Volcano deformation: geodetic monitoring techniques
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2007
Chichester, UK Praxis Publ. |
Schriftenreihe: | Springer praxis books in geophysical sciences
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Literaturverz. S. 401 - 428 |
Beschreibung: | XXXV, 441 S. Ill., graph. Darst., Kt. 25 cm DVD (12 cm) |
ISBN: | 3540426426 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022368050 | ||
003 | DE-604 | ||
005 | 20070502 | ||
007 | t | ||
008 | 070327s2007 gw abd| |||| 00||| eng d | ||
015 | |a 06,A45,0837 |2 dnb | ||
016 | 7 | |a 981289215 |2 DE-101 | |
020 | |a 3540426426 |c Pp. : EUR 181.85 |9 3-540-42642-6 | ||
035 | |a (OCoLC)427497418 | ||
035 | |a (DE-599)BVBBV022368050 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-824 |a DE-20 |a DE-188 |a DE-19 | ||
050 | 0 | |a QE522 | |
084 | |a RB 10274 |0 (DE-625)142220:12682 |2 rvk | ||
084 | |a 550 |2 sdnb | ||
100 | 1 | |a Dzurisin, Daniel |e Verfasser |0 (DE-588)132111837 |4 aut | |
245 | 1 | 0 | |a Volcano deformation |b geodetic monitoring techniques |c Daniel Dzurisin |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2007 | |
264 | 1 | |a Chichester, UK |b Praxis Publ. | |
300 | |a XXXV, 441 S. |b Ill., graph. Darst., Kt. |c 25 cm |e DVD (12 cm) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Springer praxis books in geophysical sciences | |
500 | |a Literaturverz. S. 401 - 428 | ||
650 | 4 | |a Geodesia - Methodology | |
650 | 4 | |a Investigacion vulcanologica | |
650 | 4 | |a Pronóstico de la actividad volcánica | |
650 | 0 | 7 | |a Vulkan |0 (DE-588)4128339-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Deformation |g Geologie |0 (DE-588)4409345-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geodäsie |0 (DE-588)4020202-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Vulkan |0 (DE-588)4128339-9 |D s |
689 | 0 | 1 | |a Deformation |g Geologie |0 (DE-588)4409345-7 |D s |
689 | 0 | 2 | |a Geodäsie |0 (DE-588)4020202-1 |D s |
689 | 0 | |5 DE-604 | |
856 | 4 | 2 | |m HBZ Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015577279&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-015577279 |
Datensatz im Suchindex
_version_ | 1804136419542695936 |
---|---|
adam_text | List of contributors xi
Foreword xiii
Preface xv
Acknowledgements xix
DVD contents xx
List of figures xxi
List of tables xxvii
List of symbols xxix
List of abbreviations and acronyms xxxi
1 The modern volcanologist s tool kit 1
1.1 Volcanoes in motion when deformation
gets extreme 2
1.1.1 The ups and downs of a Roman market
Phlegraean Fields Caldera, Italy 2
1.1.2 Remarkable uplifts in the Galapagos
Islands Fernandina and Alcedo Volcanoes 3
1.1.3 Rabaul Caldera, Papua New Guinea, 1994 3
1.1.4 The bulge at Mount St. Helens, 1980 4
1.2 Volcanology in the information age 5
1.2.1 Volcano hazards mitigation a complicated
business 5
1.2.2 Lessons from Armero, Colombia 6
1.2.3 Communication a key to effective hazards
mitigation 8
1.3 A brief survey of volcano monitoring
techniques 10
1.3.1 Seismology cornerstone of volcano
monitoring 10
1.3.2 Volcano geochemistry 13
1.3.3 Volcano geophysics 17
1.3.4 Hydrologic responses to stress and strain 19
1.3.5 Remote sensing techniques 20
1.3.6 Volcano hazards and risk assessment
techniques 21
1.3.7 A mobile volcano monitoring system 22
Contents
1.4 An introduction to geodetic sensors and
techniques 22
1.4.1 The emergence of volcano geodesy 22
1.4.2 Continuous sensors and repeat surveys 25
1.4.3 Tiltmeters, strainmeters, and continuous
GPS 26
1.4.4 Repeated surveys leveling, EDM, and
GPS 28
1.4.5 Photography, photogrammetry, and
water level gauging 30
2 Classical surveying techniques 33
2.1 Early geodetic surveys 33
2.2 Reference systems and datums 34
2.3 Geodetic networks 37
2.4 Trilateration and triangulation 39
2.4.1 EDM and theodolite surveys, with
examples from Mount St. Helens and
Long Valley Caldera 40
2.4.2 Triangulation and total station surveys 50
2.5 Leveling and tilt leveling surveys 51
2.5.1 Field procedures and accuracy 53
2.5.2 Single setup leveling 61
2.5.3 Geodetic leveling 64
2.5.4 Tilt leveling results at South Sister
Volcano. Oregon 65
2.5.5 Repeated leveling surveys at Medicine
Lake Volcano, California 65
2.6 Photogrammetry 69
2.6.1 Mapping the 1980 north flank bulge at
Mount St. Helens 69
2.6.2 Oblique angle and fixed camera
photogrammetry 71
2.7 Microgravity surveys 72
2.7.1 Physical principles 72
