Polyhedra
........................................................ 61
3.2.3.
Solids Formed by Revolution of Lines
................................. 65
3.3.
Spherical Trigonometry
................................................... 70
3.3.1.
Spherical Geometry
................................................ 70
3.3.2.
Spherical Triangles
................................................ 71
References for Chapter
3 ...................................................... 75
4.
Analytic Geometry
....................................................... 77
4.1.
Points, Segments, and Coordinates on Line and Plane
........................... 77
4.1.1.
Coordinates on Line
................................................ 77
4.1.2.
Coordinates on Plane
............................................... 78
4.1.3.
Points and Segments on Plane
........................................ 81
4.2.
Curves on Plane
......................................................... 84
4.2.1.
Curves and Their Equations
.......................................... 84
4.2.2.
Main Problems of Analytic Geometry for Curves
......................... 88
4.3.
Straight Lines and Points on Plane
.......................................... 89
4.3.1.
Equations of Straight Lines on Plane
................................... 89
4.3.2.
Mutual Arrangement of Points and Straight Lines
........................ 93
4.4.
Second-Order Curves
..................................................... 97
4.4.1.
Circle
..............................................._ 97
4.4.2.
Ellipse
.......................................................... 98
4.4.3.
Hyperbola
........................................................
q
АЛА.
Parabola
..............................................
jO4
4.4.5.
Transformation of Second-Order Curves to Canonical Form
................ 107
4.5.
Coordinates, Vectors, Curves, and Surfaces in Space
............................ 113
4.5.1.
Vectors. Cartesian Coordinate System
................................. 113
4.5.2.
Coordinate Systems
................................................ 114
4.5.3.
Vectors. Products of Vectors
......................................... 120
4.5.4.
Curves and Surfaces in Space
........................................ 123
Contents
vii
4.6. Line and Plane in Space................................................... 124
4.6.1. Plane in Space .................................................... 124
4.6.2. Line in Space ..................................................... 131
4.6.3. Mutual Arrangement
of
Points, Lines, and Planes ........................ 135
4.7. Quadric
Surfaces (Quadrics)
............................................... 143
4.7.1. Quadrics
(Canonical Equations) ......................................
143
4.7.2. Quadrics (General
Theory)
.......................................... 148
References for Chapter
4 ...................................................... 153
5.
Algebra
................................................................. 155
5.1.
Polynomials and Algebraic Equations
........................................ 155
5.1.1.
Polynomials and Their Properties
..................................... 155
5.1.2.
Linear and Quadratic Equations
....................................... 157
5.1.3.
Cubic Equations
................................................... 158
5.1.4.
Fourth-Degree Equation
............................................. 159
5.1.5.
Algebraic Equations of Arbitrary Degree and Their Properties
.............. 161
5.2.
Matrices and Determinants
................................................ 167
5.2.1.
Matrices
......................................................... 167
5.2.2.
Determinants
..................................................... 175
5.2.3.
Equivalent Matrices. Eigenvalues
..................................... 180
5.3.
Linear Spaces
........................................................... 187
5.3.1.
Concept of a Linear Space. Its Basis and Dimension
...................... 187
5.3.2.
Subspaces of Linear Spaces
.......................................... 190
5.3.3.
Coordinate Transformations Corresponding to Basis Transformations in a Linear
Space
........................................................... 191
5.4.
Euclidean Spaces
........................................................ 192
5.4.1.
Real Euclidean Space
............................................... 192
5.4.2.
Complex Euclidean Space (Unitary Space)
.............................. 195
5.4.3.
Banach Spaces and Hubert Spaces
.................................... 196
5.5.
Systems of Linear Algebraic Equations
....................................... 197
5.5.1.
Consistency Condition for a Linear System
............................. 197
5.5.2.
Finding Solutions of a System of Linear Equations
....................... 198
5.6.
Linear Operators
........................................................ 204
5.6.1.
Notion of a Linear Operator. Its Properties
.............................. 204
5.6.2.
Linear Operators in Matrix Form
...................................... 208
5.6.3.
Eigenvectors and Eigenvalues of Linear Operators
........................ 209
5.7.
Bilinear and Quadratic Forms
.............................................. 213
5.7.1.
Linear and Sesquilinear Forms
....................................... 213
5.7.2.
Bilinear Forms
.................................................... 214
5.7.3.
Quadratic Forms
................................................... 216
5.7.4.
Bilinear and Quadratic Forms in Euclidean Space
........................ 219
5.7.5.
Second-Order Hypersurfaces
......................................... 220
5.8.
Some Facts from Group Theory
............................................ 225
5.8.1.
Groups and Their Basic Properties
.................................... 225
5.8.2.
Transformation Groups
............................................. 228
5.8.3.
Group Representations
.............................................. 230
References for Chapter
5 ...................................................... 233
viii Contents
6. Limits and Derivatives .................................................... 235
6.1. Basic
Concepts of Mathematical Analysis
.................................... 235
6.1.1.
Number Sets. Functions of Real Variable
............................... 235
6.1.2.
Limit of a Sequence
................................................ 237
6.1.3.
Limit of a Function. Asymptotes
...................................... 240
6.1.4.
Infinitely Small and Infinitely Large Functions
........................... 242
6.1.5.
Continuous Functions. Discontinuities of the First and the Second Kind
....... 243
6.1.6.
Convex and Concave Functions
....................................... 245
6.1.7.
Functions of Bounded Variation
...................................... 246
6.1.8.
Convergence of Functions
........................................... 249
6.2.
Differential Calculus for Functions of a Single Variable
.......................... 250
6.2.1.
Derivative and Differential, Their Geometrical and Physical Meaning
......... 250
6.2.2.
Table of Derivatives and Differentiation Rules
........................... 252
6.2.3.
Theorems about Differentiable Functions. L Hospital Rule
................. 254
6.2.4.
Higher-Order Derivatives and Differentials. Taylor s Formula
............... 255
6.2.5.
Extremal Points. Points of Inflection
................................... 257
6.2.6.
Qualitative Analysis of Functions and Construction of Graphs
.............. 259
6.2.7.
Approximate Solution of Equations (Root-Finding Algorithms for Continuous
Functions)
....................................................... 260
6.3.
Functions of Several Variables. Partial Derivatives
.............................. 263
6.3.1.
Point Sets. Functions. Limits and Continuity
............................ 263
6.3.2.
Differentiation of Functions of Several Variables
......................... 264
6.3.3.
Directional Derivative. Gradient. Geometrical Applications
................ 267
6.3.4.
Extremal Points of Functions of Several Variables
........................ 269
6.3.5.
Differential Operators of the Field Theory
.............................. 272
References for Chapter
6 ...................................................... 272
7.
Integrals
................................................................ 273
7.1.
Indefinite Integral
........................................................ 273
7.1.1.
Antiderivative.
Indefinite Integral and Its Properties
....................... 273
7.1.2.
Table of Basic Integrals. Properties of the Indefinite Integral. Integration
Examples
........................................................ 274
7.1.3.
Integration of Rational Functions
..................................... 276
7.1.4.
Integration of Irrational Functions
..................................... 279
7.1.5.
Integration of Exponential and Trigonometric Functions
................... 281
7.1.6.
Integration of Polynomials Multiplied by Elementary Functions
............. 283
7.2.
Definite Integral
......................................................... 286
7.2.1.
Basic Definitions. Classes of
Integrable
Functions. Geometrical Meaning of the
Definite Integral
....................................;.............. 286
7.2.2.
Properties of Definite Integrals and Useful Formulas
...................... 287
7.2.3.
General Reduction Formulas for the Evaluation of Integrals
................ 289
7.2.4.
General Asymptotic Formulas for the Calculation of Integrals
............... 290
7.2.5.
Mean Value Theorems. Properties of Integrals in Terms of Inequalities.
Arithmetic Mean and Geometric Mean of Functions
...................... 295
7.2.6.
Geometric and Physical Applications of the Definite Integral
............... 299
7.2.7.
Improper Integrals with Infinite Integration Limit
......................... 301
7.2.8.
General Reduction Formulas for the Calculation of Improper Integrals
........ 304
7.2.9.
General Asymptotic Formulas for the Calculation of Improper Integrals
....... 307
7.2.10.
Improper Integrals of Unbounded Functions
............................ 308
7.2.11.
Cauchy-Type Singular Integrals
...................................... 310
Contents
ix
7.2.12.
Stieltjes
Integral
.................................................. 312
7.2.13.
Square
Integrable
Functions
........................................ 314
7.2.14.
Approximate (Numerical) Methods for Computation of Definite Integrals
.... 315
7.3.
Double and Triple Integrals
................................................ 317
7.3.1.
Definition and Properties of the Double Integral
.......................... 317
7.3.2.
Computation of the Double Integral
................................... 319
7.3.3.
Geometric and Physical Applications of the Double Integral
................ 323
7.3.4.
Definition and Properties of the Triple Integral
........................... 324
7.3.5.
Computation of the Triple Integral. Some Applications. Iterated Integrals and
Asymptotic Formulas
............................................... 325
7.4.
Line and Surface Integrals
................................................. 329
7.4.1.
Line Integral of the First Kind
........................................ 329
7.4.2.
Line Integral of the Second Kind
...................................... 330
7.4.3.
Surface Integral of the First Kind
..................................... 332
7.4.4.
Surface Integral of the Second Kind
................................... 333
7.4.5.
Integral Formulas of Vector Calculus
.................................. 334
References for Chapter
7 ...................................................... 335
8.
Series
.................................................................. 337
8.1.
Numerical Series and Infinite Products
....................................... 337
8.1.1.
Convergent Numerical Series and Their Properties. Cauchy s Criterion
....... 337
8.1.2.
Convergence Criteria for Series with Positive
(Nonnegative)
Terms
.......... 338
8.1.3.
Convergence Criteria for Arbitrary Numerical Series. Absolute and Conditional
Convergence
...................................................... 341
8.1.4.
Multiplication of Series. Some Inequalities
............................. 343
8.1.5.
Summation Methods. Convergence Acceleration
......................... 344
8.1.6.
Infinite Products
................................................... 346
8.2.
Functional Series
........................................................ 348
8.2.1.
Pointwise and Uniform Convergence of Functional Series
.................. 348
8.2.2.
Basic Criteria of Uniform Convergence. Properties of Uniformly Convergent
Series
........................................................... 349
8.3.
Power Series
............................................................ 350
8.3.1.
Radius of Convergence of Power Series. Properties of Power Series
.......... 350
8.3.2.
Taylor and Maclaurin Power Series
.................................... 352
8.3.3.
Operations with Power Series. Summation Formulas for Power Series
........ 354
8.4.
Fourier Series
........................................................... 357
8.4.1.
Representation of
гтг-Регккііс
Functions by Fourier Series. Main Results
..... 357
8.4.2.
Fourier Expansions of Periodic, Nonperiodic, Odd, and Even Functions
....... 359
8.4.3.
Criteria of Uniform and Mean-Square Convergence of Fourier Series
......... 361
8.4.4.
Summation Formulas for Trigonometric Series
........................... 362
8.5.
Asymptotic Series
....................................................... 363
8.5.1.
Asymptotic Series of
Poincaré Type.
Formulas for the Coefficients
........... 363
8.5.2.
Operations with Asymptotic Series
.................................... 364
References for Chapter
8 ...................................................... 366
9.
Differential Geometry
..................................................... 367
9.1.
Theory of Curves
........................................................ 367
9.1.1.
Plane Curves
..................................................... 367
9.1.2.
Space Curves
..................................................... 379
x
Contents
9.2.
Theory of Surfaces
.......................................................
386
9.2.1.
Elementary Notions in Theory of Surfaces
.............................. 386
9.2.2.
Curvature of Curves on Surface
....................................... 392
9.2.3.
Intrinsic Geometry of Surface
........................................ 395
References for Chapter
9 ...................................................... 397
10.
Functions of Complex Variable
............................................ 399
10.1.
Basic Notions
.......................................................... 399
10.1.1.
Complex Numbers. Functions of Complex Variable
..................... 399
10.1.2.
Functions of Complex Variable
..................................... 401
10.2.
Main Applications
...................................................... 419
10.2.1.
Conformai
Mappings
............................................. 419
10.2.2.
Boundary Value Problems
......................................... 427
References for Chapter
10 ..................................................... 433
11.
Integral Transforms
...................................................... 435
11.1.
General Form of Integral Transforms. Some Formulas
.......................... 435
11.1.1.
Integral Transforms and Inversion Formulas
........................... 435
11.1.2.
Residues. Jordan Lemma
.......................................... 435
11.2.
Laplace Transform
...................................................... 436
11.2.1.
Laplace Transform and the Inverse Laplace Transform
.................. 436
11.2.2.
Main Properties of the Laplace Transform. Inversion Formulas for Some
Functions
...................................................... 437
11.2.3.
Limit Theorems. Representation of Inverse Transforms as Convergent Series
and Asymptotic Expansions
........................................ 440
11.3.
Mellin Transform
....................................................... 441
11.3.1.
Mellin Transform and the Inversion Formula
.......................... 441
11.3.2.
Main Properties of the Mellin Transform. Relation Among the Mellin,
Laplace, and Fourier Transforms
.................................... 442
11.4.
Various Forms of the Fourier Transform
..................................... 443
11.4.1.
Fourier Transform and the Inverse Fourier Transform
................... 443
11.4.2.
Fourier Cosine and Sine Transforms
................................. 445
11.5.
Other Integral Transforms
................................................ 446
11.5.1.
Integral Transforms Whose Kernels Contain Bessel Functions and Modified
Bessel Functions
................................................ 446
11.5.2.
Summary Table of Integral Transforms. Areas of Application of Integral
Transforms
..................................................... 448
References for Chapter
11 .............·.·....................................... 451
12.
Ordinary Differential Equations
........................................... 453
12.1.
First-Order Differential Equations
.......................................... 453
12.1.1.
General Concepts. The Cauchy Problem. Uniqueness and Existence Theorems
453
12.1.2.
Equations Solved for the Derivative. Simplest Techniques of Integration
___ 456
12.1.3.
Exact Differential Equations. Integrating Factor
........................ 458
12.1.4.
Riccati Equation
................................................. 460
12.1.5.
Abel Equations of the First Kind
.................................... 462
12.1.6.
Abel Equations of the SecondKind
.................................. 464
12.1.7.
Equations Not Solved for the Derivative
.............................. 465
12.1.8.
Contact Transformations
.......................................... 468
12.1.9.
Approximate Analytic Methods for Solution of Equations
................ 469
12.1.10.
