Einstein's general theory of relativity: with modern applications in cosmology
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer
2007
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | XX, 538 S. Ill., graph. Darst. |
ISBN: | 9780387691992 0387691995 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV022311734 | ||
003 | DE-604 | ||
005 | 20100826 | ||
007 | t | ||
008 | 070314s2007 ad|| |||| 00||| eng d | ||
015 | |a 07,N02,0662 |2 dnb | ||
016 | 7 | |a 982258178 |2 DE-101 | |
020 | |a 9780387691992 |9 978-0-387-69199-2 | ||
020 | |a 0387691995 |9 0-387-69199-5 | ||
024 | 3 | |a 978-0-387-69199-2 | |
028 | 5 | 2 | |a 11893394 |
035 | |a (OCoLC)77540741 | ||
035 | |a (DE-599)BVBBV022311734 | ||
040 | |a DE-604 |b ger |e rakddb | ||
041 | 0 | |a eng | |
049 | |a DE-20 |a DE-703 |a DE-706 |a DE-355 |a DE-11 |a DE-188 | ||
050 | 0 | |a QC173.55 | |
082 | 0 | |a 530.11 |2 22 | |
084 | |a UH 8300 |0 (DE-625)145781: |2 rvk | ||
084 | |a 530 |2 sdnb | ||
084 | |a 520 |2 sdnb | ||
100 | 1 | |a Grøn, Øyvind |e Verfasser |0 (DE-588)133721140 |4 aut | |
245 | 1 | 0 | |a Einstein's general theory of relativity |b with modern applications in cosmology |c Øyvind Grøn ; Sigbjørn Hervik |
264 | 1 | |a New York, NY |b Springer |c 2007 | |
300 | |a XX, 538 S. |b Ill., graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
600 | 1 | 4 | |a Einstein, Albert <1879-1955> - Et la théorie de la relativité |
600 | 1 | 7 | |a Einstein, Albert |d 1879-1955 |0 (DE-588)118529579 |2 gnd |9 rswk-swf |
650 | 4 | |a Cosmologie - Mathématiques | |
650 | 7 | |a Cosmologie |2 ram | |
650 | 7 | |a Physique - Modèles mathématiques |2 ram | |
650 | 4 | |a Relativité (Physique) | |
650 | 7 | |a Relativité générale (physique) |2 ram | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Cosmology |x Mathematics | |
650 | 4 | |a Relativity (Physics) | |
650 | 0 | 7 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Einstein, Albert |d 1879-1955 |0 (DE-588)118529579 |D p |
689 | 0 | 1 | |a Allgemeine Relativitätstheorie |0 (DE-588)4112491-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hervik, Sigbjørn |e Verfasser |0 (DE-588)133721183 |4 aut | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015521255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-015521255 |
Datensatz im Suchindex
_version_ | 1813177762753544192 |
---|---|
adam_text |
Contents
List of Problems
. xi
List of Examples
. xv
Preface
.xvii
Notation
. xix
I Introduction:
Newtonian Physics and Special Relativity
.