2.7.2 Results from KTtauea Volcano, Hawai i 74
2.7.3 Results from Miyakejima Volcano, Japan 78
2.8 Magnetic field measurements 79
2.8.1 Physical mechanisms 79
2.8.2 Changes associated with eruptions at
Mount St. Helens 79
2.8.3 Results from Long Valley Caldera 80
viii Contents
3 Continuous monitoring with in situ
sensors 81
3.1 Seismometers 81
3.1.1 A brief history of seismology 82
3.1.2 An introduction to seismic waves and
earthquake types 83
3.1.3 Basic principles of seismometers 85
3.1.4 Current research topics in volcano
seismology 86
3.2 Tiltmeters 89
3.2.1 Short base bubble tiltmeters 89
3.2.2 The Ideal Aerosmith mercury capacitance
tiltmeter 91
3.2.3 Long base fluid tiltmeters 91
3.3 Strainmeters 95
3.3.1 Linear strainmeters (extensometers) 96
3.3.2 The Sacks Evertson volumetric
strainmeter 98
3.3.3 The Gladwin tensor strainmeter 99
3.4 Continuous GPS 100
3.5 Some cautions about
near surface deformation sensors 101
3.6 Continuous gravimeters 102
3.6.1 Absolute gravimeters 103
3.6.2 Relative gravimeters the magic of
zero length springs and superconductivity 103
3.6.3 Gravity results from selected volcanoes 105
3.7 Differential lake gauging 107
3.7.1 Monitoring active deformation at Lake
Taupo, New Zealand 107
3.7.2 Lake terraces as paleo tiltmeters 107
3.8 Concluding remarks 109
4 The Global Positioning System:
A multipurpose tool 111
4.1 Global positioning principles 112
4.1.1 Reference surfaces and coordinate
systems: the geoid and ellipsoid 112
4.1.2 Point positioning and relative positioning 113
4.2 An overview of GPS, GLONASS, and
Galileo 114
4.2.1 Who controls GPS? 114
4.2.2 NAVSTAR satellite constellation 115
4.2.3 GLONASS satellite constellation 115
4.2.4 Galileo Global Navigation Satellite System 117
4.3 GPS signal structure: what do the
satellites broadcast? 117
4.3.1 LI and L2 carrier signals, CIA code,
P code, and Y code 118
4.3.2 Selective availability and anti spoofing 120
4.3.3 Navigation message 121
4.4 Observables: what do GPS receivers
measure? 121
4.4.1 Code pseudoranges 122
4.4.2 Carrier phase and carrier beat phase 124
4.5 Data combinations and differences 125
4.5.1 Wide lane and narrow lane combinations 125
4.5.2 The L3 combination 126
4.5.3 Single differences 126
4.5.4 Double differences 127
4.5.5 Triple differences 129
4.6 Doing the math: turning data into
positions 131
4.6.1 Point positioning with code pseudoranges 131
4.6.2 Point positioning with carrier beat phases 132
4.6.3 Static relative positioning 133
4.6.4 Kinematic relative positioning 133
4.6.5 Ambiguity resolution 134
4.7 Relative positioning techniques 135
4.7.1 Static GPS 135
4.7.2 Stop and go kinematic GPS 137
4.7.3 Kinematic GPS 138
4.7.4 Pseudokinematic GPS 138
4.7.5 Rapid static GPS 138
4.7.6 Real time kinematic OTF GPS 138
4.7.7 Which type of GPS receiver and field
procedures are right for the job? 139
4.8 CGPS networks 141
4.8.1 GEONET The national GPS network
of Japan 141
4.8.2 The US Continuously Operating Reference
Station (CORS) network 142
4.8.3 SCIGN The Southern California
Integrated GPS Network 142
4.8.4 PANG A The Pacific Northwest
Geodetic Array 142
4.8.5 The discovery of slow earthquakes in the
Pacific Northwest 143
4.8.6 Tracking deformation events at KTlauea
Volcano, Hawai i, with CGPS 143
4.8.7 Continuous, real time GPS network at the
Long Valley Caldera 145
4.9 Data processing 148
4.9.1 GPS software packages 148
4.9.2 Precise point positioning 148
4.10 Looking to the future 149
4.10.1 Lightweight, low power GPS receivers 149
4.10.2 Automated GPS data processing 150
4.10.3 EarthScope and the PBO 151
5 Interferometric synthetic aperture radar
(InSAR) 153
5.1 Radar principles and techniques 154
5.1.1 Real aperture imaging radar systems 157
5.1.2 Ground resolution of real aperture imaging
radars 160
5.1.3 Synthetic aperture radar 162
5.1.4 Characteristics of SAR images 166
5.2 Principles of SAR interferometry 168
5.2.1 Co registration of overlapping radar
images 169
5.2.2 Creating the interferogram 170
5.2.3 Removing the effects of viewing geometry
and topography 171
5.2.4 Two pass, three pass, and four pass
interferometry 173
5.2.5 DEMs derived from InSAR 175
5.2.6 Lidar, InSAR, and photogrammetry a
potent remote sensing triad 176
5.2.7 Range change resolution of InSAR 177
5.2.8 Coping with decorrelation and
atmospheric delay anomalies 178
5.2.9 Volcano InSAR studies: a growing list of
success stories 181
5.3 Examples of interferometric SAR applied
to volcanoes 182
5.3.1 Mount Etna 182