Numerical Integration of Differential Equations
....................... 471
Contents xi
12.2.
Second-Order
Linear Differential
Equations..................................
472
12.2.1.
Formulas for the General Solution. Some Transformations
............... 472
12.2.2.
Representation of Solutions as a Series in the Independent Variable
........ 475
12.2.3.
Asymptotic Solutions
............................................. 477
12.2.4.
Boundary Value Problems
......................................... 480
12.2.5.
Eigenvalue Problems
............................................. 482
12.2.6.
Theorems on Estimates and Zeros of Solutions
......................... 487
12.3.
Second-Order Nonlinear Differential Equations
............................... 488
12.3.1.
Form of the General Solution. Cauchy Problem
........................ 488
12.3.2.
Equations Admitting Reduction of Order
............................. 489
12.3.3.
Methods of Regular Series Expansions with Respect to the Independent
Variable
....................................................... 492
12.3.4.
Movable Singularities of Solutions of Ordinary Differential Equations.
Painlevé
Transcendents
........................................... 494
12.3.5.
Perturbation Methods of Mechanics and Physics
....................... 499
12.3.6.
Galerkin Method and Its Modifications (Projection Methods)
............. 508
12.3.7.
Iteration and Numerical Methods
................................... 511
12.4.
Linear Equations of Arbitrary Order
........................................ 514
12.4.1.
Linear Equations with Constant Coefficients
.......................... 514
12.4.2.
Linear Equations with Variable Coefficients
........................... 518
12.4.3.
Asymptotic Solutions of Linear Equations
............................ 522
12.4.4.
Collocation Method and Its Convergence
............................. 523
12.5.
Nonlinear Equations of Arbitrary Order
..................................... 524
12.5.1.
Structure of the General Solution. Cauchy Problem
..................... 524
12.5.2.
Equations Admitting Reduction of Order
............................. 525
12.6.
Linear Systems of Ordinary Differential Equations
............................ 528
12.6.1.
Systems of Linear Constant-Coefficient Equations
...................... 528
12.6.2.
Systems of Linear Variable-Coefficient Equations
...................... 539
12.7.
Nonlinear Systems of Ordinary Differential Equations
.......................... 542
12.7.1.
Solutions and First Integrals. Uniqueness and Existence Theorems
......... 542
12.7.2.
Integrable
Combinations. Autonomous Systems of Equations
............. 545
12.7.3.
Elements of Stability Theory
....................................... 546
References for Chapter
12 ..................................................... 550
13.
First-Order Partial Differential Equations
................................... 553
13.1.
Linear and
Quasilinear
Equations
.......................................... 553
13.1.1.
Characteristic System. General Solution
.............................. 553
13.1.2.
Cauchy Problem. Existence and Uniqueness Theorem
................... 556
13.1.3.
Qualitative Features and Discontinuous Solutions of
Quasilinear
Equations
.. 558
13.1.4. Quasilinear
Equations of General Form. Generalized Solution, Jump
Condition, and Stability Condition
.................................. 567
13.2.
Nonlinear Equations
..................................................... 570
13.2.1.
Solution Methods
................................................ 570
13.2.2.
Cauchy Problem. Existence and Uniqueness Theorem
................... 576
13.2.3.
Generalized Viscosity Solutions and Their Applications
................. 579
References for Chapter
13 ..................................................... 584
xii Contents
14. Linear
Partial
Differential
Equations.......................................
585
14.1.
Classification
of Second-Order
Partial
Differential Equations
.................... 585
14.1.1.
Equations with Two Independent Variables
............................ 585
14.1.2.
Equations with Many Independent Variables
.......................... 589
14.2.
Basic Problems of Mathematical Physics
.................................... 590
14.2.1.
Initial and Boundary Conditions. Cauchy Problem. Boundary Value Problems
590
14.2.2.
First, Second, Third, and Mixed Boundary Value Problems
............... 593
14.3.
Properties and Exact Solutions of Linear Equations
............................ 594
14.3.1.
Homogeneous Linear Equations and Their Particular Solutions
............ 594
14.3.2.
Nonhomogeneous Linear Equations and Their Particular Solutions
......... 598
14.3.3.
General Solutions of Some Hyperbolic Equations
...................... 600
14.4.
Method of Separation of Variables (Fourier Method)
........................... 602
14.4.1.
Description of the Method of Separation of Variables. General Stage of
Solution
....................................................... 602
14.4.2.
Problems for Parabolic Equations: Final Stage of Solution
............... 605
14.4.3.
Problems for Hyperbolic Equations: Final Stage of Solution
.............. 607
14.4.4.
Solution of Boundary Value Problems for Elliptic Equations
.............. 609
14.5.
Integral Transforms Method
.............................................. 611
14.5.1.
Laplace Transform and Its Application in Mathematical Physics
........... 611
14.5.2.
Fourier Transform and Its Application in Mathematical Physics
........... 614
14.6.
Representation of the Solution of the Cauchy Problem via the Fundamental Solution
.. 615
14.6.1.
Cauchy Problem for Parabolic Equations
............................. 615
14.6.2.
Cauchy Problem for Hyperbolic Equations
............................ 617
14.7.
Boundary Value Problems for Parabolic Equations with One Space Variable. Green s
Function
.............................................................. 618
14.7.1.
Representation of Solutions via the Green s Function
.................... 618
14.7.2.
Problems for Equation s(x)^
=
-^ [p(x)^]-q(x)w
+
Ф(х,
t) ...........
620
14.8.
Boundary Value Problems for Hyperbolic Equations with One Space Variable. Green s
Function. Goursat Problem
............................................... 623
14.8.1.
Representation of Solutions via the Green s Function
.................... 623
14.8.2.
Problems for Equation
s(x)Š$-
=
-J^
[p(x)^]-q(x)w
+
Ф(х,
t) ..........
624
14.8.3.
Problems for Equation ^
+
a(i)-f^
=
ò(í){
-¿fe [pix)%¿]
-
q{x)w)
+
Ф(ж,
ť)
626
14.8.4.
Generalized Cauchy Problem with Initial Conditions Set Along a Curve
..... 627
14.8.5.
Goursat Problem (a Problem with Initial Data of Characteristics)
.......... 629
14.9.
Boundary Value Problems for Elliptic Equations with Two Space Variables
......... 631
14.9.1.
Problems and the Green s Functions for Equation
u™ _i_ vw _l
ij^õw
j
л/пъ „„
—
rb//*.
«л
¿ro i
■
^v·* »
У
J
..........................
Ό
j L
14.9.2.
Representation of Solutions to Boundary Value Problems via the Green s
Functions
...................................................... 633
14.10.
Boundary Value Problems with Many Space Variables. Representation of Solutions
via the Green s Function
................................................ 634
14.10.1.
Problems for Parabolic Equations
................................. 634
14.10.2.
Problems for Hyperbolic Equations
................................ 636
14.10.3.
Problems for Elliptic Equations
................................... 637
14.10.4.
Comparison of the Solution Structures for Boundary Value Problems for
Equations of Various Types
...................................... 638
Contents xiii
14.11.
Construction
of the Green s Functions. General Formulas and Relations
.......... 639
14.11.1.
Green s Functions of Boundary Value Problems for Equations of Various
Types in Bounded Domains
...................................... 639
14.11.2.
Green s Functions Admitting Incomplete Separation of Variables
........ 640
14.11.3.
Construction of Green s Functions via Fundamental Solutions
.......... 642
14.12.
Duhamel s Principles in Nonstationary Problems
............................. 646
14.12.1.
Problems for Homogeneous Linear Equations
....................... 646
14.12.2.
Problems for Nonhomogeneous Linear Equations
.................... 648
14.13.
Transformations Simplifying Initial and Boundary Conditions
.................. 649
14.13.1.
Transformations That Lead to Homogeneous Boundary Conditions
...... 649
14.13.2.
Transformations That Lead to Homogeneous Initial and Boundary
Conditions
................................................... 650
References for Chapter
14 ..................................................... 650
15.
Nonlinear Partial Differential Equations
.................................... 653
15.1.
Classification of Second-Order Nonlinear Equations
........................... 653
15.1.1.
Classification of
Semilinear
Equations in Two Independent Variables
....... 653
15.1.2.
Classification of Nonlinear Equations in Two Independent Variables
........ 653
15.2.
Transformations of Equations of Mathematical Physics
......................... 655
15.2.1.
Point Transformations: Overview and Examples
....................... 655
15.2.2.
Hodograph Transformations (Special Point Transformations)
............. 657
15.2.3.
Contact Transformations. Legendre and
Euler
Transformations
............ 660
15.2.4.
Bäcklund
Transformations. Differential Substitutions
................... 663
15.2.5.
Differential Substitutions
.......................................... 666
15.3.
Traveling-Wave Solutions, Self-Similar Solutions, and Some Other Simple Solutions.
Similarity Method
...................................................... 667
15.3.1.
Preliminary Remarks
............................................. 667
15.3.2.
Traveling-Wave Solutions.
Invariance
of Equations Under Translations
..... 667
15.3.3.
Self-Similar Solutions.
Invariance
of Equations Under Scaling
Transformations
................................................. 669
15.3.4.
Equations Invariant Under Combinations of Translation and Scaling
Transformations, and Their Solutions
................................ 674
15.3.5.
Generalized Self-Similar Solutions
.................................. 677
15.4.
Exact Solutions with Simple Separation of Variables
........................... 678
15.4.1.
Multiplicative and Additive Separable Solutions
....................... 678
15.4.2.
Simple Separation of Variables in Nonlinear Partial Differential Equations
... 678
15.4.3.
Complex Separation of Variables in Nonlinear Partial Differential Equations
. 679
15.5.
Method of Generalized Separation of Variables
............................... 681
15.5.1.
Structure of Generalized Separable Solutions
.......................... 681
15.5.2.
Simplified Scheme for Constructing Solutions Based on Presetting One System
of Coordinate Functions
........................................... 683
15.5.3.
Solution of Functional Differential Equations by Differentiation
........... 684
15.5.4.
Solution of Functional-Differential Equations by Splitting
................ 688
15.5.5.
Titov-Galaktionov Method
........................................ 693
15.6.
Method of Functional Separation of Variables
................................ 697
15.6.1.
Structure of Functional Separable Solutions. Solution by Reduction to
Equations with Quadratic Nonlinearities
.............................. 697
15.6.2.
Special Functional Separable Solutions. Generalized Traveling-Wave
Solutions
...................................................... 697
xiv
Contents
15.6.3.
Differentiation Method
........................................... 700
15.6.4.
Splitting Method. Solutions of Some Nonlinear Functional Equations and
Their Applications
............................................... 704
15.7.
Direct Method of Symmetry Reductions of Nonlinear Equations
.................. 708
15.7.1.
Clarkson-Kruskal Direct Method
................................... 708
15.7.2.
Some Modifications and Generalizations
............................. 712
15.8.
Classical Method of Studying Symmetries of Differential Equations
............... 716
15.8.1.
One-Parameter Transformations and Their Local Properties
.............. 716
15.8.2.
Symmetries of Nonlinear Second-Order Equations.
Invariance
Condition
.... 719
15.8.3.
Using Symmetries of Equations for Finding Exact Solutions. Invariant
Solutions
...................................................... 724
15.8.4.
Some Generalizations. Higher-Order Equations
........................ 730
15.9.
Nonclassical Method of Symmetry Reductions
................................ 732
15.9.1.
Description of the Method. Invariant Surface Condition
................. 732
15.9.2.
Examples: The Newell-Whitehead Equation and a Nonlinear Wave Equation
733
15.10.
Differential Constraints Method
.......................................... 737
15.10.1.
Description of the Method
....................................... 737
15.10.2.
First-Order Differential Constraints
................................ 739
15.10.3.
Second- and Higher-Order Differential Constraints
................... 744
15.10.4.
Connection Between the Differential Constraints Method and Other
Methods
..................................................... 746
15.11.
Painlevé
Test for Nonlinear Equations of Mathematical Physics
................. 748
15.11.1.
Solutions of Partial Differential Equations with a Movable Pole. Method
Description
................................................... 748
15.11.2.
Examples of Performing the
Painlevé
Test and Truncated Expansions for
Studying Nonlinear Equations
.................................... 750
15.11.3.
Construction of Solutions of Nonlinear Equations That Fail the
Painlevé
Test, Using Truncated Expansions
................................. 753
15.12.
Methods of the Inverse Scattering Problem (Soliton Theory)
.................... 755
15.12.1.
Method Based on Using Lax Pairs
................................. 755
15.12.2.
Method Based on a Compatibility Condition for Systems of Linear
Equations
.................................................... 757
15.12.3.
Solution of the Cauchy Problem by the Inverse Scattering Problem Method
760
15.13.
Conservation Laws and Integrals of Motion
................................. 766
15.13.1.
Basic Definitions and Examples
.................................. 766
15.13.2.
Equations Admitting Variational Formulation. Noetherian Symmetries
... 767
15.14.
Nonlinear Systems of Partial Differential Equations
........................... 770
15.14.1.
Overdetermined Systems of Two Equations
......................... 770
15.14.2.
Pfaffian Equations and Their Solutions. Connection with Overdetermined
Systems
..................................................... 772
15.14.3.
Systems of First-Order Equations Describing Convective Mass Transfer
with Volume Reaction
.......................................... 775
15.14.4.
First-Order Hyperbolic Systems of
Quasilinear
Equations. Systems of
Conservation Laws of Gas Dynamic Type
........................... 780
15.14.5.
Systems of Second-Order Equations of Reaction-Diffusion Type
........ 796
References for Chapter
15..................................................... 798
Contents
xv
16.
Integral Equations
...................................................... 801
16.1.
Linear Integral Equations of the First Kind with Variable Integration Limit
......... 801
16.1.1.
Volterra Equations of the First Kind
................................. 801
16.1.2.
Equations with Degenerate Kernel: K(x,t)
=
g (x)hi(t)
+ ■■■ +
gn(x)hn(t)
. . 802
16.1.3.
Equations with Difference Kernel: K(x, t)
=
K(x
-ť)
................... 804
16.1.4.
Reduction of Volterra Equations of the First Kind to Volterra Equations of the
SecondKind
.................................................... 807
16.1.5.
Method of Quadratures
........................................... 808
16.2.
Linear Integral Equations of the Second Kind with Variable Integration Limit
....... 810
16.2.1.
Volterra Equations of the Second Kind
............................... 810
16.2.2.