l
1
Relativity Principles and Gravitation
. 3
1.1
Newtonian mechanics
. 3
1.2
Galilei-Newton's principle of Relativity
. 4
13
The principle of Relativity
. 5
1.4
Newton's law of Gravitation
. 6
1.5
Local form of Newton's Gravitational law
. 8
1.6
Tidal forces
. 10
1.7
The principle of equivalence
. 14
1.8
The covariance principle
. 15
1.9
Mach's principle
. 16
Problems
. 17
2
The Special Theory of Relativity
. 21
2.1
Coordinate systems and Minkowski-diagrams
. 21
2.2
Synchronization of clocks
. 23
2.3
The
Doppler
effect
. 23
2.4
Relativistic time-dilatation
. 25
2.5
The relativity of simultaneity
. 26
2.6
The Lorentz-contraction
. 28
2.7
The
Lorentz
transformation
. 30
2.8
Lorentz-invariant interval
. 32
2.9
The twin-paradox
. 34
2.10
Hyperbolic motion
. 35
2.11
Energy and mass
. 37
2.12
Relativistic increase of mass
. 38
2.13
Tachyons
. 39
2.14
Magnetism as a relativistic second-order effect
. 40
Problems
. 42
Contents
II the Mathematics of the
General Theory of Relativity
. 49
3
Vectors, Tensors, and Forms
. 51
3.1
Vectors
. 51
3.2
Four-vectors
. 52
3.3
One-forms
. 54
3.4
Tensors
. 55
3.5
Forms
. 57
Problems
. 60
4
Basis Vector Fields and the Metric Tensor
. 63
4.1
Manifolds and their coordinate-systems
. 63
4.2
Tangent vector fields and the coordinate basis vector fields
. . 65
4.3
Structure coefficients
. 71
4.4
General basis transformations
. 72
4.5
The metric tensor
. 74
4.6
Orthonormal
basis
. 76
4.7
Spatial geometry
. 78
4.8
The tetrad field of a comoving coordinate system
. 80
4.9
The volume form
. 81
4.10
Dual forms
. 82
Problems
. 84
5
Non-inertial Reference Frames
. 89
5.1
Spatial geometry in rotating reference frames
. 89
5.2
Ehrenfest's paradox
. 90
5.3
The Sagnac effect
. 93
5.4
Gravitational time dilatation
. 94
5.5
Uniformly accelerated reference frame
. 95
5.6
Covariant Lagrangian dynamics
. 98
5.7
A general equation for the
Doppler
effect
. 103
Problems
. 107
6
Differentiation, Connections, and Integration
. 109
6.1
Exterior Differentiation of forms
. 109
6.2
Electromagnetism
. 113
6.3
Integration of forms
. 115
6.4
Covariant differentiation of vectors
. 120
6.5
Covariant differentiation of forms and tensors
. 127
6.6
Exterior differentiation of vectors
. 129
6.7
Covariant exterior derivative
. 133
6.8
Geodesic normal coordinates
. 136
6.9
One-parameter groups of diffeomorphisms
. 137
6.10
The Lie derivative
. 140
6.11
Killing vectors and Symmetries
. 144
Problems
. 147
7
Curvature
. 151
7.1
Curves
. 151
7.2
Surfaces
. 153
Contents
7.3
The Riemann Curvature
Tensor. 155
7.4
Extrinsic and Intrinsic Curvature
. 161
7.5
The equation of geodesic deviation
. 164
7.6
Spaces of constant curvature
. 166
Problems
. 172
III Einstein's Field Equations
. 177
8
Einstein's Field Equations
. 179
8.1
From Newton's law of gravitation to Einstein's
field equations
. 179
8.2
Deduction of Einstein's vacuum field equations from Hubert's
variational principle
. 180
8.3
The field equations in the presence of matter and energy
. 183
8.4
Energy-momentum conservation
. 185
8.5
Some energy-momentum tensors
. 185
8.6
Some particular fluids
. 187
8.7
The paths of free point particles
. 191
Problems
. 192
9
The Linear Field Approximation
. 195
9.1
The linearised field equations
. 195
9.2
The Newtonian limit of general relativity
. 198
9.3
Solutions of the linearised field equations
. 199
9.4
Gravitoelectromagnetism
. 201
9.5
Gravitational waves
. 203
9.6
Gravitational radiation from sources
. 206
Problems
. 210
10
The
Schwarzschild
Solution and Black Holes
. 215
10.1
The
Schwarzschild
solution for empty space
. 215
10.2
Radial free fall in
Schwarzschild spacetime. 220
10.3
The light-cone in
a
Schwarzschild
spacetime
. 221
10.4
Particle trajectories in
Schwarzschild
spacetime
. 225
10.5
Analytical extension of the
Schwarzschild
spacetime
. 230
10.6
Charged and rotating black holes
. 233
10.7
Black Hole thermodynamics
. 245
10.8
The Tolman-Oppenheimer-Volkoff equation
. 252
10.9
The interior
Schwarzschild
solution
. 253
10.10
Relativistic gravitation versus Newtonian gravitation
. 256
Problems
. 257
IV Cosmology
.265
11
Homogeneous and
Isotropie
Universe Models
. 267
11.1
The cosmological principles
. 267
11.2
Friedmann-Robertson-Walker models
. 268
11.3
Dynamics of Homogeneous and
Isotropie
cosmologies
. 271
Contents
11.4 Cosmological redshift
and the Hubble law
. 273
11.5
Radiation dominated universe models
. 278
11.6
Matter dominated universe models
. 281
11.7
The gravitational lens effect
. 283
11.8
Redshift-luminosity relation
. 289
11.9
Cosmological horizons
. 293
11.10
Big Bang in an infinite Universe
. 294
Problems
.