5.3.2 Long Valley Caldera, California 183
5.3.3 Yellowstone Caldera, Wyoming 184
5.3.4 Akutan Volcano, Alaska 188
5.3.5 Westdahl Volcano, Alaska 191
5.3.6 Three Sisters volcanic center, Oregon 192
5.3.7 The future of volcano InSAR 193
6 Photogrammetry 195
6.1 Introduction 195
6.2 Historical perspective 195
6.3 Photogrammetry fundamentals 196
6.3.1 Introduction 196
6.3.2 Aerial cameras 197
6.3.3 Format, focal length, and field of view 198
6.3.4 Photo collection and scale 198
6.3.5 Relief displacement 199
6.3.6 Orientation 201
6.3.7 Photogrammetric accuracy 204
6.4 Instrumentation and data types 205
6.4.1 Analog stereoplotters 205
6.4.2 Analytical stereoplotters 207
6.4.3 Soflcopy stereoplotters 208
6.4.4 Display systems 208
6.4.5 Computer assisted orientation 209
6.4.6 Digital elevation models 209
6.4.7 Orthophotos 210
6.4.8 Satellite imagery 210
6.5 Aerotriangulation 211
6.6 Terrestrial photogrammetry 212
6.7 Application to Mount St. Helens 214
7 Lessons from deforming volcanoes 223
7.1 Mount St. Helens edifice instability and
dome growth 223
7.1.1 Precursory activity: the north flank
bulge 224
7.1.2 Monitoring and predicting the growth of
a lava dome 232
7.2 KTlauea volcano, Hawai i flank
instability and gigantic landslides 235
7.2.1 The volcano s mobile south flank:
historical activity 235
7.2.2 Colossal prehistoric landslides and sea
waves 245
Contents ix
7.3 Yellowstone the ups and downs of a
restless caldera 248
7.3.1 Tectonic setting and eruptive history 248
7.3.2 Results of repeated leveling surveys 250
7.3.3 What happened between leveling surveys? 253
7.3.4 Causes of uplift and subsidence 255
7.3.5 Spatiotemporal changes in deformation
revealed by InSAR 259
7.4 Long Valley Caldera and the Mono Inyo
volcanic chain: two decades of unrest
(and still counting?) 259
7.4.1 Eruptive history and recent unrest 259
7.4.2 Leveling results: tracking caldera inflation
in space and time 265
7.4.3 Regional and intracaldera trilateration
surveys 267
7.4.4 Repeated and continuous GPS
measurements 273
7.4.5 Temporal gravity changes 274
1.4.6 Borehole strainmeter and long base
tiltmeter results: implications of triggered
seismicity 275
7.4.7 Water level changes induced by distant
earthquakes: evidence for stimulated
upward movement of magma or
hydrothermal fluid 277
7.4.8 Long Valley summary 278
8 Analytical volcano deformation source
models 279
8.1 Introduction 279
8.2 The elastic half space: a first
approximation of the Earth 280
8.2.1 Properties of an isotropic linearly elastic
solid 280
8.2.2 Elastic constants 280
8.3 Notation 281
8.3.1 Coordinate system and displacements 281
8.3.2 Stress and strain 281
8.3.3 Tilt 282
8.4 Surface loads 282
8.4.1 Deformation from point, uniform disk,
and uniform rectangular surface loads 282
8.5 Point forces, pipes, and spheroidal
pressure sources 285
8.5.1 Spheroidal cavities and pipes: model
elements for inflating and deflating
magma chambers and vertical conduits 286
8.5.2 Point pressure source 288
8.5.3 Finite spherical pressure source 290
8.5.4 Closed pipe: a model for a plugged
conduit or a cigar shaped magma
chamber 292
8.5.5 Closed pipe tilt and strain components 293
8.5.6 Open pipe: a composite model for the
filling of an open conduit 294
8.5.7 Sill like magma chambers 296
x Contents
8.6 Dipping point and finite rectangular
tension cracks 297
8.7 Gravity change 300
8.8 Relationship between subsurface and
surface volume changes 300
8.9 Topographic corrections to modeled
deformation 301
8.9.1 Reference elevation model 302
8.9.2 Varying depth model 302
8.9.3 Topographically corrected model 303
8.10 Inversion of source parameters from
deformation data 303
8.10.1 Non linear inversion and model parameter
error estimates 303
8.10.2 Choosing the best source model 304
9 Borehole observations of continuous
strain and fluid pressure 305
9.1 Borehole strainmeter design and
capabilities 305
9.2 Ground water level as a volumetric strain
indicator 308
9.2.1 Water levels and crustal strain 309
9.2.2 Effects of groundwater flow 310
9.2.3 Thermal pressurization 312
9.2.4 Data collection requirements 312
9.3 Processing and analyzing continuous
strain and water level data 312
9.4 Volumetric strain fields of idealized
volcanic sources 314
9.4.1 Center of dilatation 314
9.4.2 Vertical conduit models 315
9.4.3 Dike intrusion 316
9.5 Examples 316
9.5.1 Izu Peninsula, Japan 317
9.5.2 Long Valley Caldera, California:
stimulation by distant earthquakes 317
9.5.3 Eruptions of Hekla, Iceland, in 1991