Equations with Degenerate Kernel: K(x, t)
=
g (x)h (t)
+ · · · +
gn(x)hn(t)
.. 811
16.2.3.
Equations with Difference Kernel: K(x, t)
=
K(x
-ť)
................... 813
16.2.4.
Construction of Solutions of Integral Equations with Special Right-Hand Side
815
16.2.5.
Method of Model Solutions
........................................ 818
16.2.6.
Successive Approximation Method
.................................. 822
16.2.7.
Method of Quadratures
........................................... 823
16.3.
Linear Integral Equations of the First Kind with Constant Limits of Integration
...... 824
16.3.1.
Fredholm
Integral Equations of the First Kind
......................... 824
16.3.2.
Method of Integral Transforms
..................................... 825
16.3.3.
Regularizaron
Methods
........................................... 827
16.4.
Linear Integral Equations of the Second Kind with Constant Limits of Integration
.... 829
16.4.1.
Fredholm
Integral Equations of the Second Kind. Resolvent
.............. 829
16.4.2.
Fredholm
Equations of the Second Kind with Degenerate Kernel
.......... 830
16.4.3.
Solution as a Power Series in the Parameter. Method of Successive
Approximations
................................................. 832
16.4.4.
Fredholm
Theorems and the
Fredholm
Alternative
...................... 834
16.4.5.
Fredholm
Integral Equations of the Second Kind with Symmetric Kernel
.... 835
16.4.6.
Methods of Integral Transforms
.................................... 841
16.4.7.
Method of Approximating a Kernel by a Degenerate One
................ 844
16.4.8.
Collocation Method
.............................................. 847
16.4.9.
Method of Least Squares
.......................................... 849
16.4.10.
Bubnov-Galerkin Method
........................................ 850
16.4.11.
Quadrature Method
............................................. 852
16.4.12.
Systems of
Fredholm
Integral Equations of the Second Kind
............. 854
16.5.
Nonlinear Integral Equations
.............................................. 856
16.5.1.
Nonlinear Volterra and Urysohn Integral Equations
..................... 856
16.5.2.
Nonlinear Volterra Integral Equations
................................ 856
16.5.3.
Equations with Constant Integration Limits
........................... 863
References for Chapter
16 ..................................................... 871
17.
Difference Equations and Other Functional Equations
........................ 873
17.1.
Difference Equations of Integer Argument
................................... 873
17.1.1.
First-Order Linear Difference Equations of Integer Argument
............. 873
17.1.2.
First-Order Nonlinear Difference Equations of Integer Argument
.......... 874
17.1.3.
Second-Order Linear Difference Equations with Constant Coefficients
...... 877
17.1.4.
Second-Order Linear Difference Equations with Variable Coefficients
...... 879
17.1.5.
Linear Difference Equations of Arbitrary Order with Constant Coefficients
.. 881
17.1.6.
Linear Difference Equations of Arbitrary Order with Variable Coefficients
... 882
17.1.7.
Nonlinear Difference Equations of Arbitrary Order
..................... 884
xvi
Contents
17.2.
Linear Difference Equations with a Single Continuous Variable
.................. 885
17.2.1.
First-Order Linear Difference Equations
.............................. 885
17.2.2.
Second-Order Linear Difference Equations with Integer Differences
........ 894
17.2.3.
Linear mth-Order Difference Equations with Integer Differences
.......... 898
17.2.4.
Linear mth-Order Difference Equations with Arbitrary Differences
........ 904
17.3.
Linear Functional Equations
.............................................. 907
17.3.1.
Iterations of Functions and Their Properties
........................... 907
17.3.2.
Linear Homogeneous Functional Equations
........................... 910
17.3.3.
Linear Nonhomogeneous Functional Equations
........................ 912
17.3.4.
Linear Functional Equations Reducible to Linear Difference Equations with
Constant Coefficients
............................................. 916
17.4.
Nonlinear Difference and Functional Equations with a Single Variable
............. 918
17.4.1.
Nonlinear Difference Equations with a Single Variable
.................. 918
17.4.2.
Reciprocal (Cyclic) Functional Equations
............................. 919
17.4.3.
Nonlinear Functional Equations Reducible to Difference Equations
........ 921
17.4.4.
Power Series Solution of Nonlinear Functional Equations
................ 922
17.5.
Functional Equations with Several Variables
.................................. 922
17.5.1.
Method of Differentiation in a Parameter
............................. 922
17.5.2.
Method of Differentiation in Independent Variables
..................... 925
17.5.3.
Method of Substituting Particular Values of Independent Arguments
....... 926
17.5.4.
Method of Argument Elimination by Test Functions
.................... 928
17.5.5.
Bilinear Functional Equations and Nonlinear Functional Equations Reducible
to Bilinear Equations
............................................. 930
References for Chapter
17 ..................................................... 935
18.
Special Functions and Their Properties
..................................... 937
18.1.
Some Coefficients, Symbols, and Numbers
................................... 937
18.1.1.
Binomial Coefficients
............................................ 937
18.1.2.
Pochhammer Symbol
............................................. 938
18.1.3.
Bernoulli Numbers
............................................... 938
18.1.4.
Euler
Numbers
.................................................. 939
18.2.
Error Functions. Exponential and Logarithmic Integrals
........................ 939
18.2.1.
Error Function and Complementary Error Function
..................... 939
18.2.2.
Exponential Integral
.............................................. 940
18.2.3.
Logarithmic Integral
............................................. 941
18.3.
Sine Integral and Cosine Integral. Fresnel Integrals
............................ 941
18.3.1.
Sine Integral
.................................................... 941
18.3.2.
Cosine Integral
.................................................. 942
18.3.3.
Fresnel Integrals
................................................. 942
18.4.
Gamma Function,
Psi
Function, and Beta Function
............................ 943
18.4.1.
Gamma Function
................................................ 943
18.4.2.
Psi
Function
(Digamma
Function)
................................... 944
18.4.3.
Beta Function
................................................... 945
18.5.
Incomplete Gamma and Beta Functions
..................................... 946
18.5.1.
Incomplete Gamma Function
....................................... 946
18.5.2.
Incomplete Beta Function
......................................... 947
Contents
xvii
18.6.
Bessel Functions (Cylindrical Functions)
.................................... 947
18.6.1.
Definitions and Basic Formulas
..................................... 947
18.6.2.
Integral Representations and Asymptotic Expansions
.................... 949
18.6.3.
Zeros and Orthogonality Properties of Bessel Functions
................. 951
18.6.4.
Hankel Functions (Bessel Functions of the Third Kind)
.................. 952
18.7.
Modified Bessel Functions
................................................ 953
18.7.1.
Definitions. Basic Formulas
....................................... 953
18.7.2.
Integral Representations and Asymptotic Expansions
.................... 954
18.8.
Airy Functions
......................................................... 955
18.8.1.
Definition and Basic Formulas
...................................... 955
18.8.2.
Power Series and Asymptotic Expansions
............................. 956
18.9.
Degenerate Hypergeometric Functions
(Kummer
Functions)
..................... 956
18.9.1.
Definitions and Basic Formulas
..................................... 956
18.9.2.
Integral Representations and Asymptotic Expansions
.................... 959
18.9.3.
Whittaker Functions
.............................................. 960
18.10.
Hypergeometric Functions
............................................... 960
18.10.1.
Various Representations of the Hypergeometric Function
.............. 960
18.10.2.
Basic Properties
............................................... 960
18.11.
Legendre Polynomials, Legendre Functions, and Associated Legendre Functions
... 962
18.11.1.
Legendre Polynomials and Legendre Functions
...................... 962
18.11.2.
Associated Legendre Functions with Integer Indices and Real Argument
.. 964
18.11.3.
Associated Legendre Functions. General Case
....................... 965
18.12.
Parabolic Cylinder Functions
............................................. 967
18.12.1.
Definitions. Basic Formulas
..................................... 967
18.12.2.
Integral Representations, Asymptotic Expansions, and Linear Relations
... 968
18.13.
Elliptic Integrals
....................................................... 969
18.13.1.
Complete Elliptic Integrals
...................................... 969
18.13.2.
Incomplete Elliptic Integrals (Elliptic Integrals)
...................... 970
18.14.
Elliptic Functions
...................................................... 972
18.14.1.
Jacobi Elliptic Functions
........................................ 972
18.14.2.
Weierstrass
Elliptic Function
..................................... 976
18.15.
Jacobi Theta Functions
................................................. 978
18.15.1.
Series Representation of the Jacobi Theta Functions. Simplest Properties
.. 978
18.15.2.
Various Relations and Formulas. Connection with Jacobi Elliptic Functions
978
18.16.
Mathieu
Functions and Modified
Mathieu
Functions
.......................... 980
18.16.1.
Mathieu
Functions
............................................. 980
18.16.2.
Modified
Mathieu
Functions
..................................... 982
18.17.
Orthogonal Polynomials
................................................ 982
18.17.1.
Laguerre Polynomials and Generalized Laguerre Polynomials
........... 982
18.17.2.
Chebyshev Polynomials and Functions
............................. 983
18.17.3.
Hermite Polynomials
........................................... 985
18.17.4.
Jacobi Polynomials and
Gegenbauer
Polynomials
.................... 986
18.18. Nonorthogonal
Polynomials
............................................. 988
18.18.1.
Bernoulli Polynomials
.......................................... 988
18.18.2.
Euler
Polynomials
............................................. 989
References for Chapter
18 ..................................................... 990
xviii ________
Contents
_____________________________
19.
Calculus of Variations and Optimization
................. .................. 991
19.1.
Calculus of Variations and Optimal Control
.................................. 991
19.1.1.
Some Definitions and Formulas
..................................... 991
19.1.2.
Simplest Problem of Calculus of Variations
........................... 993
19.1.3.
Isoperimetric Problem
............................................1002
19.1.4.
Problems with Higher Derivatives
...................................1006
19.1.5. Lagrange
Problem
...............................................1008
19.1.6.
Pontryagin Maximum Principle
.....................................1010
19.2.
Mathematical Programming
...............................................1012
19.2.1.
Linear Programming
.............................................1012
19.2.2.
Nonlinear Programming
...........................................1027
References for Chapter
19 .....................................................1028
20.
Probability Theory
......................................................1031
20.1.
Simplest Probabilistic Models
.............................................1031
20.1.1.
Probabilities of Random Events
.....................................1031
20.1.2.
Conditional Probability and Simplest Formulas
........................1035
20.1.3.
Sequences of Trials
..............................................1037
20.2.
Random Variables and Their Characteristics
..................................1039
20.2.1.
One-Dimensional Random Variables
.................................1039
20.2.2.
Characteristics of One-Dimensional Random Variables
..................1042
20.2.3.
Main Discrete Distributions
........................................1047
20.2.4.
Continuous Distributions
..........................................1051
20.2.5.
Multivariate Random Variables
.....................................1057
20.3.
Limit Theorems
........................................................1068
20.3.1.
Convergence of Random Variables
..................................1068
20.3.2.
Limit Theorems
.................................................1069
20.4.
Stochastic Processes
.....................................................1071
20.4.1.
Theory of Stochastic Processes
.....................................1071
20.4.2.
Models of Stochastic Processes
.....................................1074
References for Chapter
20.....................................................1079
21.
Mathematical Statistics
..................................................1081
21.1.
Introduction to Mathematical Statistics
......................................1081
21.1.1.
Basic Notions and Problems of Mathematical Statistics
..................1081
21.1.2.
Simplest Statistical Transformations
.................................1082
21.1.3.
Numerical Characteristics of Statistical Distribution
....................1087
21.2.
Statistical Estimation
....................................................1088
21.2.1.
Estimators and Their Properties
.....................................1088
21.2.2.
Estimation Methods for Unknown Parameters
.........................1091
21.2.3.
Interval Estimators (Confidence Intervals)
............................1093
21.3.
Statistical Hypothesis Testing
.............................................1094
21.3.1.
Statistical Hypothesis. Test
........................................1094
21.3.2.
Goodness-of-Fit Tests
............................................1098
21.3.3.
Problems Related to Normal Samples
................................1101
References for Chapter
21 ..............................................
П09
Contents xix
Partii.
Mathematical
Tables
1111
Tl.
Finite Sums and Infinite Series
............................................1113
TU.
Finite Sums
...........................................................1113
Tl.l.l. Numerical Sum
.................................................1113
Tl.1.2. Functional Sums
................................................1116
T1.2. Infinite Series
..........................................................1118
Tl.2.1. Numerical Series
................................................1118
Tl.2.2. Functional Series
................................................1120
References for Chapter Tl
.....................................................1127
T2. Integrals
...............................................................1129
T2.1. Indefinite Integrals
......................................................1129
T2.1.1. Integrals Involving Rational Functions
...............................1129
T2.
T2.
T2.
T2.
T2.
T2.
.2.
Integrals Involving Irrational Functions
...............................1134
.3.
Integrals Involving Exponential Functions
............................1137
.4.
Integrals Involving Hyperbolic Functions
.............................1137
.5.
Integrals Involving Logarithmic Functions
............................1140
.6.
Integrals Involving Trigonometric Functions
...........................1142
.7.
Integrals Involving Inverse Trigonometric Functions
....................1147
T2.2. Tables of Definite Integrals
...............................................1147
T2.2.1. Integrals Involving Power-Law Functions
.............................1147
T2.2.2. Integrals Involving Exponential Functions
............................1150
T2.2.3. Integrals Involving Hyperbolic Functions
.............................1152
T2.2.4. Integrals Involving Logarithmic Functions
............................1152
T2.2.5. Integrals Involving Trigonometric Functions
...........................1153
References for Chapter T2
.....................................................1155
T3. Integral Transforms
.....................................................1157
T3.1. Tables of Laplace Transforms
.............................................1157
T3.1.1. General Formulas
................................................1157
T3.1.2. Expressions with Power-Law Functions
..............................1159
T3.1.3. Expressions with Exponential Functions
..............................1159
T3.1.4. Expressions with Hyperbolic Functions
..............................1160
T3.
1.5.
Expressions with Logarithmic Functions
..............................1161
T3.1.6. Expressions with Trigonometric Functions
............................1161
T3.1.7. Expressions with Special Functions
..................................1163
T3.2. Tables of Inverse Laplace Transforms
.......................................1164
T3.2.1. General Formulas
................................................1164
T3.2.2. Expressions with Rational Functions
.................................1166
T3.2.3. Expressions with Square Roots
.....................................1170
T3.2.4. Expressions with Arbitrary Powers
..................................1172
T3.2.5. Expressions with Exponential Functions
..............................1172
T3.2.6. Expressions with Hyperbolic Functions
..............................1174
T3.2.7. Expressions with Logarithmic Functions
..............................1174
T3.2.8. Expressions with Trigonometric Functions
............................1175
T3.2.9. Expressions with Special Functions
..................................1176
xx Contents
ТЗ.З.