296
12
Universe Models with Vacuum Energy
. 305
12.1
Einstein's static universe
. 305
12.2 de
Sitter's solution
. 306
12.3
The
de
Sitter
hyperboloid
. 309
12.4
The horizon problem and the flatness problem
. 310
12.5
Inflation
. 312
12.6
The
Friedmann-Lemaître
model
. 319
12.7
Universe models with quintessence energy
. 325
12.8
Dark energy explored by means of supernova observations
and the statefinder diagnostic
. 328
12.9
Cosmic density perturbations
. 334
12.10
Temperature fluctuations in the cosmic microwave
background (CMB)
. 338
12.11
Mach's principle
. 345
12.12
The History of our Universe
. 348
Problems
. 359
13 Anisotropie
and Inhomogeneous Universe Models
. 367
13.1
The
Bianchi
type I universe model
. 367
13.2
The Kasner solutions
. 370
13.3
The energy-momentum conservation law in an anisotropic
universe
. 371
13.4
Models with a perfect fluid
. 373
13.5
Inflation through bulk viscosity
. 376
13.6
A universe with a dissipative fluid
. 377
13.7
The
Lemaître-Tolman-Bondi
universe
models
. 379
Problems
. 383
V Advanced Topics
.387
14
Covariant Decomposition, Singularities, and Canonical Cosmology
389
14.1
Covariant decomposition
. 389
14.2
Equations of motion
. 392
14.3
Singularities
. 394
14.4
Lagrangian formulation of General Relativity
. 399
14.5
Hamiltonian formulation
. 402
14.6
Canonical formulation with matter and energy
. 404
Contents
14.7
The space of three-metrics: Superspace
. 406
Problems
. 410
15
Spatially Homogeneous Universe Models
. 413
15.1
Lie groups and Lie algebras
. 413
15.2
Homogeneous spaces
. 416
15.3
The
Bianchi
models
. 420
15.4
The
orthonormal
frame approach to the non-tilted
Bianchi
models
. 423
15.5
The
8
model geometries
. 428
15.6
Constructing compact quotients
. 430
Problems
. 433
16
Israel's Formalism: The Metric Junction Method
. 439
16.1
The relativistic theory of surface layers
. 439
16.2
Einstein's field equations
. 441
16.3
Surface layers and boundary surfaces
. 443
16.4
Spherical shell of dust in vacuum
. 445
Problems
. 450
17
Brane-worlds
. 453
17.1
Field equations on the
brane
. 453
17.2
Five-dimensional
brane
cosmology
. 456
17.3
Solutions in the bulk
. 459
17.4
Towards a realistic
brane
cosmology
. 461
17.5
Inflation in the
brane
. 464
17.6
Dynamics of two branes
. 467
17.7
The hierarchy problem and the weakness of gravity
. 469
17.8
The Randall-Sundrum models
. 471
Problems
. 474
18
Kaluza-Klein Theory
. 479
18.1
A fifth extra dimension
. 479
18.2
The Kaluza-Klein action
. 481
18.3
Implications of a fifth extra dimension
. 485
18.4
Conformai
transformations
. 488
18.5
Conformai
transformation of the Kaluza-Klein action
. 491
18.6
Kaluza-Klein cosmology
. 494
Problems
. 497
Vi
Appendices
. 501
A Constants of Nature
. 503
В
Penrose
Diagrams
. 505
B.I
Conformai
transformations and causal structure
. 505
B.2
Schwarzschild spacetime. 507
B.3
de
Sitter spacetime
. 507
С
Anti-de Sitter Spacetime
. 511
C.I The anti-de Sitter
hyperboloid
. 511
Contents
С.
2
Foliations
of AtlS,,
. 512
С.