and 2000 318
9.5.4 Eruption of Usu Volcano, Japan, March
2000 320
9.5.5 Spreading of the western Pacific sea floor
on the Juan de Fuca Ridge 321
9.6 Summary 322
10 Hydrothermal systems and volcano
geochemistry 323
10.1 The hydrologic importance of
brittle plastic phenomena 323
10.2 The brittle plastic transition 324
10.2.1 General considerations 324
10.2.2 Brittle plastic transition in an active
volcanic environment 325
10.2.3 Brittle behavior of normally plastic rock
at high strain rates 326
10.3 Development of plastic rock around
shallow intrusive bodies 327
10.4 Storage of hydro thermal fluid in and
movement through plastic rock 327
10.4.1 Accumulation in horizontal lenses in
plastic rock when and where r3 = Sv 327
10.4.2 Significance of accumulation of fluid in
plastic rock at near lithostatic Pf 329
10.4.3 Rapid upward movement of fluid through
plastic rock when a^ Sv 329
10.5 Self sealing at the brittle plastic interface 330
10.6 Mechanisms for breaching the self sealed
zone and discharge of 400°C fluid into
cooler rock 331
10.7 Chemical characteristics of fluids in a
sub volcanic environment 332
10.7.1 Salinity variations and phase relations of
aqueous fluids at 400°C 332
10.7.2 Generation and behavior of HCl at high
temperature and low Pf 335
10.7.3 Behavior of H2S and SO2 in sub volcanic
hydrothermal systems 335
10.7.4 Decompression of the steam phase 335
10.8 A general model of hydrothermal
activity in a sub volcanic environment 337
10.9 Uplift and subsidence of large silicic
calderas 339
10.10 Conclusions 341
11 Challenges and opportunities for the
21st century 343
11.1 The intrusion process: a complicated
business 343
11.2 Strengths and weaknesses of geodetic
monitoring 344
11.3 Why is volcano deformation such an
elusive target? 345
11.3.1 This should be easy! 345
11.3.2 Lessons from Mount St. Helens I: 1980 346
11.3.3 Lessons from Yellowstone 349
11.3.4 Lessons from Mount St. Helens II:
2004 2006 (continuing education) 350
11.4 Capturing volcano deformation in space
and time 356
11.4.1 Real time, global surveillance: an
achievable goal 357
11.4.2 On the fly volcano modeling 359
11.4.3 Implications for eruption forecasting
and hazards mitigation 360
11.5 Pie in the sky volcanology 361
11.6 A bright and challenging future 362
Glossary 363
References 401
Index 429
DVD with figures and supplementary material
|
adam_txt |
List of contributors xi
Foreword xiii
Preface xv
Acknowledgements xix
DVD contents xx
List of figures xxi
List of tables xxvii
List of symbols xxix
List of abbreviations and acronyms xxxi
1 The modern volcanologist's tool kit 1
1.1 Volcanoes in motion when deformation
gets extreme 2
1.1.1 The ups and downs of a Roman market
Phlegraean Fields Caldera, Italy 2
1.1.2 Remarkable uplifts in the Galapagos
Islands Fernandina and Alcedo Volcanoes 3
1.1.3 Rabaul Caldera, Papua New Guinea, 1994 3
1.1.4 The bulge at Mount St. Helens, 1980 4
1.2 Volcanology in the information age 5
1.2.1 Volcano hazards mitigation a complicated
business 5
1.2.2 Lessons from Armero, Colombia 6
1.2.3 Communication a key to effective hazards
mitigation 8
1.3 A brief survey of volcano monitoring
techniques 10
1.3.1 Seismology cornerstone of volcano
monitoring 10
1.3.2 Volcano geochemistry 13
1.3.3 Volcano geophysics 17
1.3.4 Hydrologic responses to stress and strain 19
1.3.5 Remote sensing techniques 20
1.3.6 Volcano hazards and risk assessment
techniques 21
1.3.7 A mobile volcano monitoring system 22
Contents
1.4 An introduction to geodetic sensors and
techniques 22
1.4.1 The emergence of volcano geodesy 22
1.4.2 Continuous sensors and repeat surveys 25
1.4.3 Tiltmeters, strainmeters, and continuous
GPS 26
1.4.4 Repeated surveys leveling, EDM, and
GPS 28
1.4.5 Photography, photogrammetry, and
water level gauging 30
2 Classical surveying techniques 33
2.1 Early geodetic surveys 33
2.2 Reference systems and datums 34
2.3 Geodetic networks 37
2.4 Trilateration and triangulation 39
2.4.1 EDM and theodolite surveys, with
examples from Mount St. Helens and
Long Valley Caldera 40
2.4.2 Triangulation and total station surveys 50
2.5 Leveling and tilt leveling surveys 51
2.5.1 Field procedures and accuracy 53
2.5.2 Single setup leveling 61
2.5.3 Geodetic leveling 64
2.5.4 Tilt leveling results at South Sister
Volcano. Oregon 65
2.5.5 Repeated leveling surveys at Medicine
Lake Volcano, California 65
2.6 Photogrammetry 69
2.6.1 Mapping the 1980 north flank 'bulge' at
Mount St. Helens 69