Tables of Fourier Cosine Transforms
........................................1177
T3.3.1. General Formulas
................................................1177
T3.3.2. Expressions with Power-Law Functions
..............................1177
T3.3.3. Expressions with Exponential Functions
..............................1178
T3.3.4. Expressions with Hyperbolic Functions
..............................1179
T3.3.5. Expressions with Logarithmic Functions
..............................1179
T3.3.6. Expressions with Trigonometric Functions
............................1180
T3.3.7. Expressions with Special Functions
..................................1181
T3.4. Tables of Fourier Sine Transforms
..........................................1182
T3.4.1. General Formulas
................................................1182
T3.4.2. Expressions with Power-Law Functions
..............................1182
T3.4.3. Expressions with Exponential Functions
..............................1183
T3.4.4. Expressions with Hyperbolic Functions
..............................1184
T3.4.5. Expressions with Logarithmic Functions
..............................1184
T3.4.6. Expressions with Trigonometric Functions
............................1185
T3.4.7. Expressions with Special Functions
..................................1186
T3.5. Tables of Mellin Transforms
..............................................1187
ТЗ.о.і.
General Formulas
................................................1187
T3.5.2. Expressions with Power-Law Functions
..............................1188
T3.5.3. Expressions with Exponential Functions
..............................1188
T3.5.4. Expressions with Logarithmic Functions
..............................1189
T3.5.5. Expressions with Trigonometric Functions
............................1189
T3.5.6. Expressions with Special Functions
..................................1190
T3.6. Tables of Inverse Mellin Transforms
........................................1190
T3.6.1. Expressions with Power-Law Functions
..............................1190
T3.6.2. Expressions with Exponential and Logarithmic Functions
................1191
T3.6.3. Expressions with Trigonometric Functions
............................1192
T3.6.4. Expressions with Special Functions
..................................1193
References for Chapter T3
.....................................................1194
T4. Orthogonal Curvilinear Systems of Coordinate
..............................1195
T4.1. Arbitrary Curvilinear Coordinate Systems
...................................1195
T4.1.1. General
Nonorthogonal
Curvilinear Coordinates
.......................1195
T4.1.2. General Orthogonal Curvilinear Coordinates
..........................1196
T4.2. Special Curvilinear Coordinate Systems
.....................................1198
T4.2.1. Cylindrical Coordinates
...........................................1198
T4.2.2. Spherical Coordinates
............................................1199
T4.2.3. Coordinates of a Prolate Ellipsoid of Revolution
.......................1200
T4.2.4. Coordinates of an Oblate Ellipsoid of Revolution
.......................1201
T4.2.5. Coordinates of an Elliptic Cylinder
..................................1202
T4.2.6. Conical Coordinates
..............................................1202
T4.2.7. Parabolic Cylinder Coordinates
.....................................1203
T4.2.8. Parabolic Coordinates
............................................1203
T4.2.9. Bicylindrical Coordinates
.........................................1204
T4.2.10. Bipolar Coordinates (in Space)
....................................1204
T4.2.1
1.
Toroidal Coordinates
............................................1205
References for Chapter T4
...........................,......................... 1205
Contents xxi
Т5.
Ordinary Differential Equations
...........................................1207
T5.1. First-Order Equations
....................................................1207
T5.2. Second-Order Linear Equations
............................................1212
T5.2.1. Equations Involving Power Functions
................................1213
T5.2.2. Equations Involving Exponential and Other Functions
...................1220
T5.2.3. Equations Involving Arbitrary Functions
..............................1222
T5.3. Second-Order Nonlinear Equations
.........................................1223
ТЅ.ЗЛ.
Equations ofthe Form y%x
=
f(x,y)
.................................1223
T5.3.2. Equations ofthe Form f(x, y)y x x
=
g(x, y,y x)
.........................1225
References for Chapter T5
.....................................................1228
T6. Systems of Ordinary Differential Equations
.................................1229
T6.
1.
Linear Systems of Two Equations
..........................................1229
Тб.і.і.
Systems of First-Order Equations
...................................1229
T6.1.2. Systems of Second-Order Equations
.................................1232
T6.2. Linear Systems of Three and More Equations
.................................1237
T6.3. Nonlinear Systems of Two Equations
.......................................1239
T6.3.1. Systems of First-Order Equations
...................................1239
T6.3.2. Systems of Second-Order Equations
.................................1240
T6.4. Nonlinear Systems of Three or More Equations
...............................1244
References for Chapter T6
.....................................................1246
T7. First-Order Partial Differential Equations
..................................1247
T7.1. Linear Equations
.......................................................1247
T7.1.1. Equations of the Form f{x,y)^
+
д(.х,у)^~
=0......................1247
T7.1.2. Equations of the Form f(x,y)^
+
д(х,у)Щ;
=
h(x,y)
.................1248
T7.1.3. Equations ofthe Form f(x,y)^
+
д(х,у)щ
=
h(x,y)w
+
r(x,y)
........1250
T7.2.
Quasilinear
Equations
...................................................1252
T7.2.1. Equations of the Form f(x,y)^
+
д(х,у)*щт
-
h(x,y,w)
...............1252
T7.2.2. Equations ofthe Form f^
+
f(x,y,w)^
= 0.........................1254
T7.2.3. Equations ofthe Form ^
+
f(x, y, w)^-
=
g(x, y,w)
..................1256
T7.3. Nonlinear Equations
.....................................................1258
T7.3.1. Equations Quadratic in One Derivative
...............................1258
T7.3.2. Equations Quadratic in Two Derivatives
..............................1259
T7.3.3. Equations with Arbitrary Nonlinearities in Derivatives
...................1261
References for Chapter T7
.....................................................1265
T8. Linear Equations and Problems of Mathematical Physics
......................1267
T8.1. Parabolic Equations
.....................................................1267
Τδ.Ι.Ι.
Heat Equation ff
=
af^-
.........................................1267
T8.1.2. Nonhomogeneous Heat Equation ^
=
a^f
+
Ф(х,і)
..................1268
T8.1.3. Equation ofthe Form ff
=
aţ^
+
fcf^
+ cw +
Φ(χ,ί) .................
1270
T8.1.4. Heat Equation with Axial Symmetry ff
=
o(^f
+ 7^7)...............1270
T8.1.5. Equation ofthe Form ff
=
a(f^r
+ ff^)
+Ф(г,
ť)
...................1271
T8.1.6. Heat Equation with Central Symmetry ^f
=
a(|^
+
^^)
.............1272
18.1.7.
Equation ofthe Form ff =a(fe +
r
If)
+ф(г>ѓ>
....................
1273
T8.1.8. Equation ofthe Form ^f
=
-fgr
+
^ψ-^
...........................1274
xxii Contents
78.1.9.
Equations of the Diffusion (Thermal) Boundary Layer
...................1276
TS.l.lO.
Schrödinger
Equation
¿ñff
=
-^^r
+
U(x)w
.....................1276
T8.2. Hyperbolic Equations
....................................................1278
T8.2.1. Wave Equation ^
=
a2ţ^
......................................1278
T8.2.2. Equation of the Form
ţ^=a2ţ^- +
Ф(х,
t)
..........................1279
T8.2.3. Klein-Gordon Equation
ţg- = a2ţŞ--bw
...........................1280
T8.2.4. Equation of the Form
ţ^
=
a2ţ$-
-bw +
Ф(х,
t)
......................1281
T8.2.5. Equation of the Form ^=
α2
(^Ѕ + 1^)+Ф(г,
í)
..................1282
T8.2.6. Equation of the Form
ţţr
=
a
(íz
+
r
If)
+ф(г *>
..................
1283
T8.2.7. Equations of the Form
ţ^
+
к
ff =
a2
f^
+
òf^
+
cw
+
Φ(ζ, ί)
.........1284
Τ8.3.
Elliptic Equations
.......................................................1284
T8.3.1. Laplace Equation Aw
= 0 .........................................1284
T8.3.2.
Poisson
Equation Aw
+
Φ(χ)
= 0 ...................................1287
T8.3.3. Helmholtz Equation Aw + w =
-Ф(х)
..............................1289
T8.4. Fourth-Order Linear Equations
............................................1294
T8.4.1. Equation of the Form
ξ$-
+
a2ţŞ-
=0 ..............................1294
T8.4.2. Equation of the Form
ţg-
+
a2|^r
=
Φ(χ,ί)
..........................1295
T8.4.3. Biharmonic Equation
ΔΔ«;
=0 ....................................1297
T8.4.4. Nonhomogeneous Biharmonic Equation A Aw
=
Ф(х, у) ................
1298
References for Chapter T8
.....................................................1299
T9. Nonlinear Mathematical Physics Equations
.................................1301
T9.1. Parabolic Equations
.....................................................1301
TO.
1.1.
Nonlinear Heat Equations of the Form ^
=
^f
+
f(w)
................1301
T9.1.2. Equations of the Form ^
=
£[f(w)^]
+
g(w)
......................1303
T9.
1.3.
Burgers Equation and Nonlinear Heat Equation in Radial Symmetric Cases
. . 1307
T9.1.4. Nonlinear
Schrödinger
Equations
...................................1309
T9.2. Hyperbolic Equations
....................................................1312
T9.2.1. Nonlinear Wave Equations of the Form
&$- =
af^
+
f(w)
..............1312
T9.2.2. Other Nonlinear Wave Equations
....................................1316
T9.3. Elliptic Equations
.......................................................1318
T9.3.1. Nonlinear Heat Equations of the Form
ţ^-
+
ţş-
=
f
(w)
................1318
T9.3.2.
Equations of the Form
£
[f(x)fé
+ %
[g(y)%]
=
f(w)
..............1321
T9.3.3. Equations of the Form
£
[f(w)fê]
+ £
[íK«)^]
=
Kw)
..............1322
T9.4. Other Second-Order Equations
................... ;___....................1324
T9.4.1. Equations of Transonic Gas Flow
...................................1324
T9.4.2.
Monge-Ampère
Equations
........................................1326
T9.5. Higher-Order Equations
..................................................1327
T9.5.1. Third-Order Equations
............................................1327
T9.5.2. Fourth-Order Equations
...........................................1332
References for Chapter T9
.....................................................1335
T10. Systems of Partial Differential Equations
..................................1337
TlO.l. Nonlinear Systems of Two First-Order Equations
..___.......................1337
T10.2. Linear Systems of Two Second-Order Equations
.............................1341
Contents xxiii
Т1О.З.
Nonlinear Systems
of Two Second-Order Equations
..........................1343
T10.3.1. Systems of the Form ff
=
α0
+
F(u,w),
^f
=
òf^
+
G(u,w)
......1343
TIO.3.2. Systems of the Form ^
=
^k-§^{xn^)
+
F(u,w),
öt
x71 ox ox
/
v
* ................... ....
T10.3.3. Systems of the Form
Au
=
F(u, w), Aw
=
G(u, w)
..................1364
Т10.3.4.
Systems of the Form
ţg-
-
рг^(жп||)
+
F(u,w),
д2и>
_±l/rnft»K
η(η.
„л
1
-ifrQ
dt2
~ xn
дх У дх
J V w>
..................................
1J °
Т10.3.5.
Other Systems
................................................1373
T10.4. Systems of General Form
................................................1374
T10.4.1. Linear Systems
................................................1374
T10.4.2. Nonlinear Systems of Two Equations Involving the First Derivatives in
t
. . 1374
T10.4.3. Nonlinear Systems of Two Equations Involving the Second Derivatives in
t
1378
T10.4.4. Nonlinear Systems of Many Equations Involving the First Derivatives in
í
. 1381
References for Chapter T10
....................................................1382
Til. Integral Equations
.....................................................1385
Tl
1.1.
Linear Equations of the First Kind with Variable Limit of Integration
.............1385
T11.2. Linear Equations of the Second Kind with Variable Limit of Integration
...........1391
Tl
1.3.
Linear Equations of the First Kind with Constant Limits of Integration
............1396
T
11.4.
Linear Equations of the Second Kind with Constant Limits of Integration
.........1401
References for Chapter Til
....................................................1406
T12. Functional Equations
...................................................1409
Tl
2.1.
Linear Functional Equations in One Independent Variable
......................1409
T
12.1.1.
Linear Difference and Functional Equations Involving Unknown Function
with Two Different Arguments
...................................1409
T12.1.2. Other Linear Functional Equations
................................1421
T12.2. Nonlinear Functional Equations in One Independent Variable
...................1428
T12.2.1. Functional Equations with Quadratic Nonlinearity
....................1428
T12.2.2. Functional Equations with Power Nonlinearity
.......................1433
T12.2.3. Nonlinear Functional Equation of General Form
.....................1434
T12.3. Functional Equations in Several Independent Variables
........................1438
T12.3.1. Linear Functional Equations
.....................................1438
T12.3.2. Nonlinear Functional Equations
..................................1443
References for Chapter Tl
2....................................................1450
Supplement. Some Useful Electronic Mathematical Resources
.....................1451
Index
....................................................................1453
|
adam_txt |
CONTENTS
Authors
. xxv
Preface
.xxvii
Main Notation
. xxix
Part I. Definitions, Formulas, Methods, and Theorems
1
1.
Arithmetic and Elementary Algebra
. 3
1.1.
Real Numbers
. 3
1.1.1.
Integer Numbers
. 3
1.1.2.
Real, Rational, and Irrational Numbers
. 4
1.2.
Equalities and Inequalities. Arithmetic Operations. Absolute Value
. 5
1.2.1.
Equalities and Inequalities
. 5
1.2.2.
Addition and Multiplication of Numbers
. 6
1.2.3.
Ratios and Proportions
. 6
1.2.4.
Percentage
. 7
1.2.5.
Absolute Value of a Number (Modulus of a Number)
. 8
1.3.
Powers and Logarithms
. 8
1.3.1.
Powers and Roots
. 8
1.3.2.
Logarithms
. 9
1.4.
Binomial Theorem and Related Formulas
. 10
1.4.1.
Factorials. Binomial Coefficients. Binomial Theorem
. 10
1.4.2.
Related Formulas
. 10
1.5.
Arithmetic and Geometric Progressions. Finite Sums and Products
. 11
1.5.1.