3
Geodesies
in AclS„ . 513
C.4 The BTZ black hole
. 514
C.5 A(1S:, as the group SLC2.R)
. 515
D
How to Read This Book
.517
E
Suggested Further Reading
.519
Bibliography
.523
Index
.533 |
adam_txt |
Contents
List of Problems
. xi
List of Examples
. xv
Preface
.xvii
Notation
. xix
I Introduction:
Newtonian Physics and Special Relativity
.
l
1
Relativity Principles and Gravitation
. 3
1.1
Newtonian mechanics
. 3
1.2
Galilei-Newton's principle of Relativity
. 4
13
The principle of Relativity
. 5
1.4
Newton's law of Gravitation
. 6
1.5
Local form of Newton's Gravitational law
. 8
1.6
Tidal forces
. 10
1.7
The principle of equivalence
. 14
1.8
The covariance principle
. 15
1.9
Mach's principle
. 16
Problems
. 17
2
The Special Theory of Relativity
. 21
2.1
Coordinate systems and Minkowski-diagrams
. 21
2.2
Synchronization of clocks
. 23
2.3
The
Doppler
effect
. 23
2.4
Relativistic time-dilatation
. 25
2.5
The relativity of simultaneity
. 26
2.6
The Lorentz-contraction
. 28
2.7
The
Lorentz
transformation
. 30
2.8
Lorentz-invariant interval
. 32
2.9
The twin-paradox
. 34
2.10
Hyperbolic motion
. 35
2.11
Energy and mass
. 37
2.12
Relativistic increase of mass
. 38
2.13
Tachyons
. 39
2.14
Magnetism as a relativistic second-order effect
. 40
Problems
. 42
Contents
II the Mathematics of the
General Theory of Relativity
. 49
3
Vectors, Tensors, and Forms
. 51
3.1
Vectors
. 51
3.2
Four-vectors
. 52
3.3
One-forms
. 54
3.4
Tensors
. 55
3.5
Forms
. 57
Problems
. 60
4
Basis Vector Fields and the Metric Tensor
. 63
4.1
Manifolds and their coordinate-systems
. 63
4.2
Tangent vector fields and the coordinate basis vector fields
. . 65
4.3
Structure coefficients
. 71
4.4
General basis transformations
. 72
4.5
The metric tensor
. 74
4.6
Orthonormal
basis
. 76
4.7
Spatial geometry
. 78
4.8
The tetrad field of a comoving coordinate system
. 80
4.9
The volume form
. 81
4.10
Dual forms
. 82
Problems
. 84
5
Non-inertial Reference Frames
. 89
5.1
Spatial geometry in rotating reference frames
. 89
5.2
Ehrenfest's paradox
. 90
5.3
The Sagnac effect
. 93
5.4
Gravitational time dilatation
. 94
5.5
Uniformly accelerated reference frame
. 95
5.6
Covariant Lagrangian dynamics
. 98
5.7
A general equation for the
Doppler
effect
. 103
Problems
. 107
6
Differentiation, Connections, and Integration
. 109
6.1
Exterior Differentiation of forms
. 109
6.2
Electromagnetism
. 113
6.3
Integration of forms
. 115
6.4
Covariant differentiation of vectors
. 120
6.5
Covariant differentiation of forms and tensors
. 127
6.6
Exterior differentiation of vectors
. 129
6.7
Covariant exterior derivative
. 133
6.8
Geodesic normal coordinates
. 136
6.9
One-parameter groups of diffeomorphisms
. 137
6.10
The Lie derivative
. 140
6.11
Killing vectors and Symmetries
. 144
Problems
. 147
7
Curvature
. 151
7.1
Curves
. 151
7.2
Surfaces
. 153
Contents
7.3
The Riemann Curvature
Tensor. 155
7.4
Extrinsic and Intrinsic Curvature
. 161
7.5
The equation of geodesic deviation
. 164
7.6
Spaces of constant curvature
. 166
Problems
. 172
III Einstein's Field Equations
. 177
8
Einstein's Field Equations
. 179
8.1
From Newton's law of gravitation to Einstein's
field equations
. 179
8.2
Deduction of Einstein's vacuum field equations from Hubert's
variational principle
. 180
8.3
The field equations in the presence of matter and energy
. 183
8.4
Energy-momentum conservation
. 185
8.5
Some energy-momentum tensors
. 185
8.6
Some particular fluids
. 187
8.7
The paths of free point particles
. 191
Problems
. 192
9
The Linear Field Approximation
. 195
9.1
The linearised field equations
. 195
9.2
The Newtonian limit of general relativity
. 198
9.3
Solutions of the linearised field equations
. 199
9.4
Gravitoelectromagnetism
. 201
9.5
Gravitational waves
. 203
9.6
Gravitational radiation from sources
. 206
Problems
. 210
10
The
Schwarzschild
Solution and Black Holes
. 215
10.1
The
Schwarzschild
solution for empty space
. 215
10.2
Radial free fall in
Schwarzschild spacetime. 220
10.3
The light-cone in
a
Schwarzschild
spacetime
. 221
10.4