2.6.2 Oblique angle and fixed camera
photogrammetry 71
2.7 Microgravity surveys 72
2.7.1 Physical principles 72
2.7.2 Results from KTtauea Volcano, Hawai'i 74
2.7.3 Results from Miyakejima Volcano, Japan 78
2.8 Magnetic field measurements 79
2.8.1 Physical mechanisms 79
2.8.2 Changes associated with eruptions at
Mount St. Helens 79
2.8.3 Results from Long Valley Caldera 80
viii Contents
3 Continuous monitoring with in situ
sensors 81
3.1 Seismometers 81
3.1.1 A brief history of seismology 82
3.1.2 An introduction to seismic waves and
earthquake types 83
3.1.3 Basic principles of seismometers 85
3.1.4 Current research topics in volcano
seismology 86
3.2 Tiltmeters 89
3.2.1 Short base bubble tiltmeters 89
3.2.2 The Ideal Aerosmith mercury capacitance
tiltmeter 91
3.2.3 Long base fluid tiltmeters 91
3.3 Strainmeters 95
3.3.1 Linear strainmeters (extensometers) 96
3.3.2 The Sacks Evertson volumetric
strainmeter 98
3.3.3 The Gladwin tensor strainmeter 99
3.4 Continuous GPS 100
3.5 Some cautions about
near surface deformation sensors 101
3.6 Continuous gravimeters 102
3.6.1 Absolute gravimeters 103
3.6.2 Relative gravimeters the magic of
zero length springs and superconductivity 103
3.6.3 Gravity results from selected volcanoes 105
3.7 Differential lake gauging 107
3.7.1 Monitoring active deformation at Lake
Taupo, New Zealand 107
3.7.2 Lake terraces as paleo tiltmeters 107
3.8 Concluding remarks 109
4 The Global Positioning System:
A multipurpose tool 111
4.1 Global positioning principles 112
4.1.1 Reference surfaces and coordinate
systems: the geoid and ellipsoid 112
4.1.2 Point positioning and relative positioning 113
4.2 An overview of GPS, GLONASS, and
Galileo 114
4.2.1 Who controls GPS? 114
4.2.2 NAVSTAR satellite constellation 115
4.2.3 GLONASS satellite constellation 115
4.2.4 Galileo Global Navigation Satellite System 117
4.3 GPS signal structure: what do the
satellites broadcast? 117
4.3.1 LI and L2 carrier signals, CIA code,
P code, and Y code 118
4.3.2 Selective availability and anti spoofing 120
4.3.3 Navigation message 121
4.4 Observables: what do GPS receivers
measure? 121
4.4.1 Code pseudoranges 122
4.4.2 Carrier phase and carrier beat phase 124
4.5 Data combinations and differences 125
4.5.1 Wide lane and narrow lane combinations 125
4.5.2 The L3 combination 126
4.5.3 Single differences 126
4.5.4 Double differences 127
4.5.5 Triple differences 129
4.6 Doing the math: turning data into
positions 131
4.6.1 Point positioning with code pseudoranges 131
4.6.2 Point positioning with carrier beat phases 132
4.6.3 Static relative positioning 133
4.6.4 Kinematic relative positioning 133
4.6.5 Ambiguity resolution 134
4.7 Relative positioning techniques 135
4.7.1 Static GPS 135
4.7.2 Stop and go kinematic GPS 137
4.7.3 Kinematic GPS 138
4.7.4 Pseudokinematic GPS 138
4.7.5 Rapid static GPS 138
4.7.6 Real time kinematic OTF GPS 138
4.7.7 Which type of GPS receiver and field
procedures are right for the job? 139
4.8 CGPS networks 141
4.8.1 GEONET The national GPS network
of Japan 141
4.8.2 The US Continuously Operating Reference
Station (CORS) network 142
4.8.3 SCIGN The Southern California
Integrated GPS Network 142
4.8.4 PANG A The Pacific Northwest
Geodetic Array 142
4.8.5 The discovery of slow earthquakes in the
Pacific Northwest 143
4.8.6 Tracking deformation events at KTlauea
Volcano, Hawai'i, with CGPS 143
4.8.7 Continuous, real time GPS network at the
Long Valley Caldera 145
4.9 Data processing 148
4.9.1 GPS software packages 148
4.9.2 Precise point positioning 148
4.10 Looking to the future 149
4.10.1 Lightweight, low power GPS receivers 149
4.10.2 Automated GPS data processing 150
4.10.3 EarthScope and the PBO 151
5 Interferometric synthetic aperture radar
(InSAR) 153
5.1 Radar principles and techniques 154
5.1.1 Real aperture imaging radar systems 157
5.1.2 Ground resolution of real aperture imaging
radars 160
5.1.3 Synthetic aperture radar 162
5.1.4 Characteristics of SAR images 166
5.2 Principles of SAR interferometry 168
5.2.1 Co registration of overlapping radar
images 169
5.2.2 Creating the interferogram 170
5.2.3 Removing the effects of viewing geometry
and topography 171
5.2.4 Two pass, three pass, and four pass
interferometry 173
5.2.5 DEMs derived from InSAR 175
5.2.6 Lidar, InSAR, and photogrammetry a
potent remote sensing triad 176
5.2.7 Range change resolution of InSAR 177
5.2.8 Coping with decorrelation and
atmospheric delay anomalies 178