Arithmetic and Geometric Progressions
. 11
1.5.2.
Finite Series and Products
. 12
1.6.
Mean Values and Inequalities of General Form
. 13
1.6.1.
Arithmetic Mean, Geometric Mean, and Other Mean Values. Inequalities for
Mean Values
. 13
1.6.2.
Inequalities of General Form
. 14
1.7.
Some Mathematical Methods
. 15
1.7.1.
Proof by Contradiction
. 15
1.7.2.
Mathematical Induction
. 16
1.7.3.
Proof by Counterexample
. 17
1.7.4.
Method of Undetermined Coefficients
. 17
References for Chapter
1 . 18
2.
Elementary Functions
. 19
2.1.
Power, Exponential, and Logarithmic Functions
. 19
2.1.1.
Power Function:
y
=
xa
. 19
2.1.2.
Exponential Function: y = ax
. 21
2.1.3.
Logarithmic Function:
y
=
loga
χ
. 22
2.2.
Trigonometric Functions
. 24
2.2.1.
Trigonometric Circle. Definition of Trigonometric Functions
. 24
2.2.2.
Graphs of Trigonometric Functions
. 25
í
2.2.3.
Properties of Trigonometric Functions
.,,.,
.і.
. 27
vi
Contents
2.3.
Inverse Trigonometrie
Functions.
30
2.3.1.
Definitions. Graphs of Inverse Trigonometric Functions
. 30
2.3.2.
Properties of Inverse Trigonometric Functions
. 33
2.4.
Hyperbolic Functions
. 34
2.4.1.
Definitions. Graphs of Hyperbolic Functions
. 34
2.4.2.
Properties of Hyperbolic Functions
. 36
2.5.
Inverse Hyperbolic Functions
. 39
2.5.1.
Definitions. Graphs of Inverse Hyperbolic Functions
. 39
2.5.2.
Properties of Inverse Hyperbolic Functions
. 41
References for Chapter
2 . 42
3.
Elementary Geometry
. 43
3.1.
Plane Geometry
. 43
3.1.1.
Triangles
. 43
3.1.2.
Polygons
. 51
3.1.3.
Circle
. 56
3.2.
Solid Geometry
. 59
3.2.1.
Straight Lines, Planes, and Angles in Space
. 59
3.2.2.
Polyhedra
. 61
3.2.3.
Solids Formed by Revolution of Lines
. 65
3.3.
Spherical Trigonometry
. 70
3.3.1.
Spherical Geometry
. 70
3.3.2.
Spherical Triangles
. 71
References for Chapter
3 . 75
4.
Analytic Geometry
. 77
4.1.
Points, Segments, and Coordinates on Line and Plane
. 77
4.1.1.
Coordinates on Line
. 77
4.1.2.
Coordinates on Plane
. 78
4.1.3.
Points and Segments on Plane
. 81
4.2.
Curves on Plane
. 84
4.2.1.
Curves and Their Equations
. 84
4.2.2.
Main Problems of Analytic Geometry for Curves
. 88
4.3.
Straight Lines and Points on Plane
. 89
4.3.1.
Equations of Straight Lines on Plane
. 89
4.3.2.
Mutual Arrangement of Points and Straight Lines
. 93
4.4.
Second-Order Curves
. 97
4.4.1.
Circle
._ 97
4.4.2.
Ellipse
. 98
4.4.3.
Hyperbola
.
\q\
АЛА.
Parabola
.
jO4
4.4.5.
Transformation of Second-Order Curves to Canonical Form
. 107
4.5.
Coordinates, Vectors, Curves, and Surfaces in Space
. 113
4.5.1.
Vectors. Cartesian Coordinate System
. 113
4.5.2.
Coordinate Systems
. 114
4.5.3.
Vectors. Products of Vectors
. 120
4.5.4.
Curves and Surfaces in Space
. 123
Contents
vii
4.6. Line and Plane in Space. 124
4.6.1. Plane in Space . 124
4.6.2. Line in Space . 131
4.6.3. Mutual Arrangement
of
Points, Lines, and Planes . 135
4.7. Quadric
Surfaces (Quadrics)
. 143
4.7.1. Quadrics
(Canonical Equations) .
143
4.7.2. Quadrics (General
Theory)
. 148
References for Chapter
4 . 153
5.
Algebra
. 155
5.1.
Polynomials and Algebraic Equations
. 155
5.1.1.
Polynomials and Their Properties
. 155
5.1.2.
Linear and Quadratic Equations
. 157
5.1.3.
Cubic Equations
. 158
5.1.4.
Fourth-Degree Equation
. 159
5.1.5.
Algebraic Equations of Arbitrary Degree and Their Properties
. 161
5.2.
Matrices and Determinants
. 167
5.2.1.
Matrices
. 167
5.2.2.
Determinants
. 175
5.2.3.
Equivalent Matrices. Eigenvalues
. 180
5.3.
Linear Spaces
. 187
5.3.1.
Concept of a Linear Space. Its Basis and Dimension
. 187
5.3.2.
Subspaces of Linear Spaces
. 190
5.3.3.
Coordinate Transformations Corresponding to Basis Transformations in a Linear
Space
. 191
5.4.
Euclidean Spaces
. 192
5.4.1.
Real Euclidean Space
. 192
5.4.2.
Complex Euclidean Space (Unitary Space)
. 195
5.4.3.
Banach Spaces and Hubert Spaces
. 196
5.5.
Systems of Linear Algebraic Equations
. 197
5.5.1.
Consistency Condition for a Linear System
. 197
5.5.2.
Finding Solutions of a System of Linear Equations
. 198
5.6.
Linear Operators
. 204
5.6.1.
Notion of a Linear Operator. Its Properties
. 204
5.6.2.
Linear Operators in Matrix Form
. 208
5.6.3.
Eigenvectors and Eigenvalues of Linear Operators
. 209
5.7.
Bilinear and Quadratic Forms
. 213
5.7.1.
Linear and Sesquilinear Forms
. 213
5.7.2.
Bilinear Forms
. 214
5.7.3.
Quadratic Forms
. 216
5.7.4.
Bilinear and Quadratic Forms in Euclidean Space
. 219
5.7.5.
Second-Order Hypersurfaces
. 220
5.8.
Some Facts from Group Theory
. 225
5.8.1.
Groups and Their Basic Properties
. 225
5.8.2.
Transformation Groups
. 228
5.8.3.
Group Representations
. 230
References for Chapter
5 . 233
viii Contents
6. Limits and Derivatives . 235
6.1. Basic
Concepts of Mathematical Analysis
. 235
6.1.1.
Number Sets. Functions of Real Variable
. 235
6.1.2.
Limit of a Sequence
. 237
6.1.3.
Limit of a Function. Asymptotes
. 240
6.1.4.
Infinitely Small and Infinitely Large Functions
. 242
6.1.5.
Continuous Functions. Discontinuities of the First and the Second Kind
. 243
6.1.6.
Convex and Concave Functions
. 245
6.1.7.
Functions of Bounded Variation
. 246
6.1.8.
Convergence of Functions
. 249
6.2.
Differential Calculus for Functions of a Single Variable
. 250
6.2.1.
Derivative and Differential, Their Geometrical and Physical Meaning
. 250
6.2.2.
Table of Derivatives and Differentiation Rules
. 252
6.2.3.
Theorems about Differentiable Functions. L'Hospital Rule
. 254
6.2.4.
Higher-Order Derivatives and Differentials. Taylor's Formula
. 255
6.2.5.
Extremal Points. Points of Inflection
. 257
6.2.6.
Qualitative Analysis of Functions and Construction of Graphs
. 259
6.2.7.
Approximate Solution of Equations (Root-Finding Algorithms for Continuous
Functions)
. 260
6.3.
Functions of Several Variables. Partial Derivatives
. 263
6.3.1.
Point Sets. Functions. Limits and Continuity
. 263
6.3.2.
Differentiation of Functions of Several Variables
. 264
6.3.3.
Directional Derivative. Gradient. Geometrical Applications
. 267
6.3.4.
Extremal Points of Functions of Several Variables
. 269
6.3.5.
Differential Operators of the Field Theory
. 272
References for Chapter
6 . 272
7.
Integrals
. 273
7.1.
Indefinite Integral
. 273
7.1.1.
Antiderivative.
Indefinite Integral and Its Properties
. 273
7.1.2.
Table of Basic Integrals. Properties of the Indefinite Integral. Integration
Examples
. 274
7.1.3.
Integration of Rational Functions
. 276
7.1.4.
Integration of Irrational Functions
. 279
7.1.5.
Integration of Exponential and Trigonometric Functions
. 281
7.1.6.
Integration of Polynomials Multiplied by Elementary Functions
. 283
7.2.
Definite Integral
. 286
7.2.1.
Basic Definitions. Classes of
Integrable
Functions. Geometrical Meaning of the
Definite Integral
.;. 286
7.2.2.
Properties of Definite Integrals and Useful Formulas
. 287
7.2.3.
General Reduction Formulas for the Evaluation of Integrals
. 289
7.2.4.
General Asymptotic Formulas for the Calculation of Integrals
. 290
7.2.5.
Mean Value Theorems. Properties of Integrals in Terms of Inequalities.
Arithmetic Mean and Geometric Mean of Functions
. 295
7.2.6.
Geometric and Physical Applications of the Definite Integral
. 299
7.2.7.
Improper Integrals with Infinite Integration Limit
. 301
7.2.8.
General Reduction Formulas for the Calculation of Improper Integrals
. 304
7.2.9.
General Asymptotic Formulas for the Calculation of Improper Integrals
. 307
7.2.10.
Improper Integrals of Unbounded Functions
. 308
7.2.11.
Cauchy-Type Singular Integrals
. 310
Contents
ix
7.2.12.
Stieltjes
Integral
. 312
7.2.13.
Square
Integrable
Functions
. 314
7.2.14.
Approximate (Numerical) Methods for Computation of Definite Integrals
. 315
7.3.
Double and Triple Integrals
. 317
7.3.1.
Definition and Properties of the Double Integral
. 317
7.3.2.
Computation of the Double Integral
. 319
7.3.3.
Geometric and Physical Applications of the Double Integral
. 323
7.3.4.
Definition and Properties of the Triple Integral
. 324
7.3.5.
Computation of the Triple Integral. Some Applications. Iterated Integrals and
Asymptotic Formulas
. 325
7.4.
Line and Surface Integrals
. 329
7.4.1.
Line Integral of the First Kind
. 329
7.4.2.
Line Integral of the Second Kind
. 330
7.4.3.
Surface Integral of the First Kind
. 332
7.4.4.
Surface Integral of the Second Kind
. 333
7.4.5.
Integral Formulas of Vector Calculus
. 334
References for Chapter
7 . 335
8.
Series
. 337
8.1.
Numerical Series and Infinite Products
. 337
8.1.1.
Convergent Numerical Series and Their Properties. Cauchy's Criterion
. 337
8.1.2.
Convergence Criteria for Series with Positive
(Nonnegative)
Terms
. 338
8.1.3.
Convergence Criteria for Arbitrary Numerical Series. Absolute and Conditional
Convergence
. 341
8.1.4.
Multiplication of Series. Some Inequalities
. 343
8.1.5.
Summation Methods. Convergence Acceleration
. 344
8.1.6.
Infinite Products
. 346
8.2.
Functional Series
. 348
8.2.1.
Pointwise and Uniform Convergence of Functional Series
. 348
8.2.2.
Basic Criteria of Uniform Convergence. Properties of Uniformly Convergent
Series
. 349
8.3.
Power Series
. 350
8.3.1.
Radius of Convergence of Power Series. Properties of Power Series
. 350
8.3.2.
Taylor and Maclaurin Power Series
. 352
8.3.3.
Operations with Power Series. Summation Formulas for Power Series
. 354
8.4.
Fourier Series
. 357
8.4.1.
Representation of
гтг-Регккііс
Functions by Fourier Series. Main Results
. 357
8.4.2.
Fourier Expansions of Periodic, Nonperiodic, Odd, and Even Functions
. 359
8.4.3.
Criteria of Uniform and Mean-Square Convergence of Fourier Series
. 361
8.4.4.
Summation Formulas for Trigonometric Series
. 362
8.5.
Asymptotic Series
. 363
8.5.1.
Asymptotic Series of
Poincaré Type.
Formulas for the Coefficients
. 363
8.5.2.
Operations with Asymptotic Series
. 364
References for Chapter
8 . 366
9.
Differential Geometry
. 367
9.1.
Theory of Curves
. 367
9.1.1.
Plane Curves
. 367
9.1.2.
Space Curves
. 379
x
Contents
9.2.
Theory of Surfaces
.
386
9.2.1.
Elementary Notions in Theory of Surfaces
. 386
9.2.2.
Curvature of Curves on Surface
. 392
9.2.3.
Intrinsic Geometry of Surface
. 395
References for Chapter
9 . 397
10.
Functions of Complex Variable
. 399
10.1.
Basic Notions
. 399
10.1.1.
Complex Numbers. Functions of Complex Variable
. 399
10.1.2.
Functions of Complex Variable
. 401
10.2.
Main Applications
. 419
10.2.1.
Conformai
Mappings
. 419
10.2.2.
Boundary Value Problems
. 427
References for Chapter
10 . 433
11.
Integral Transforms
. 435
11.1.
General Form of Integral Transforms. Some Formulas
. 435
11.1.1.
Integral Transforms and Inversion Formulas
. 435
11.1.2.
Residues. Jordan Lemma
. 435
11.2.
Laplace Transform
. 436
11.2.1.
Laplace Transform and the Inverse Laplace Transform
. 436
11.2.2.
Main Properties of the Laplace Transform. Inversion Formulas for Some
Functions
. 437
11.2.3.
Limit Theorems. Representation of Inverse Transforms as Convergent Series
and Asymptotic Expansions
. 440
11.3.
Mellin Transform
. 441
11.3.1.
Mellin Transform and the Inversion Formula
. 441
11.3.2.
Main Properties of the Mellin Transform. Relation Among the Mellin,
Laplace, and Fourier Transforms
. 442
11.4.
Various Forms of the Fourier Transform
. 443
11.4.1.
Fourier Transform and the Inverse Fourier Transform
. 443
11.4.2.
Fourier Cosine and Sine Transforms
. 445
11.5.
Other Integral Transforms
. 446
11.5.1.
Integral Transforms Whose Kernels Contain Bessel Functions and Modified
Bessel Functions
. 446
11.5.2.
