Multiplicative invariant theory:
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Berlin [u.a.]
Springer
2005
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
135 Encyclopaedia of mathematical sciences Invariant theory and algebraic transformation groups ; 6 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBR01 UBT01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (XI, 177 S.) graph. Darst. |
ISBN: | 3540243232 9783540243236 9783540273585 |
DOI: | 10.1007/b138961 |
Internformat
MARC
LEADER | 00000nmm a2200000 cb4500 | ||
---|---|---|---|
001 | BV022308397 | ||
003 | DE-604 | ||
005 | 20160517 | ||
007 | cr|uuu---uuuuu | ||
008 | 070313s2005 |||| o||u| ||||||eng d | ||
020 | |a 3540243232 |9 3-540-24323-2 | ||
020 | |a 9783540243236 |9 978-3-540-24323-6 | ||
020 | |a 9783540273585 |c Online |9 978-3-540-27358-5 | ||
024 | 7 | |a 10.1007/b138961 |2 doi | |
035 | |a (OCoLC)254289870 | ||
035 | |a (DE-599)BVBBV022308397 | ||
040 | |a DE-604 |b ger |e rakwb | ||
041 | 0 | |a eng | |
049 | |a DE-739 |a DE-355 |a DE-634 |a DE-91 |a DE-384 |a DE-703 |a DE-83 | ||
082 | 0 | |a 512.944 | |
084 | |a SK 260 |0 (DE-625)143227: |2 rvk | ||
084 | |a MAT 110f |2 stub | ||
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Multiplicative invariant theory |c Martin Lorenz |
264 | 1 | |a Berlin [u.a.] |b Springer |c 2005 | |
300 | |a 1 Online-Ressource (XI, 177 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Encyclopaedia of mathematical sciences |v 135 | |
490 | 1 | |a Encyclopaedia of mathematical sciences : Invariant theory and algebraic transformation groups |v 6 | |
650 | 0 | 7 | |a Invariantentheorie |0 (DE-588)4162209-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kommutativer Ring |0 (DE-588)4164825-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Invariantentheorie |0 (DE-588)4162209-1 |D s |
689 | 0 | 1 | |a Kommutativer Ring |0 (DE-588)4164825-0 |D s |
689 | 0 | |C b |5 DE-604 | |
700 | 1 | |a Lorenz, Martin |e Sonstige |4 oth | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v 135 |w (DE-604)BV035421342 |9 135 | |
830 | 0 | |a Encyclopaedia of mathematical sciences |v Invariant theory and algebraic transformation groups ; 6 |w (DE-604)BV036597991 |9 6 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b138961 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015518251 | ||
966 | e | |u https://doi.org/10.1007/b138961 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b138961 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b138961 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b138961 |l UBR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b138961 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b138961 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804136328915320832 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
building | Verbundindex |
bvnumber | BV022308397 |
classification_rvk | SK 260 |
classification_tum | MAT 110f MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)254289870 (DE-599)BVBBV022308397 |
dewey-full | 512.944 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.944 |
dewey-search | 512.944 |
dewey-sort | 3512.944 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/b138961 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02319nmm a2200541 cb4500</leader><controlfield tag="001">BV022308397</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160517 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070313s2005 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3540243232</subfield><subfield code="9">3-540-24323-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540243236</subfield><subfield code="9">978-3-540-24323-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540273585</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-27358-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b138961</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)254289870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022308397</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.944</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 260</subfield><subfield code="0">(DE-625)143227:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 110f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Multiplicative invariant theory</subfield><subfield code="c">Martin Lorenz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 177 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">135</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Encyclopaedia of mathematical sciences : Invariant theory and algebraic transformation groups</subfield><subfield code="v">6</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Invariantentheorie</subfield><subfield code="0">(DE-588)4162209-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="C">b</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lorenz, Martin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">135</subfield><subfield code="w">(DE-604)BV035421342</subfield><subfield code="9">135</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Encyclopaedia of mathematical sciences</subfield><subfield code="v">Invariant theory and algebraic transformation groups ; 6</subfield><subfield code="w">(DE-604)BV036597991</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015518251</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b138961</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV022308397 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:57:32Z |
indexdate | 2024-07-09T20:54:40Z |
institution | BVB |
isbn | 3540243232 9783540243236 9783540273585 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015518251 |
oclc_num | 254289870 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
physical | 1 Online-Ressource (XI, 177 S.) graph. Darst. |
psigel | ZDB-2-SMA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Springer |
record_format | marc |
series | Encyclopaedia of mathematical sciences |
series2 | Encyclopaedia of mathematical sciences Encyclopaedia of mathematical sciences : Invariant theory and algebraic transformation groups |
spelling | Multiplicative invariant theory Martin Lorenz Berlin [u.a.] Springer 2005 1 Online-Ressource (XI, 177 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier Encyclopaedia of mathematical sciences 135 Encyclopaedia of mathematical sciences : Invariant theory and algebraic transformation groups 6 Invariantentheorie (DE-588)4162209-1 gnd rswk-swf Kommutativer Ring (DE-588)4164825-0 gnd rswk-swf Invariantentheorie (DE-588)4162209-1 s Kommutativer Ring (DE-588)4164825-0 s b DE-604 Lorenz, Martin Sonstige oth Encyclopaedia of mathematical sciences 135 (DE-604)BV035421342 135 Encyclopaedia of mathematical sciences Invariant theory and algebraic transformation groups ; 6 (DE-604)BV036597991 6 https://doi.org/10.1007/b138961 Verlag Volltext |
spellingShingle | Multiplicative invariant theory Encyclopaedia of mathematical sciences Invariantentheorie (DE-588)4162209-1 gnd Kommutativer Ring (DE-588)4164825-0 gnd |
subject_GND | (DE-588)4162209-1 (DE-588)4164825-0 |
title | Multiplicative invariant theory |
title_auth | Multiplicative invariant theory |
title_exact_search | Multiplicative invariant theory |
title_exact_search_txtP | Multiplicative invariant theory |
title_full | Multiplicative invariant theory Martin Lorenz |
title_fullStr | Multiplicative invariant theory Martin Lorenz |
title_full_unstemmed | Multiplicative invariant theory Martin Lorenz |
title_short | Multiplicative invariant theory |
title_sort | multiplicative invariant theory |
topic | Invariantentheorie (DE-588)4162209-1 gnd Kommutativer Ring (DE-588)4164825-0 gnd |
topic_facet | Invariantentheorie Kommutativer Ring |
url | https://doi.org/10.1007/b138961 |
volume_link | (DE-604)BV035421342 (DE-604)BV036597991 |
work_keys_str_mv | AT lorenzmartin multiplicativeinvarianttheory |