Particle trajectories in
Schwarzschild
spacetime
. 225
10.5
Analytical extension of the
Schwarzschild
spacetime
. 230
10.6
Charged and rotating black holes
. 233
10.7
Black Hole thermodynamics
. 245
10.8
The Tolman-Oppenheimer-Volkoff equation
. 252
10.9
The interior
Schwarzschild
solution
. 253
10.10
Relativistic gravitation versus Newtonian gravitation
. 256
Problems
. 257
IV Cosmology
.265
11
Homogeneous and
Isotropie
Universe Models
. 267
11.1
The cosmological principles
. 267
11.2
Friedmann-Robertson-Walker models
. 268
11.3
Dynamics of Homogeneous and
Isotropie
cosmologies
. 271
Contents
11.4 Cosmological redshift
and the Hubble law
. 273
11.5
Radiation dominated universe models
. 278
11.6
Matter dominated universe models
. 281
11.7
The gravitational lens effect
. 283
11.8
Redshift-luminosity relation
. 289
11.9
Cosmological horizons
. 293
11.10
Big Bang in an infinite Universe
. 294
Problems
.
296
12
Universe Models with Vacuum Energy
. 305
12.1
Einstein's static universe
. 305
12.2 de
Sitter's solution
. 306
12.3
The
de
Sitter
hyperboloid
. 309
12.4
The horizon problem and the flatness problem
. 310
12.5
Inflation
. 312
12.6
The
Friedmann-Lemaître
model
. 319
12.7
Universe models with quintessence energy
. 325
12.8
Dark energy explored by means of supernova observations
and the statefinder diagnostic
. 328
12.9
Cosmic density perturbations
. 334
12.10
Temperature fluctuations in the cosmic microwave
background (CMB)
. 338
12.11
Mach's principle
. 345
12.12
The History of our Universe
. 348
Problems
. 359
13 Anisotropie
and Inhomogeneous Universe Models
. 367
13.1
The
Bianchi
type I universe model
. 367
13.2
The Kasner solutions
. 370
13.3
The energy-momentum conservation law in an anisotropic
universe
. 371
13.4
Models with a perfect fluid
. 373
13.5
Inflation through bulk viscosity
. 376
13.6
A universe with a dissipative fluid
. 377
13.7
The
Lemaître-Tolman-Bondi
universe
models
. 379
Problems
. 383
V Advanced Topics
.387
14
Covariant Decomposition, Singularities, and Canonical Cosmology
389
14.1
Covariant decomposition
. 389
14.2
Equations of motion
. 392
14.3
Singularities
. 394
14.4
Lagrangian formulation of General Relativity
. 399
14.5
Hamiltonian formulation
. 402
14.6
Canonical formulation with matter and energy
. 404
Contents
14.7
The space of three-metrics: Superspace
. 406
Problems
. 410
15
Spatially Homogeneous Universe Models
. 413
15.1
Lie groups and Lie algebras
. 413
15.2
Homogeneous spaces
. 416
15.3
The
Bianchi
models
. 420
15.4
The
orthonormal
frame approach to the non-tilted
Bianchi
models
. 423
15.5
The
8
model geometries
. 428
15.6
Constructing compact quotients
. 430
Problems
. 433
16
Israel's Formalism: The Metric Junction Method
. 439
16.1
The relativistic theory of surface layers
. 439
16.2
Einstein's field equations
. 441
16.3
Surface layers and boundary surfaces
. 443
16.4
Spherical shell of dust in vacuum
. 445
Problems
. 450
17
Brane-worlds
. 453
17.1
Field equations on the
brane
. 453
17.2
Five-dimensional
brane
cosmology
. 456
17.3
Solutions in the bulk
. 459
17.4
Towards a realistic
brane
cosmology
. 461
17.5
Inflation in the
brane
. 464
17.6
Dynamics of two branes
. 467
17.7
The hierarchy problem and the weakness of gravity
. 469
17.8
The Randall-Sundrum models
. 471
Problems
. 474
18
Kaluza-Klein Theory
. 479
18.1
A fifth extra dimension
. 479
18.2
The Kaluza-Klein action
. 481
18.3
Implications of a fifth extra dimension
. 485
18.4
Conformai
transformations
. 488
18.5
Conformai
transformation of the Kaluza-Klein action
. 491
18.6
Kaluza-Klein cosmology
. 494
Problems
. 497
Vi
Appendices
. 501
A Constants of Nature
. 503
В
Penrose
Diagrams
. 505
B.I
Conformai
transformations and causal structure
. 505
B.2
Schwarzschild spacetime. 507
B.3
de
Sitter spacetime
. 507
С
Anti-de Sitter Spacetime
. 511
C.I The anti-de Sitter
hyperboloid
. 511
Contents
С.
2
Foliations
of AtlS,,
. 512
С.
3
Geodesies
in AclS„ . 513
C.4 The BTZ black hole
. 514
C.5 A(1S:, as the group SLC2.R)
. 515
D
How to Read This Book
.517
E
Suggested Further Reading