Summary Table of Integral Transforms. Areas of Application of Integral
Transforms
. 448
References for Chapter
11 .·.·. 451
12.
Ordinary Differential Equations
. 453
12.1.
First-Order Differential Equations
. 453
12.1.1.
General Concepts. The Cauchy Problem. Uniqueness and Existence Theorems
453
12.1.2.
Equations Solved for the Derivative. Simplest Techniques of Integration
_ 456
12.1.3.
Exact Differential Equations. Integrating Factor
. 458
12.1.4.
Riccati Equation
. 460
12.1.5.
Abel Equations of the First Kind
. 462
12.1.6.
Abel Equations of the SecondKind
. 464
12.1.7.
Equations Not Solved for the Derivative
. 465
12.1.8.
Contact Transformations
. 468
12.1.9.
Approximate Analytic Methods for Solution of Equations
. 469
12.1.10.
Numerical Integration of Differential Equations
. 471
Contents xi
12.2.
Second-Order
Linear Differential
Equations.
472
12.2.1.
Formulas for the General Solution. Some Transformations
. 472
12.2.2.
Representation of Solutions as a Series in the Independent Variable
. 475
12.2.3.
Asymptotic Solutions
. 477
12.2.4.
Boundary Value Problems
. 480
12.2.5.
Eigenvalue Problems
. 482
12.2.6.
Theorems on Estimates and Zeros of Solutions
. 487
12.3.
Second-Order Nonlinear Differential Equations
. 488
12.3.1.
Form of the General Solution. Cauchy Problem
. 488
12.3.2.
Equations Admitting Reduction of Order
. 489
12.3.3.
Methods of Regular Series Expansions with Respect to the Independent
Variable
. 492
12.3.4.
Movable Singularities of Solutions of Ordinary Differential Equations.
Painlevé
Transcendents
. 494
12.3.5.
Perturbation Methods of Mechanics and Physics
. 499
12.3.6.
Galerkin Method and Its Modifications (Projection Methods)
. 508
12.3.7.
Iteration and Numerical Methods
. 511
12.4.
Linear Equations of Arbitrary Order
. 514
12.4.1.
Linear Equations with Constant Coefficients
. 514
12.4.2.
Linear Equations with Variable Coefficients
. 518
12.4.3.
Asymptotic Solutions of Linear Equations
. 522
12.4.4.
Collocation Method and Its Convergence
. 523
12.5.
Nonlinear Equations of Arbitrary Order
. 524
12.5.1.
Structure of the General Solution. Cauchy Problem
. 524
12.5.2.
Equations Admitting Reduction of Order
. 525
12.6.
Linear Systems of Ordinary Differential Equations
. 528
12.6.1.
Systems of Linear Constant-Coefficient Equations
. 528
12.6.2.
Systems of Linear Variable-Coefficient Equations
. 539
12.7.
Nonlinear Systems of Ordinary Differential Equations
. 542
12.7.1.
Solutions and First Integrals. Uniqueness and Existence Theorems
. 542
12.7.2.
Integrable
Combinations. Autonomous Systems of Equations
. 545
12.7.3.
Elements of Stability Theory
. 546
References for Chapter
12 . 550
13.
First-Order Partial Differential Equations
. 553
13.1.
Linear and
Quasilinear
Equations
. 553
13.1.1.
Characteristic System. General Solution
. 553
13.1.2.
Cauchy Problem. Existence and Uniqueness Theorem
. 556
13.1.3.
Qualitative Features and Discontinuous Solutions of
Quasilinear
Equations
. 558
13.1.4. Quasilinear
Equations of General Form. Generalized Solution, Jump
Condition, and Stability Condition
. 567
13.2.
Nonlinear Equations
. 570
13.2.1.
Solution Methods
. 570
13.2.2.
Cauchy Problem. Existence and Uniqueness Theorem
. 576
13.2.3.
Generalized Viscosity Solutions and Their Applications
. 579
References for Chapter
13 . 584
xii Contents
14. Linear
Partial
Differential
Equations.
585
14.1.
Classification
of Second-Order
Partial
Differential Equations
. 585
14.1.1.
Equations with Two Independent Variables
. 585
14.1.2.
Equations with Many Independent Variables
. 589
14.2.
Basic Problems of Mathematical Physics
. 590
14.2.1.
Initial and Boundary Conditions. Cauchy Problem. Boundary Value Problems
590
14.2.2.
First, Second, Third, and Mixed Boundary Value Problems
. 593
14.3.
Properties and Exact Solutions of Linear Equations
. 594
14.3.1.
Homogeneous Linear Equations and Their Particular Solutions
. 594
14.3.2.
Nonhomogeneous Linear Equations and Their Particular Solutions
. 598
14.3.3.
General Solutions of Some Hyperbolic Equations
. 600
14.4.
Method of Separation of Variables (Fourier Method)
. 602
14.4.1.
Description of the Method of Separation of Variables. General Stage of
Solution
. 602
14.4.2.
Problems for Parabolic Equations: Final Stage of Solution
. 605
14.4.3.
Problems for Hyperbolic Equations: Final Stage of Solution
. 607
14.4.4.
Solution of Boundary Value Problems for Elliptic Equations
. 609
14.5.
Integral Transforms Method
. 611
14.5.1.
Laplace Transform and Its Application in Mathematical Physics
. 611
14.5.2.
Fourier Transform and Its Application in Mathematical Physics
. 614
14.6.
Representation of the Solution of the Cauchy Problem via the Fundamental Solution
. 615
14.6.1.
Cauchy Problem for Parabolic Equations
. 615
14.6.2.
Cauchy Problem for Hyperbolic Equations
. 617
14.7.
Boundary Value Problems for Parabolic Equations with One Space Variable. Green's
Function
. 618
14.7.1.
Representation of Solutions via the Green's Function
. 618
14.7.2.
Problems for Equation s(x)^
=
-^ [p(x)^]-q(x)w
+
Ф(х,
t) .
620
14.8.
Boundary Value Problems for Hyperbolic Equations with One Space Variable. Green's
Function. Goursat Problem
. 623
14.8.1.
Representation of Solutions via the Green's Function
. 623
14.8.2.
Problems for Equation
s(x)Š$-
=
-J^
[p(x)^]-q(x)w
+
Ф(х,
t) .
624
14.8.3.
Problems for Equation ^
+
a(i)-f^
=
ò(í){
-¿fe [pix)%¿]
-
q{x)w)
+
Ф(ж,
ť)
626
14.8.4.
Generalized Cauchy Problem with Initial Conditions Set Along a Curve
. 627
14.8.5.
Goursat Problem (a Problem with Initial Data of Characteristics)
. 629
14.9.
Boundary Value Problems for Elliptic Equations with Two Space Variables
. 631
14.9.1.
Problems and the Green's Functions for Equation
u™ _i_ vw _l
ij^õw
j
л/пъ\„„
—
rb//*.
«л
¿ro i
■
^v·*'»
У
J
.
Ό
j L
14.9.2.
Representation of Solutions to Boundary Value Problems via the Green's
Functions
. 633
14.10.
Boundary Value Problems with Many Space Variables. Representation of Solutions
via the Green's Function
. 634
14.10.1.
Problems for Parabolic Equations
. 634
14.10.2.
Problems for Hyperbolic Equations
. 636
14.10.3.
Problems for Elliptic Equations
. 637
14.10.4.
Comparison of the Solution Structures for Boundary Value Problems for
Equations of Various Types
. 638
Contents xiii
14.11.
Construction
of the Green's Functions. General Formulas and Relations
. 639
14.11.1.
Green's Functions of Boundary Value Problems for Equations of Various
Types in Bounded Domains
. 639
14.11.2.
Green's Functions Admitting Incomplete Separation of Variables
. 640
14.11.3.
Construction of Green's Functions via Fundamental Solutions
. 642
14.12.
Duhamel's Principles in Nonstationary Problems
. 646
14.12.1.
Problems for Homogeneous Linear Equations
. 646
14.12.2.
Problems for Nonhomogeneous Linear Equations
. 648
14.13.
Transformations Simplifying Initial and Boundary Conditions
. 649
14.13.1.
Transformations That Lead to Homogeneous Boundary Conditions
. 649
14.13.2.
Transformations That Lead to Homogeneous Initial and Boundary
Conditions
. 650
References for Chapter
14 . 650
15.
Nonlinear Partial Differential Equations
. 653
15.1.
Classification of Second-Order Nonlinear Equations
. 653
15.1.1.
Classification of
Semilinear
Equations in Two Independent Variables
. 653
15.1.2.
Classification of Nonlinear Equations in Two Independent Variables
. 653
15.2.
Transformations of Equations of Mathematical Physics
. 655
15.2.1.
Point Transformations: Overview and Examples
. 655
15.2.2.
Hodograph Transformations (Special Point Transformations)
. 657
15.2.3.
Contact Transformations. Legendre and
Euler
Transformations
. 660
15.2.4.
Bäcklund
Transformations. Differential Substitutions
. 663
15.2.5.
Differential Substitutions
. 666
15.3.
Traveling-Wave Solutions, Self-Similar Solutions, and Some Other Simple Solutions.
Similarity Method
. 667
15.3.1.
Preliminary Remarks
. 667
15.3.2.
Traveling-Wave Solutions.
Invariance
of Equations Under Translations
. 667
15.3.3.
Self-Similar Solutions.
Invariance
of Equations Under Scaling
Transformations
. 669
15.3.4.
Equations Invariant Under Combinations of Translation and Scaling
Transformations, and Their Solutions
. 674
15.3.5.
Generalized Self-Similar Solutions
. 677
15.4.
Exact Solutions with Simple Separation of Variables
. 678
15.4.1.
Multiplicative and Additive Separable Solutions
. 678
15.4.2.
Simple Separation of Variables in Nonlinear Partial Differential Equations
. 678
15.4.3.
Complex Separation of Variables in Nonlinear Partial Differential Equations
. 679
15.5.
Method of Generalized Separation of Variables
. 681
15.5.1.
Structure of Generalized Separable Solutions
. 681
15.5.2.
Simplified Scheme for Constructing Solutions Based on Presetting One System
of Coordinate Functions
. 683
15.5.3.
Solution of Functional Differential Equations by Differentiation
. 684
15.5.4.
Solution of Functional-Differential Equations by Splitting
. 688
15.5.5.
Titov-Galaktionov Method
. 693
15.6.
Method of Functional Separation of Variables
. 697
15.6.1.
Structure of Functional Separable Solutions. Solution by Reduction to
Equations with Quadratic Nonlinearities
. 697
15.6.2.
Special Functional Separable Solutions. Generalized Traveling-Wave
Solutions
. 697
xiv
Contents
15.6.3.
Differentiation Method
. 700
15.6.4.
Splitting Method. Solutions of Some Nonlinear Functional Equations and
Their Applications
. 704
15.7.
Direct Method of Symmetry Reductions of Nonlinear Equations
. 708
15.7.1.
Clarkson-Kruskal Direct Method
. 708
15.7.2.
Some Modifications and Generalizations
. 712
15.8.
Classical Method of Studying Symmetries of Differential Equations
. 716
15.8.1.
One-Parameter Transformations and Their Local Properties
. 716
15.8.2.
Symmetries of Nonlinear Second-Order Equations.
Invariance
Condition
. 719
15.8.3.
Using Symmetries of Equations for Finding Exact Solutions. Invariant
Solutions
. 724
15.8.4.
Some Generalizations. Higher-Order Equations
. 730
15.9.
Nonclassical Method of Symmetry Reductions
. 732
15.9.1.
Description of the Method. Invariant Surface Condition
. 732
15.9.2.
Examples: The Newell-Whitehead Equation and a Nonlinear Wave Equation
733
15.10.
Differential Constraints Method
. 737
15.10.1.
Description of the Method
. 737
15.10.2.
First-Order Differential Constraints
. 739
15.10.3.
Second- and Higher-Order Differential Constraints
. 744
15.10.4.
Connection Between the Differential Constraints Method and Other
Methods
. 746
15.11.
Painlevé
Test for Nonlinear Equations of Mathematical Physics
. 748
15.11.1.
Solutions of Partial Differential Equations with a Movable Pole. Method
Description
. 748
15.11.2.
Examples of Performing the
Painlevé
Test and Truncated Expansions for
Studying Nonlinear Equations
. 750
15.11.3.
Construction of Solutions of Nonlinear Equations That Fail the
Painlevé
Test, Using Truncated Expansions
. 753
15.12.
Methods of the Inverse Scattering Problem (Soliton Theory)
. 755
15.12.1.
Method Based on Using Lax Pairs
. 755
15.12.2.
Method Based on a Compatibility Condition for Systems of Linear
Equations
. 757
15.12.3.
Solution of the Cauchy Problem by the Inverse Scattering Problem Method
760
15.13.
Conservation Laws and Integrals of Motion
. 766
15.13.1.
Basic Definitions and Examples
. 766
15.13.2.
Equations Admitting Variational Formulation. Noetherian Symmetries
. 767
15.14.
Nonlinear Systems of Partial Differential Equations
. 770
15.14.1.
Overdetermined Systems of Two Equations
. 770
15.14.2.
Pfaffian Equations and Their Solutions. Connection with Overdetermined
Systems
. 772
15.14.3.
Systems of First-Order Equations Describing Convective Mass Transfer
with Volume Reaction
. 775
15.14.4.
First-Order Hyperbolic Systems of
Quasilinear
Equations. Systems of
Conservation Laws of Gas Dynamic Type
. 780
15.14.5.
Systems of Second-Order Equations of Reaction-Diffusion Type
. 796
References for Chapter
15. 798
Contents
xv
16.
Integral Equations
. 801
16.1.
Linear Integral Equations of the First Kind with Variable Integration Limit
. 801
16.1.1.
Volterra Equations of the First Kind
. 801
16.1.2.
Equations with Degenerate Kernel: K(x,t)
=
g\(x)hi(t)
+ ■■■ +
gn(x)hn(t)
. . 802
16.1.3.
Equations with Difference Kernel: K(x, t)
=
K(x
-ť)
. 804
16.1.4.
Reduction of Volterra Equations of the First Kind to Volterra Equations of the
SecondKind
. 807
16.1.5.
Method of Quadratures
. 808
16.2.
Linear Integral Equations of the Second Kind with Variable Integration Limit
. 810
16.2.1.
Volterra Equations of the Second Kind
. 810
16.2.2.
Equations with Degenerate Kernel: K(x, t)
=
g\(x)h\(t)
+ · · · +
gn(x)hn(t)
. 811
16.2.3.