5.2.9 Volcano InSAR studies: a growing list of
success stories 181
5.3 Examples of interferometric SAR applied
to volcanoes 182
5.3.1 Mount Etna 182
5.3.2 Long Valley Caldera, California 183
5.3.3 Yellowstone Caldera, Wyoming 184
5.3.4 Akutan Volcano, Alaska 188
5.3.5 Westdahl Volcano, Alaska 191
5.3.6 Three Sisters volcanic center, Oregon 192
5.3.7 The future of volcano InSAR 193
6 Photogrammetry 195
6.1 Introduction 195
6.2 Historical perspective 195
6.3 Photogrammetry fundamentals 196
6.3.1 Introduction 196
6.3.2 Aerial cameras 197
6.3.3 Format, focal length, and field of view 198
6.3.4 Photo collection and scale 198
6.3.5 Relief displacement 199
6.3.6 Orientation 201
6.3.7 Photogrammetric accuracy 204
6.4 Instrumentation and data types 205
6.4.1 Analog stereoplotters 205
6.4.2 Analytical stereoplotters 207
6.4.3 Soflcopy stereoplotters 208
6.4.4 Display systems 208
6.4.5 Computer assisted orientation 209
6.4.6 Digital elevation models 209
6.4.7 Orthophotos 210
6.4.8 Satellite imagery 210
6.5 Aerotriangulation 211
6.6 Terrestrial photogrammetry 212
6.7 Application to Mount St. Helens 214
7 Lessons from deforming volcanoes 223
7.1 Mount St. Helens edifice instability and
dome growth 223
7.1.1 Precursory activity: the north flank
'bulge' 224
7.1.2 Monitoring and predicting the growth of
a lava dome 232
7.2 KTlauea volcano, Hawai'i flank
instability and gigantic landslides 235
7.2.1 The volcano's mobile south flank:
historical activity 235
7.2.2 Colossal prehistoric landslides and sea
waves 245
Contents ix
7.3 Yellowstone the ups and downs of a
restless caldera 248
7.3.1 Tectonic setting and eruptive history 248
7.3.2 Results of repeated leveling surveys 250
7.3.3 What happened between leveling surveys? 253
7.3.4 Causes of uplift and subsidence 255
7.3.5 Spatiotemporal changes in deformation
revealed by InSAR 259
7.4 Long Valley Caldera and the Mono Inyo
volcanic chain: two decades of unrest
(and still counting?) 259
7.4.1 Eruptive history and recent unrest 259
7.4.2 Leveling results: tracking caldera inflation
in space and time 265
7.4.3 Regional and intracaldera trilateration
surveys 267
7.4.4 Repeated and continuous GPS
measurements 273
7.4.5 Temporal gravity changes 274
1.4.6 Borehole strainmeter and long base
tiltmeter results: implications of triggered
seismicity 275
7.4.7 Water level changes induced by distant
earthquakes: evidence for stimulated
upward movement of magma or
hydrothermal fluid 277
7.4.8 Long Valley summary 278
8 Analytical volcano deformation source
models 279
8.1 Introduction 279
8.2 The elastic half space: a first
approximation of the Earth 280
8.2.1 Properties of an isotropic linearly elastic
solid 280
8.2.2 Elastic constants 280
8.3 Notation 281
8.3.1 Coordinate system and displacements 281
8.3.2 Stress and strain 281
8.3.3 Tilt 282
8.4 Surface loads 282
8.4.1 Deformation from point, uniform disk,
and uniform rectangular surface loads 282
8.5 Point forces, pipes, and spheroidal
pressure sources 285
8.5.1 Spheroidal cavities and pipes: model
elements for inflating and deflating
magma chambers and vertical conduits 286
8.5.2 Point pressure source 288
8.5.3 Finite spherical pressure source 290
8.5.4 Closed pipe: a model for a plugged
conduit or a cigar shaped magma
chamber 292
8.5.5 Closed pipe tilt and strain components 293
8.5.6 Open pipe: a composite model for the
filling of an open conduit 294
8.5.7 Sill like magma chambers 296
x Contents
8.6 Dipping point and finite rectangular
tension cracks 297
8.7 Gravity change 300
8.8 Relationship between subsurface and
surface volume changes 300
8.9 Topographic corrections to modeled
deformation 301
8.9.1 Reference elevation model 302
8.9.2 Varying depth model 302
8.9.3 Topographically corrected model 303
8.10 Inversion of source parameters from
deformation data 303
8.10.1 Non linear inversion and model parameter
error estimates 303
8.10.2 Choosing the best source model 304
9 Borehole observations of continuous
strain and fluid pressure 305
9.1 Borehole strainmeter design and
capabilities 305
9.2 Ground water level as a volumetric strain
indicator 308
9.2.1 Water levels and crustal strain 309
9.2.2 Effects of groundwater flow 310
9.2.3 Thermal pressurization 312
9.2.4 Data collection requirements 312
9.3 Processing and analyzing continuous
strain and water level data 312
9.4 Volumetric strain fields of idealized
volcanic sources 314
9.4.1 Center of dilatation 314
9.4.2 Vertical conduit models 315
9.4.3 Dike intrusion 316