.519
Bibliography
.523
Index
.533 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Grøn, Øyvind Hervik, Sigbjørn |
author_GND | (DE-588)133721140 (DE-588)133721183 |
author_facet | Grøn, Øyvind Hervik, Sigbjørn |
author_role | aut aut |
author_sort | Grøn, Øyvind |
author_variant | ø g øg s h sh |
building | Verbundindex |
bvnumber | BV022311734 |
callnumber-first | Q - Science |
callnumber-label | QC173 |
callnumber-raw | QC173.55 |
callnumber-search | QC173.55 |
callnumber-sort | QC 3173.55 |
callnumber-subject | QC - Physics |
classification_rvk | UH 8300 |
ctrlnum | (OCoLC)77540741 (DE-599)BVBBV022311734 |
dewey-full | 530.11 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.11 |
dewey-search | 530.11 |
dewey-sort | 3530.11 |
dewey-tens | 530 - Physics |
discipline | Physik Geographie |
discipline_str_mv | Physik Geographie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV022311734</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20100826</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">070314s2007 ad|| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">07,N02,0662</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">982258178</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780387691992</subfield><subfield code="9">978-0-387-69199-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0387691995</subfield><subfield code="9">0-387-69199-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">978-0-387-69199-2</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">11893394</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)77540741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022311734</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakddb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-20</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-188</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QC173.55</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.11</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UH 8300</subfield><subfield code="0">(DE-625)145781:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">530</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">520</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grøn, Øyvind</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133721140</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Einstein's general theory of relativity</subfield><subfield code="b">with modern applications in cosmology</subfield><subfield code="c">Øyvind Grøn ; Sigbjørn Hervik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XX, 538 S.</subfield><subfield code="b">Ill., graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="600" ind1="1" ind2="4"><subfield code="a">Einstein, Albert <1879-1955> - Et la théorie de la relativité</subfield></datafield><datafield tag="600" ind1="1" ind2="7"><subfield code="a">Einstein, Albert</subfield><subfield code="d">1879-1955</subfield><subfield code="0">(DE-588)118529579</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmologie - Mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cosmologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physique - Modèles mathématiques</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativité (Physique)</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Relativité générale (physique)</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cosmology</subfield><subfield code="x">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relativity (Physics)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Einstein, Albert</subfield><subfield code="d">1879-1955</subfield><subfield code="0">(DE-588)118529579</subfield><subfield code="D">p</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Allgemeine Relativitätstheorie</subfield><subfield code="0">(DE-588)4112491-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hervik, Sigbjørn</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)133721183</subfield><subfield code="4">aut</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015521255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015521255</subfield></datafield></record></collection> |