Equations with Difference Kernel: K(x, t)
=
K(x
-ť)
. 813
16.2.4.
Construction of Solutions of Integral Equations with Special Right-Hand Side
815
16.2.5.
Method of Model Solutions
. 818
16.2.6.
Successive Approximation Method
. 822
16.2.7.
Method of Quadratures
. 823
16.3.
Linear Integral Equations of the First Kind with Constant Limits of Integration
. 824
16.3.1.
Fredholm
Integral Equations of the First Kind
. 824
16.3.2.
Method of Integral Transforms
. 825
16.3.3.
Regularizaron
Methods
. 827
16.4.
Linear Integral Equations of the Second Kind with Constant Limits of Integration
. 829
16.4.1.
Fredholm
Integral Equations of the Second Kind. Resolvent
. 829
16.4.2.
Fredholm
Equations of the Second Kind with Degenerate Kernel
. 830
16.4.3.
Solution as a Power Series in the Parameter. Method of Successive
Approximations
. 832
16.4.4.
Fredholm
Theorems and the
Fredholm
Alternative
. 834
16.4.5.
Fredholm
Integral Equations of the Second Kind with Symmetric Kernel
. 835
16.4.6.
Methods of Integral Transforms
. 841
16.4.7.
Method of Approximating a Kernel by a Degenerate One
. 844
16.4.8.
Collocation Method
. 847
16.4.9.
Method of Least Squares
. 849
16.4.10.
Bubnov-Galerkin Method
. 850
16.4.11.
Quadrature Method
. 852
16.4.12.
Systems of
Fredholm
Integral Equations of the Second Kind
. 854
16.5.
Nonlinear Integral Equations
. 856
16.5.1.
Nonlinear Volterra and Urysohn Integral Equations
. 856
16.5.2.
Nonlinear Volterra Integral Equations
. 856
16.5.3.
Equations with Constant Integration Limits
. 863
References for Chapter
16 . 871
17.
Difference Equations and Other Functional Equations
. 873
17.1.
Difference Equations of Integer Argument
. 873
17.1.1.
First-Order Linear Difference Equations of Integer Argument
. 873
17.1.2.
First-Order Nonlinear Difference Equations of Integer Argument
. 874
17.1.3.
Second-Order Linear Difference Equations with Constant Coefficients
. 877
17.1.4.
Second-Order Linear Difference Equations with Variable Coefficients
. 879
17.1.5.
Linear Difference Equations of Arbitrary Order with Constant Coefficients
. 881
17.1.6.
Linear Difference Equations of Arbitrary Order with Variable Coefficients
. 882
17.1.7.
Nonlinear Difference Equations of Arbitrary Order
. 884
xvi
Contents
17.2.
Linear Difference Equations with a Single Continuous Variable
. 885
17.2.1.
First-Order Linear Difference Equations
. 885
17.2.2.
Second-Order Linear Difference Equations with Integer Differences
. 894
17.2.3.
Linear mth-Order Difference Equations with Integer Differences
. 898
17.2.4.
Linear mth-Order Difference Equations with Arbitrary Differences
. 904
17.3.
Linear Functional Equations
. 907
17.3.1.
Iterations of Functions and Their Properties
. 907
17.3.2.
Linear Homogeneous Functional Equations
. 910
17.3.3.
Linear Nonhomogeneous Functional Equations
. 912
17.3.4.
Linear Functional Equations Reducible to Linear Difference Equations with
Constant Coefficients
. 916
17.4.
Nonlinear Difference and Functional Equations with a Single Variable
. 918
17.4.1.
Nonlinear Difference Equations with a Single Variable
. 918
17.4.2.
Reciprocal (Cyclic) Functional Equations
. 919
17.4.3.
Nonlinear Functional Equations Reducible to Difference Equations
. 921
17.4.4.
Power Series Solution of Nonlinear Functional Equations
. 922
17.5.
Functional Equations with Several Variables
. 922
17.5.1.
Method of Differentiation in a Parameter
. 922
17.5.2.
Method of Differentiation in Independent Variables
. 925
17.5.3.
Method of Substituting Particular Values of Independent Arguments
. 926
17.5.4.
Method of Argument Elimination by Test Functions
. 928
17.5.5.
Bilinear Functional Equations and Nonlinear Functional Equations Reducible
to Bilinear Equations
. 930
References for Chapter
17 . 935
18.
Special Functions and Their Properties
. 937
18.1.
Some Coefficients, Symbols, and Numbers
. 937
18.1.1.
Binomial Coefficients
. 937
18.1.2.
Pochhammer Symbol
. 938
18.1.3.
Bernoulli Numbers
. 938
18.1.4.
Euler
Numbers
. 939
18.2.
Error Functions. Exponential and Logarithmic Integrals
. 939
18.2.1.
Error Function and Complementary Error Function
. 939
18.2.2.
Exponential Integral
. 940
18.2.3.
Logarithmic Integral
. 941
18.3.
Sine Integral and Cosine Integral. Fresnel Integrals
. 941
18.3.1.
Sine Integral
. 941
18.3.2.
Cosine Integral
. 942
18.3.3.
Fresnel Integrals
. 942
18.4.
Gamma Function,
Psi
Function, and Beta Function
. 943
18.4.1.
Gamma Function
. 943
18.4.2.
Psi
Function
(Digamma
Function)
. 944
18.4.3.
Beta Function
. 945
18.5.
Incomplete Gamma and Beta Functions
. 946
18.5.1.
Incomplete Gamma Function
. 946
18.5.2.
Incomplete Beta Function
. 947
Contents
xvii
18.6.
Bessel Functions (Cylindrical Functions)
. 947
18.6.1.
Definitions and Basic Formulas
. 947
18.6.2.
Integral Representations and Asymptotic Expansions
. 949
18.6.3.
Zeros and Orthogonality Properties of Bessel Functions
. 951
18.6.4.
Hankel Functions (Bessel Functions of the Third Kind)
. 952
18.7.
Modified Bessel Functions
. 953
18.7.1.
Definitions. Basic Formulas
. 953
18.7.2.
Integral Representations and Asymptotic Expansions
. 954
18.8.
Airy Functions
. 955
18.8.1.
Definition and Basic Formulas
. 955
18.8.2.
Power Series and Asymptotic Expansions
. 956
18.9.
Degenerate Hypergeometric Functions
(Kummer
Functions)
. 956
18.9.1.
Definitions and Basic Formulas
. 956
18.9.2.
Integral Representations and Asymptotic Expansions
. 959
18.9.3.
Whittaker Functions
. 960
18.10.
Hypergeometric Functions
. 960
18.10.1.
Various Representations of the Hypergeometric Function
. 960
18.10.2.
Basic Properties
. 960
18.11.
Legendre Polynomials, Legendre Functions, and Associated Legendre Functions
. 962
18.11.1.
Legendre Polynomials and Legendre Functions
. 962
18.11.2.
Associated Legendre Functions with Integer Indices and Real Argument
. 964
18.11.3.
Associated Legendre Functions. General Case
. 965
18.12.
Parabolic Cylinder Functions
. 967
18.12.1.
Definitions. Basic Formulas
. 967
18.12.2.
Integral Representations, Asymptotic Expansions, and Linear Relations
. 968
18.13.
Elliptic Integrals
. 969
18.13.1.
Complete Elliptic Integrals
. 969
18.13.2.
Incomplete Elliptic Integrals (Elliptic Integrals)
. 970
18.14.
Elliptic Functions
. 972
18.14.1.
Jacobi Elliptic Functions
. 972
18.14.2.
Weierstrass
Elliptic Function
. 976
18.15.
Jacobi Theta Functions
. 978
18.15.1.
Series Representation of the Jacobi Theta Functions. Simplest Properties
. 978
18.15.2.
Various Relations and Formulas. Connection with Jacobi Elliptic Functions
978
18.16.
Mathieu
Functions and Modified
Mathieu
Functions
. 980
18.16.1.
Mathieu
Functions
. 980
18.16.2.
Modified
Mathieu
Functions
. 982
18.17.
Orthogonal Polynomials
. 982
18.17.1.
Laguerre Polynomials and Generalized Laguerre Polynomials
. 982
18.17.2.
Chebyshev Polynomials and Functions
. 983
18.17.3.
Hermite Polynomials
. 985
18.17.4.
Jacobi Polynomials and
Gegenbauer
Polynomials
. 986
18.18. Nonorthogonal
Polynomials
. 988
18.18.1.
Bernoulli Polynomials
. 988
18.18.2.
Euler
Polynomials
. 989
References for Chapter
18 . 990
xviii _
Contents
_
19.
Calculus of Variations and Optimization
. . 991
19.1.
Calculus of Variations and Optimal Control
. 991
19.1.1.
Some Definitions and Formulas
. 991
19.1.2.
Simplest Problem of Calculus of Variations
. 993
19.1.3.
Isoperimetric Problem
.1002
19.1.4.
Problems with Higher Derivatives
.1006
19.1.5. Lagrange
Problem
.1008
19.1.6.
Pontryagin Maximum Principle
.1010
19.2.
Mathematical Programming
.1012
19.2.1.
Linear Programming
.1012
19.2.2.
Nonlinear Programming
.1027
References for Chapter
19 .1028
20.
Probability Theory
.1031
20.1.
Simplest Probabilistic Models
.1031
20.1.1.
Probabilities of Random Events
.1031
20.1.2.
Conditional Probability and Simplest Formulas
.1035
20.1.3.
Sequences of Trials
.1037
20.2.
Random Variables and Their Characteristics
.1039
20.2.1.
One-Dimensional Random Variables
.1039
20.2.2.
Characteristics of One-Dimensional Random Variables
.1042
20.2.3.
Main Discrete Distributions
.1047
20.2.4.
Continuous Distributions
.1051
20.2.5.
Multivariate Random Variables
.1057
20.3.
Limit Theorems
.1068
20.3.1.
Convergence of Random Variables
.1068
20.3.2.
Limit Theorems
.1069
20.4.
Stochastic Processes
.1071
20.4.1.
Theory of Stochastic Processes
.1071
20.4.2.
Models of Stochastic Processes
.1074
References for Chapter
20.1079
21.
Mathematical Statistics
.1081
21.1.
Introduction to Mathematical Statistics
.1081
21.1.1.
Basic Notions and Problems of Mathematical Statistics
.1081
21.1.2.
Simplest Statistical Transformations
.1082
21.1.3.
Numerical Characteristics of Statistical Distribution
.1087
21.2.
Statistical Estimation
.1088
21.2.1.
Estimators and Their Properties
.1088
21.2.2.
Estimation Methods for Unknown Parameters
.1091
21.2.3.
Interval Estimators (Confidence Intervals)
.1093
21.3.
Statistical Hypothesis Testing
.1094
21.3.1.
Statistical Hypothesis. Test
.1094
21.3.2.
Goodness-of-Fit Tests
.1098
21.3.3.
Problems Related to Normal Samples
.1101
References for Chapter
21 .
П09
Contents xix
Partii.
Mathematical
Tables
1111
Tl.
Finite Sums and Infinite Series
.1113
TU.
Finite Sums
.1113
Tl.l.l. Numerical Sum
.1113
Tl.1.2. Functional Sums
.1116
T1.2. Infinite Series
.1118
Tl.2.1. Numerical Series
.1118
Tl.2.2. Functional Series
.1120
References for Chapter Tl
.1127
T2. Integrals
.1129
T2.1. Indefinite Integrals
.1129
T2.1.1. Integrals Involving Rational Functions
.1129
T2.
T2.
T2.
T2.
T2.
T2.
.2.
Integrals Involving Irrational Functions
.1134
.3.
Integrals Involving Exponential Functions
.1137
.4.
Integrals Involving Hyperbolic Functions
.1137
.5.
Integrals Involving Logarithmic Functions
.1140
.6.
Integrals Involving Trigonometric Functions
.1142
.7.
Integrals Involving Inverse Trigonometric Functions
.1147
T2.2. Tables of Definite Integrals
.1147
T2.2.1. Integrals Involving Power-Law Functions
.1147
T2.2.2. Integrals Involving Exponential Functions
.1150
T2.2.3. Integrals Involving Hyperbolic Functions
.1152
T2.2.4. Integrals Involving Logarithmic Functions
.1152
T2.2.5. Integrals Involving Trigonometric Functions
.1153
References for Chapter T2
.1155
T3. Integral Transforms
.1157
T3.1. Tables of Laplace Transforms
.1157
T3.1.1. General Formulas
.1157
T3.1.2. Expressions with Power-Law Functions
.1159
T3.1.3. Expressions with Exponential Functions
.1159
T3.1.4. Expressions with Hyperbolic Functions
.1160
T3.
1.5.
Expressions with Logarithmic Functions
.1161
T3.1.6. Expressions with Trigonometric Functions
.1161
T3.1.7. Expressions with Special Functions
.1163
T3.2. Tables of Inverse Laplace Transforms
.1164
T3.2.1. General Formulas
.1164
T3.2.2. Expressions with Rational Functions
.1166
T3.2.3. Expressions with Square Roots
.1170
T3.2.4. Expressions with Arbitrary Powers
.1172
T3.2.5. Expressions with Exponential Functions
.1172
T3.2.6. Expressions with Hyperbolic Functions
.1174
T3.2.7. Expressions with Logarithmic Functions
.1174
T3.2.8. Expressions with Trigonometric Functions
.1175
T3.2.9. Expressions with Special Functions
.1176
xx Contents
ТЗ.З.
Tables of Fourier Cosine Transforms
.1177
T3.3.1. General Formulas
.1177
T3.3.2. Expressions with Power-Law Functions
.1177
T3.3.3. Expressions with Exponential Functions
.1178
T3.3.4. Expressions with Hyperbolic Functions
.1179
T3.3.5. Expressions with Logarithmic Functions
.1179
T3.3.6. Expressions with Trigonometric Functions
.1180
T3.3.7. Expressions with Special Functions
.1181
T3.4. Tables of Fourier Sine Transforms
.1182
T3.4.1. General Formulas
.1182
T3.4.2. Expressions with Power-Law Functions
.1182
T3.4.3. Expressions with Exponential Functions
.1183
T3.4.4. Expressions with Hyperbolic Functions
.1184
T3.4.5. Expressions with Logarithmic Functions
.1184
T3.4.6. Expressions with Trigonometric Functions
.1185
T3.4.7. Expressions with Special Functions
.1186
T3.5. Tables of Mellin Transforms
.1187
ТЗ.о.і.