9.5 Examples 316
9.5.1 Izu Peninsula, Japan 317
9.5.2 Long Valley Caldera, California:
stimulation by distant earthquakes 317
9.5.3 Eruptions of Hekla, Iceland, in 1991
and 2000 318
9.5.4 Eruption of Usu Volcano, Japan, March
2000 320
9.5.5 Spreading of the western Pacific sea floor
on the Juan de Fuca Ridge 321
9.6 Summary 322
10 Hydrothermal systems and volcano
geochemistry 323
10.1 The hydrologic importance of
brittle plastic phenomena 323
10.2 The brittle plastic transition 324
10.2.1 General considerations 324
10.2.2 Brittle plastic transition in an active
volcanic environment 325
10.2.3 Brittle behavior of normally plastic rock
at high strain rates 326
10.3 Development of plastic rock around
shallow intrusive bodies 327
10.4 Storage of hydro thermal fluid in and
movement through plastic rock 327
10.4.1 Accumulation in horizontal lenses in
plastic rock when and where r3 = Sv 327
10.4.2 Significance of accumulation of fluid in
plastic rock at near lithostatic Pf 329
10.4.3 Rapid upward movement of fluid through
plastic rock when a^ Sv 329
10.5 Self sealing at the brittle plastic interface 330
10.6 Mechanisms for breaching the self sealed
zone and discharge of 400°C fluid into
cooler rock 331
10.7 Chemical characteristics of fluids in a
sub volcanic environment 332
10.7.1 Salinity variations and phase relations of
aqueous fluids at 400°C 332
10.7.2 Generation and behavior of HCl at high
temperature and low Pf 335
10.7.3 Behavior of H2S and SO2 in sub volcanic
hydrothermal systems 335
10.7.4 Decompression of the 'steam' phase 335
10.8 A general model of hydrothermal
activity in a sub volcanic environment 337
10.9 Uplift and subsidence of large silicic
calderas 339
10.10 Conclusions 341
11 Challenges and opportunities for the
21st century 343
11.1 The intrusion process: a complicated
business 343
11.2 Strengths and weaknesses of geodetic
monitoring 344
11.3 Why is volcano deformation such an
elusive target? 345
11.3.1 This should be easy! 345
11.3.2 Lessons from Mount St. Helens I: 1980 346
11.3.3 Lessons from Yellowstone 349
11.3.4 Lessons from Mount St. Helens II:
2004 2006 (continuing education) 350
11.4 Capturing volcano deformation in space
and time 356
11.4.1 Real time, global surveillance: an
achievable goal 357
11.4.2 On the fly volcano modeling 359
11.4.3 Implications for eruption forecasting
and hazards mitigation 360
11.5 Pie in the sky volcanology 361
11.6 A bright and challenging future 362
Glossary 363
References 401
Index 429
DVD with figures and supplementary material |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Dzurisin, Daniel |
author_GND | (DE-588)132111837 |
author_facet | Dzurisin, Daniel |
author_role | aut |
author_sort | Dzurisin, Daniel |
author_variant | d d dd |
building | Verbundindex |
bvnumber | BV022368050 |
callnumber-first | Q - Science |
callnumber-label | QE522 |
callnumber-raw | QE522 |
callnumber-search | QE522 |
callnumber-sort | QE 3522 |
callnumber-subject | QE - Geology |
classification_rvk | RB 10274 |
ctrlnum | (OCoLC)427497418 (DE-599)BVBBV022368050 |
discipline | Geologie / Paläontologie Geographie |
discipline_str_mv | Geologie / Paläontologie Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01908nam a2200493 c 4500</leader><controlfield tag="001">BV022368050</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070502 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070327s2007 gw abd| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">06,A45,0837</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">981289215</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540426426</subfield><subfield code="c">Pp. : EUR 181.85</subfield><subfield code="9">3-540-42642-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)427497418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022368050</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QE522</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">RB 10274</subfield><subfield code="0">(DE-625)142220:12682</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">550</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dzurisin, Daniel</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)132111837</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Volcano deformation</subfield><subfield code="b">geodetic monitoring techniques</subfield><subfield code="c">Daniel Dzurisin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Chichester, UK</subfield><subfield code="b">Praxis Publ.