Lie theory: unitary representations and compactifications of symmetric spaces
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Boston [u.a.]
Birkhäuser
2005
|
Schriftenreihe: | Progress in mathematics
229 |
Schlagworte: | |
Online-Zugang: | BTU01 TUM01 UBA01 UBR01 UBT01 UPA01 Volltext |
Beschreibung: | 1 Online-Ressource (X, 207 S.) graph. Darst. |
ISBN: | 0817635262 9780817644307 |
DOI: | 10.1007/b139076 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV022307049 | ||
003 | DE-604 | ||
005 | 20070313 | ||
007 | cr|uuu---uuuuu | ||
008 | 070312s2005 xxu|||| o||u| ||||||eng d | ||
020 | |a 0817635262 |c acidfree paper |9 0-8176-3526-2 | ||
020 | |a 9780817644307 |c Online |9 978-0-8176-4430-7 | ||
024 | 7 | |a 10.1007/b139076 |2 doi | |
035 | |a (OCoLC)315797712 | ||
035 | |a (DE-599)BVBBV022307049 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
044 | |a xxu |c US | ||
049 | |a DE-739 |a DE-355 |a DE-634 |a DE-91 |a DE-384 |a DE-703 |a DE-83 | ||
050 | 0 | |a QA649 | |
084 | |a SK 340 |0 (DE-625)143232: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Lie theory |b unitary representations and compactifications of symmetric spaces |c Jean-Philippe Anker... ed. |
264 | 1 | |a Boston [u.a.] |b Birkhäuser |c 2005 | |
300 | |a 1 Online-Ressource (X, 207 S.) |b graph. Darst. | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in mathematics |v 229 | |
650 | 4 | |a Symmetric spaces | |
650 | 4 | |a Lie theory | |
650 | 0 | 7 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Theorie |0 (DE-588)4251836-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Darstellungstheorie |0 (DE-588)4148816-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lie-Algebra |0 (DE-588)4130355-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4151278-9 |a Einführung |2 gnd-content | |
689 | 0 | 0 | |a Symmetrischer Raum |0 (DE-588)4184206-6 |D s |
689 | 0 | 1 | |a Lie-Theorie |0 (DE-588)4251836-2 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Lie-Algebra |0 (DE-588)4130355-6 |D s |
689 | 1 | 1 | |a Darstellungstheorie |0 (DE-588)4148816-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Anker, Jean-Philippe |e Sonstige |0 (DE-588)130334065 |4 oth | |
830 | 0 | |a Progress in mathematics |v 229 |w (DE-604)BV000004120 |9 229 | |
856 | 4 | 0 | |u https://doi.org/10.1007/b139076 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-015516931 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://doi.org/10.1007/b139076 |l BTU01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b139076 |l TUM01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b139076 |l UBA01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b139076 |l UBR01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b139076 |l UBT01 |p ZDB-2-SMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/b139076 |l UPA01 |p ZDB-2-SMA |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804136327056195584 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_GND | (DE-588)130334065 |
building | Verbundindex |
bvnumber | BV022307049 |
callnumber-first | Q - Science |
callnumber-label | QA649 |
callnumber-raw | QA649 |
callnumber-search | QA649 |
callnumber-sort | QA 3649 |
callnumber-subject | QA - Mathematics |
classification_rvk | SK 340 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA |
ctrlnum | (OCoLC)315797712 (DE-599)BVBBV022307049 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1007/b139076 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02632nmm a2200625zcb4500</leader><controlfield tag="001">BV022307049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20070313 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">070312s2005 xxu|||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0817635262</subfield><subfield code="c">acidfree paper</subfield><subfield code="9">0-8176-3526-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780817644307</subfield><subfield code="c">Online</subfield><subfield code="9">978-0-8176-4430-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/b139076</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)315797712</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV022307049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA649</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lie theory</subfield><subfield code="b">unitary representations and compactifications of symmetric spaces</subfield><subfield code="c">Jean-Philippe Anker... ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boston [u.a.]</subfield><subfield code="b">Birkhäuser</subfield><subfield code="c">2005</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 207 S.)