General Formulas
.1187
T3.5.2. Expressions with Power-Law Functions
.1188
T3.5.3. Expressions with Exponential Functions
.1188
T3.5.4. Expressions with Logarithmic Functions
.1189
T3.5.5. Expressions with Trigonometric Functions
.1189
T3.5.6. Expressions with Special Functions
.1190
T3.6. Tables of Inverse Mellin Transforms
.1190
T3.6.1. Expressions with Power-Law Functions
.1190
T3.6.2. Expressions with Exponential and Logarithmic Functions
.1191
T3.6.3. Expressions with Trigonometric Functions
.1192
T3.6.4. Expressions with Special Functions
.1193
References for Chapter T3
.1194
T4. Orthogonal Curvilinear Systems of Coordinate
.1195
T4.1. Arbitrary Curvilinear Coordinate Systems
.1195
T4.1.1. General
Nonorthogonal
Curvilinear Coordinates
.1195
T4.1.2. General Orthogonal Curvilinear Coordinates
.1196
T4.2. Special Curvilinear Coordinate Systems
.1198
T4.2.1. Cylindrical Coordinates
.1198
T4.2.2. Spherical Coordinates
.1199
T4.2.3. Coordinates of a Prolate Ellipsoid of Revolution
.1200
T4.2.4. Coordinates of an Oblate Ellipsoid of Revolution
.1201
T4.2.5. Coordinates of an Elliptic Cylinder
.1202
T4.2.6. Conical Coordinates
.1202
T4.2.7. Parabolic Cylinder Coordinates
.1203
T4.2.8. Parabolic Coordinates
.1203
T4.2.9. Bicylindrical Coordinates
.1204
T4.2.10. Bipolar Coordinates (in Space)
.1204
T4.2.1
1.
Toroidal Coordinates
.1205
References for Chapter T4
.,. 1205
Contents xxi
Т5.
Ordinary Differential Equations
.1207
T5.1. First-Order Equations
.1207
T5.2. Second-Order Linear Equations
.1212
T5.2.1. Equations Involving Power Functions
.1213
T5.2.2. Equations Involving Exponential and Other Functions
.1220
T5.2.3. Equations Involving Arbitrary Functions
.1222
T5.3. Second-Order Nonlinear Equations
.1223
ТЅ.ЗЛ.
Equations ofthe Form y%x
=
f(x,y)
.1223
T5.3.2. Equations ofthe Form f(x, y)y'x'x
=
g(x, y,y'x)
.1225
References for Chapter T5
.1228
T6. Systems of Ordinary Differential Equations
.1229
T6.
1.
Linear Systems of Two Equations
.1229
Тб.і.і.
Systems of First-Order Equations
.1229
T6.1.2. Systems of Second-Order Equations
.1232
T6.2. Linear Systems of Three and More Equations
.1237
T6.3. Nonlinear Systems of Two Equations
.1239
T6.3.1. Systems of First-Order Equations
.1239
T6.3.2. Systems of Second-Order Equations
.1240
T6.4. Nonlinear Systems of Three or More Equations
.1244
References for Chapter T6
.1246
T7. First-Order Partial Differential Equations
.1247
T7.1. Linear Equations
.1247
T7.1.1. Equations of the Form f{x,y)^
+
д(.х,у)^~
=0.1247
T7.1.2. Equations of the Form f(x,y)^
+
д(х,у)Щ;
=
h(x,y)
.1248
T7.1.3. Equations ofthe Form f(x,y)^
+
д(х,у)щ
=
h(x,y)w
+
r(x,y)
.1250
T7.2.
Quasilinear
Equations
.1252
T7.2.1. Equations of the Form f(x,y)^
+
д(х,у)*щт
-
h(x,y,w)
.1252
T7.2.2. Equations ofthe Form f^
+
f(x,y,w)^
= 0.1254
T7.2.3. Equations ofthe Form ^
+
f(x, y, w)^-
=
g(x, y,w)
.1256
T7.3. Nonlinear Equations
.1258
T7.3.1. Equations Quadratic in One Derivative
.1258
T7.3.2. Equations Quadratic in Two Derivatives
.1259
T7.3.3. Equations with Arbitrary Nonlinearities in Derivatives
.1261
References for Chapter T7
.1265
T8. Linear Equations and Problems of Mathematical Physics
.1267
T8.1. Parabolic Equations
.1267
Τδ.Ι.Ι.
Heat Equation ff
=
af^-
.1267
T8.1.2. Nonhomogeneous Heat Equation ^
=
a^f
+
Ф(х,і)
.1268
T8.1.3. Equation ofthe Form ff
=
aţ^
+
fcf^
+ cw +
Φ(χ,ί) .
1270
T8.1.4. Heat Equation with Axial Symmetry ff
=
o(^f
+ 7^7).1270
T8.1.5. Equation ofthe Form ff
=
a(f^r
+ ff^)
+Ф(г,
ť)
.1271
T8.1.6. Heat Equation with Central Symmetry ^f
=
a(|^
+
^^)
.1272
18.1.7.
Equation ofthe Form ff =a(fe +
r
If)
+ф(г>ѓ>
.
1273
T8.1.8. Equation ofthe Form ^f
=
-fgr
+
^ψ-^
.1274
xxii Contents
78.1.9.
Equations of the Diffusion (Thermal) Boundary Layer
.1276
TS.l.lO.
Schrödinger
Equation
¿ñff
=
-^^r
+
U(x)w
.1276
T8.2. Hyperbolic Equations
.1278
T8.2.1. Wave Equation ^
=
a2ţ^
.1278
T8.2.2. Equation of the Form
ţ^=a2ţ^- +
Ф(х,
t)
.1279
T8.2.3. Klein-Gordon Equation
ţg- = a2ţŞ--bw
.1280
T8.2.4. Equation of the Form
ţ^
=
a2ţ$-
-bw +
Ф(х,
t)
.1281
T8.2.5. Equation of the Form ^=
α2
(^Ѕ + 1^)+Ф(г,
í)
.1282
T8.2.6. Equation of the Form
ţţr
=
a
(íz
+
r
If)
+ф(г'*>
.
1283
T8.2.7. Equations of the Form
ţ^
+
к
ff =
a2
f^
+
òf^
+
cw
+
Φ(ζ, ί)
.1284
Τ8.3.
Elliptic Equations
.1284
T8.3.1. Laplace Equation Aw
= 0 .1284
T8.3.2.
Poisson
Equation Aw
+
Φ(χ)
= 0 .1287
T8.3.3. Helmholtz Equation Aw + \w =
-Ф(х)
.1289
T8.4. Fourth-Order Linear Equations
.1294
T8.4.1. Equation of the Form
ξ$-
+
a2ţŞ-
=0 .1294
T8.4.2. Equation of the Form
ţg-
+
a2|^r
=
Φ(χ,ί)
.1295
T8.4.3. Biharmonic Equation
ΔΔ«;
=0 .1297
T8.4.4. Nonhomogeneous Biharmonic Equation A Aw
=
Ф(х, у) .
1298
References for Chapter T8
.1299
T9. Nonlinear Mathematical Physics Equations
.1301
T9.1. Parabolic Equations
.1301
TO.
1.1.
Nonlinear Heat Equations of the Form ^
=
^f
+
f(w)
.1301
T9.1.2. Equations of the Form ^
=
£[f(w)^]
+
g(w)
.1303
T9.
1.3.
Burgers Equation and Nonlinear Heat Equation in Radial Symmetric Cases
. . 1307
T9.1.4. Nonlinear
Schrödinger
Equations
.1309
T9.2. Hyperbolic Equations
.1312
T9.2.1. Nonlinear Wave Equations of the Form
&$- =
af^
+
f(w)
.1312
T9.2.2. Other Nonlinear Wave Equations
.1316
T9.3. Elliptic Equations
.1318
T9.3.1. Nonlinear Heat Equations of the Form
ţ^-
+
ţş-
=
f
(w)
.1318
T9.3.2.
Equations of the Form
£
[f(x)fé\
+ %
[g(y)%]
=
f(w)
.1321
T9.3.3. Equations of the Form
£
[f(w)fê]
+ £
[íK«)^]
=
Kw)
.1322
T9.4. Other Second-Order Equations
. ;_.1324
T9.4.1. Equations of Transonic Gas Flow
.1324
T9.4.2.
Monge-Ampère
Equations
.1326
T9.5. Higher-Order Equations
.1327
T9.5.1. Third-Order Equations
.1327
T9.5.2. Fourth-Order Equations
.1332
References for Chapter T9
.1335
T10. Systems of Partial Differential Equations
.1337
TlO.l. Nonlinear Systems of Two First-Order Equations
._.1337
T10.2. Linear Systems of Two Second-Order Equations
.1341
Contents xxiii
Т1О.З.
Nonlinear Systems
of Two Second-Order Equations
.1343
T10.3.1. Systems of the Form ff
=
α0
+
F(u,w),
^f
=
òf^
+
G(u,w)
.1343
TIO.3.2. Systems of the Form ^
=
^k-§^{xn^)
+
F(u,w),
öt
x71 ox \ ox
/
v
* '. .
T10.3.3. Systems of the Form
Au
=
F(u, w), Aw
=
G(u, w)
.1364
Т10.3.4.
Systems of the Form
ţg-
-
рг^(жп||)
+
F(u,w),
д2и>
_±l/rnft»K
η(η.
„л
1
-ifrQ
dt2
~ xn
дх У дх
J "V"' w>
.
1J"°
Т10.3.5.
Other Systems
.1373
T10.4. Systems of General Form
.1374
T10.4.1. Linear Systems
.1374
T10.4.2. Nonlinear Systems of Two Equations Involving the First Derivatives in
t
. . 1374
T10.4.3. Nonlinear Systems of Two Equations Involving the Second Derivatives in
t
1378
T10.4.4. Nonlinear Systems of Many Equations Involving the First Derivatives in
í
. 1381
References for Chapter T10
.1382
Til. Integral Equations
.1385
Tl
1.1.
Linear Equations of the First Kind with Variable Limit of Integration
.1385
T11.2. Linear Equations of the Second Kind with Variable Limit of Integration
.1391
Tl
1.3.
Linear Equations of the First Kind with Constant Limits of Integration
.1396
T
11.4.
Linear Equations of the Second Kind with Constant Limits of Integration
.1401
References for Chapter Til
.1406
T12. Functional Equations
.1409
Tl
2.1.
Linear Functional Equations in One Independent Variable
.1409
T
12.1.1.
Linear Difference and Functional Equations Involving Unknown Function
with Two Different Arguments
.1409
T12.1.2. Other Linear Functional Equations
.1421
T12.2. Nonlinear Functional Equations in One Independent Variable
.1428
T12.2.1. Functional Equations with Quadratic Nonlinearity
.1428
T12.2.2. Functional Equations with Power Nonlinearity
.1433
T12.2.3. Nonlinear Functional Equation of General Form
.1434
T12.3. Functional Equations in Several Independent Variables
.1438
T12.3.1. Linear Functional Equations
.1438
T12.3.2. Nonlinear Functional Equations
.1443
References for Chapter Tl
2.1450
Supplement. Some Useful Electronic Mathematical Resources
.1451
Index
.1453 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Poljanin, Andrej D. 1951- Manžirov, Aleksandr V. |
author_GND | (DE-588)128391251 (DE-588)120620758 |
author_facet | Poljanin, Andrej D. 1951- Manžirov, Aleksandr V. |
author_role | aut aut |
author_sort | Poljanin, Andrej D. 1951- |
author_variant | a d p ad adp a v m av avm |
building | Verbundindex |
bvnumber | BV022388587 |
classification_rvk | SK 950 |
ctrlnum | (OCoLC)255390859 (DE-599)GBV515670944 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01345nam a2200337 c 4500</leader><controlfield tag="001">BV022388587</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20081223 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070416s2007 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1584885025</subfield><subfield code="9">1-58488-502-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781584885023</subfield><subfield code="9">978-1-58488-502-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)255390859</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBV515670944</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 950</subfield><subfield code="0">(DE-625)143273:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Poljanin, Andrej D.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128391251</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Handbook of mathematics for engineers and scientists</subfield><subfield code="c">Andrei D. Polyanin ; Alexander V. Manzhirov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, Fla. [u.a.]</subfield><subfield code="b">Chapman & Hall/CRC</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXII, 1509 S.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manžirov, Aleksandr V.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)120620758</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Bayreuth</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015597454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015597454</subfield></datafield></record></collection> |
id | DE-604.BV022388587 |
illustrated | Not Illustrated |
index_date | 2024-07-02T17:13:37Z |
indexdate | 2024-07-09T20:56:31Z |
institution | BVB |
isbn | 1584885025 9781584885023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015597454 |
oclc_num | 255390859 |
open_access_boolean | |
owner | DE-29T DE-703 |
owner_facet | DE-29T DE-703 |
physical | XXXII, 1509 S. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Chapman & Hall/CRC |
record_format | marc |
spelling | Poljanin, Andrej D. 1951- Verfasser (DE-588)128391251 aut Handbook of mathematics for engineers and scientists Andrei D. Polyanin ; Alexander V. Manzhirov Boca Raton, Fla. [u.a.] Chapman & Hall/CRC 2007 XXXII, 1509 S. txt rdacontent n rdamedia nc rdacarrier Mathematik (DE-588)4037944-9 gnd rswk-swf Mathematik (DE-588)4037944-9 s DE-604 Manžirov, Aleksandr V. Verfasser (DE-588)120620758 aut Digitalisierung UB Bayreuth application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015597454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Poljanin, Andrej D. 1951- Manžirov, Aleksandr V. Handbook of mathematics for engineers and scientists Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4037944-9 |
title | Handbook of mathematics for engineers and scientists |
title_auth | Handbook of mathematics for engineers and scientists |
title_exact_search | Handbook of mathematics for engineers and scientists |
title_exact_search_txtP | Handbook of mathematics for engineers and scientists |
title_full | Handbook of mathematics for engineers and scientists Andrei D. Polyanin ; Alexander V. Manzhirov |
title_fullStr | Handbook of mathematics for engineers and scientists Andrei D. Polyanin ; Alexander V. Manzhirov |
title_full_unstemmed | Handbook of mathematics for engineers and scientists Andrei D. Polyanin ; Alexander V. Manzhirov |
title_short | Handbook of mathematics for engineers and scientists |
title_sort | handbook of mathematics for engineers and scientists |
topic | Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015597454&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT poljaninandrejd handbookofmathematicsforengineersandscientists AT manzirovaleksandrv handbookofmathematicsforengineersandscientists |