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XXXV, 441 S.</subfield><subfield code="b">Ill., graph. Darst., Kt.</subfield><subfield code="c">25 cm</subfield><subfield code="e">DVD (12 cm)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer praxis books in geophysical sciences</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Literaturverz. S. 401 - 428</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geodesia - Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Investigacion vulcanologica</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pronóstico de la actividad volcánica</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Vulkan</subfield><subfield code="0">(DE-588)4128339-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deformation</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4409345-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geodäsie</subfield><subfield code="0">(DE-588)4020202-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Vulkan</subfield><subfield code="0">(DE-588)4128339-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Deformation</subfield><subfield code="g">Geologie</subfield><subfield code="0">(DE-588)4409345-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Geodäsie</subfield><subfield code="0">(DE-588)4020202-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HBZ Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015577279&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015577279</subfield></datafield></record></collection> |
id | DE-604.BV022368050 |
illustrated | Illustrated |
index_date | 2024-07-02T17:05:56Z |
indexdate | 2024-07-09T20:56:06Z |
institution | BVB |
isbn | 3540426426 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015577279 |
oclc_num | 427497418 |
open_access_boolean | |
owner | DE-824 DE-20 DE-188 DE-19 DE-BY-UBM |
owner_facet | DE-824 DE-20 DE-188 DE-19 DE-BY-UBM |
physical | XXXV, 441 S. Ill., graph. Darst., Kt. 25 cm DVD (12 cm) |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer Praxis Publ. |
record_format | marc |
series2 | Springer praxis books in geophysical sciences |
spelling | Dzurisin, Daniel Verfasser (DE-588)132111837 aut Volcano deformation geodetic monitoring techniques Daniel Dzurisin Berlin [u.a.] Springer 2007 Chichester, UK Praxis Publ. XXXV, 441 S. Ill., graph. Darst., Kt. 25 cm DVD (12 cm) txt rdacontent n rdamedia nc rdacarrier Springer praxis books in geophysical sciences Literaturverz. S. 401 - 428 Geodesia - Methodology Investigacion vulcanologica Pronóstico de la actividad volcánica Vulkan (DE-588)4128339-9 gnd rswk-swf Deformation Geologie (DE-588)4409345-7 gnd rswk-swf Geodäsie (DE-588)4020202-1 gnd rswk-swf Vulkan (DE-588)4128339-9 s Deformation Geologie (DE-588)4409345-7 s Geodäsie (DE-588)4020202-1 s DE-604 HBZ Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015577279&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dzurisin, Daniel Volcano deformation geodetic monitoring techniques Geodesia - Methodology Investigacion vulcanologica Pronóstico de la actividad volcánica Vulkan (DE-588)4128339-9 gnd Deformation Geologie (DE-588)4409345-7 gnd Geodäsie (DE-588)4020202-1 gnd |
subject_GND | (DE-588)4128339-9 (DE-588)4409345-7 (DE-588)4020202-1 |
title | Volcano deformation geodetic monitoring techniques |
title_auth | Volcano deformation geodetic monitoring techniques |
title_exact_search | Volcano deformation geodetic monitoring techniques |
title_exact_search_txtP | Volcano deformation geodetic monitoring techniques |
title_full | Volcano deformation geodetic monitoring techniques Daniel Dzurisin |
title_fullStr | Volcano deformation geodetic monitoring techniques Daniel Dzurisin |
title_full_unstemmed | Volcano deformation geodetic monitoring techniques Daniel Dzurisin |
title_short | Volcano deformation |
title_sort | volcano deformation geodetic monitoring techniques |
title_sub | geodetic monitoring techniques |
topic | Geodesia - Methodology Investigacion vulcanologica Pronóstico de la actividad volcánica Vulkan (DE-588)4128339-9 gnd Deformation Geologie (DE-588)4409345-7 gnd Geodäsie (DE-588)4020202-1 gnd |
topic_facet | Geodesia - Methodology Investigacion vulcanologica Pronóstico de la actividad volcánica Vulkan Deformation Geologie Geodäsie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015577279&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dzurisindaniel volcanodeformationgeodeticmonitoringtechniques |