id | DE-604.BV022311734 |
illustrated | Illustrated |
index_date | 2024-07-02T16:58:40Z |
indexdate | 2024-10-17T16:04:22Z |
institution | BVB |
isbn | 9780387691992 0387691995 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015521255 |
oclc_num | 77540741 |
open_access_boolean | |
owner | DE-20 DE-703 DE-706 DE-355 DE-BY-UBR DE-11 DE-188 |
owner_facet | DE-20 DE-703 DE-706 DE-355 DE-BY-UBR DE-11 DE-188 |
physical | XX, 538 S. Ill., graph. Darst. |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer |
record_format | marc |
spelling | Grøn, Øyvind Verfasser (DE-588)133721140 aut Einstein's general theory of relativity with modern applications in cosmology Øyvind Grøn ; Sigbjørn Hervik New York, NY Springer 2007 XX, 538 S. Ill., graph. Darst. txt rdacontent n rdamedia nc rdacarrier Einstein, Albert <1879-1955> - Et la théorie de la relativité Einstein, Albert 1879-1955 (DE-588)118529579 gnd rswk-swf Cosmologie - Mathématiques Cosmologie ram Physique - Modèles mathématiques ram Relativité (Physique) Relativité générale (physique) ram Mathematik Cosmology Mathematics Relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd rswk-swf Einstein, Albert 1879-1955 (DE-588)118529579 p Allgemeine Relativitätstheorie (DE-588)4112491-1 s DE-604 Hervik, Sigbjørn Verfasser (DE-588)133721183 aut Digitalisierung UB Regensburg application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015521255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grøn, Øyvind Hervik, Sigbjørn Einstein's general theory of relativity with modern applications in cosmology Einstein, Albert <1879-1955> - Et la théorie de la relativité Einstein, Albert 1879-1955 (DE-588)118529579 gnd Cosmologie - Mathématiques Cosmologie ram Physique - Modèles mathématiques ram Relativité (Physique) Relativité générale (physique) ram Mathematik Cosmology Mathematics Relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd |
subject_GND | (DE-588)118529579 (DE-588)4112491-1 |
title | Einstein's general theory of relativity with modern applications in cosmology |
title_auth | Einstein's general theory of relativity with modern applications in cosmology |
title_exact_search | Einstein's general theory of relativity with modern applications in cosmology |
title_exact_search_txtP | Einstein's general theory of relativity with modern applications in cosmology |
title_full | Einstein's general theory of relativity with modern applications in cosmology Øyvind Grøn ; Sigbjørn Hervik |
title_fullStr | Einstein's general theory of relativity with modern applications in cosmology Øyvind Grøn ; Sigbjørn Hervik |
title_full_unstemmed | Einstein's general theory of relativity with modern applications in cosmology Øyvind Grøn ; Sigbjørn Hervik |
title_short | Einstein's general theory of relativity |
title_sort | einstein s general theory of relativity with modern applications in cosmology |
title_sub | with modern applications in cosmology |
topic | Einstein, Albert <1879-1955> - Et la théorie de la relativité Einstein, Albert 1879-1955 (DE-588)118529579 gnd Cosmologie - Mathématiques Cosmologie ram Physique - Modèles mathématiques ram Relativité (Physique) Relativité générale (physique) ram Mathematik Cosmology Mathematics Relativity (Physics) Allgemeine Relativitätstheorie (DE-588)4112491-1 gnd |
topic_facet | Einstein, Albert <1879-1955> - Et la théorie de la relativité Einstein, Albert 1879-1955 Cosmologie - Mathématiques Cosmologie Physique - Modèles mathématiques Relativité (Physique) Relativité générale (physique) Mathematik Cosmology Mathematics Relativity (Physics) Allgemeine Relativitätstheorie |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=015521255&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grønøyvind einsteinsgeneraltheoryofrelativitywithmodernapplicationsincosmology AT herviksigbjørn einsteinsgeneraltheoryofrelativitywithmodernapplicationsincosmology |