</subfield><subfield code="b">graph. Darst.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Symmetric spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie theory</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4151278-9</subfield><subfield code="a">Einführung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrischer Raum</subfield><subfield code="0">(DE-588)4184206-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Lie-Theorie</subfield><subfield code="0">(DE-588)4251836-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Darstellungstheorie</subfield><subfield code="0">(DE-588)4148816-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anker, Jean-Philippe</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)130334065</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in mathematics</subfield><subfield code="v">229</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">229</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-015516931</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">UBA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">UBT01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/b139076</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-2-SMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4151278-9 Einführung gnd-content |
genre_facet | Einführung |
id | DE-604.BV022307049 |
illustrated | Not Illustrated |
index_date | 2024-07-02T16:57:09Z |
indexdate | 2024-07-09T20:54:38Z |
institution | BVB |
isbn | 0817635262 9780817644307 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-015516931 |
oclc_num | 315797712 |
open_access_boolean | |
owner | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
owner_facet | DE-739 DE-355 DE-BY-UBR DE-634 DE-91 DE-BY-TUM DE-384 DE-703 DE-83 |
physical | 1 Online-Ressource (X, 207 S.) graph. Darst. |
psigel | ZDB-2-SMA |
publishDate | 2005 |
publishDateSearch | 2005 |
publishDateSort | 2005 |
publisher | Birkhäuser |
record_format | marc |
series | Progress in mathematics |
series2 | Progress in mathematics |
spelling | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed. Boston [u.a.] Birkhäuser 2005 1 Online-Ressource (X, 207 S.) graph. Darst. txt rdacontent c rdamedia cr rdacarrier Progress in mathematics 229 Symmetric spaces Lie theory Symmetrischer Raum (DE-588)4184206-6 gnd rswk-swf Lie-Theorie (DE-588)4251836-2 gnd rswk-swf Darstellungstheorie (DE-588)4148816-7 gnd rswk-swf Lie-Algebra (DE-588)4130355-6 gnd rswk-swf 1\p (DE-588)4151278-9 Einführung gnd-content Symmetrischer Raum (DE-588)4184206-6 s Lie-Theorie (DE-588)4251836-2 s DE-604 Lie-Algebra (DE-588)4130355-6 s Darstellungstheorie (DE-588)4148816-7 s 2\p DE-604 Anker, Jean-Philippe Sonstige (DE-588)130334065 oth Progress in mathematics 229 (DE-604)BV000004120 229 https://doi.org/10.1007/b139076 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Lie theory unitary representations and compactifications of symmetric spaces Progress in mathematics Symmetric spaces Lie theory Symmetrischer Raum (DE-588)4184206-6 gnd Lie-Theorie (DE-588)4251836-2 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd |
subject_GND | (DE-588)4184206-6 (DE-588)4251836-2 (DE-588)4148816-7 (DE-588)4130355-6 (DE-588)4151278-9 |
title | Lie theory unitary representations and compactifications of symmetric spaces |
title_auth | Lie theory unitary representations and compactifications of symmetric spaces |
title_exact_search | Lie theory unitary representations and compactifications of symmetric spaces |
title_exact_search_txtP | Lie theory unitary representations and compactifications of symmetric spaces |
title_full | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed. |
title_fullStr | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed. |
title_full_unstemmed | Lie theory unitary representations and compactifications of symmetric spaces Jean-Philippe Anker... ed. |
title_short | Lie theory |
title_sort | lie theory unitary representations and compactifications of symmetric spaces |
title_sub | unitary representations and compactifications of symmetric spaces |
topic | Symmetric spaces Lie theory Symmetrischer Raum (DE-588)4184206-6 gnd Lie-Theorie (DE-588)4251836-2 gnd Darstellungstheorie (DE-588)4148816-7 gnd Lie-Algebra (DE-588)4130355-6 gnd |
topic_facet | Symmetric spaces Lie theory Symmetrischer Raum Lie-Theorie Darstellungstheorie Lie-Algebra Einführung |
url | https://doi.org/10.1007/b139076 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT ankerjeanphilippe lietheoryunitaryrepresentationsandcompactificationsofsymmetricspaces |